Ejercicios de segundo orden mediante ecuaciones diferenciales
S
Ξ± < Wo Subamortiguado
L=0.1H
C=5uF
R=200Ὡ Wo =
1 ΞΎπΏπΆ
Wo =1414.2
1414
Ξ²= ΞΎππ β Ξ±2
π
Ξ± = 2πΏ
Ξ± = 1000
Ξ= 1000
i(t)= eβΞ±t (A1 COS Ξ²t + A2 SEN Ξ²t)
t=0
0= A1 COS 1000t + A2 SEN 1000t
0= A1
ππ(π‘) ππ‘
= eβ1000t (A1 COS 1000t + A2 SEN 1000t)
ππ(π‘) ππ‘
= eβ1000t (A1 COS 1000t) +eβ1000t (A2 SEN 1000t)
ππ(π‘)
= eβ1000t (A1 COS 1000t) +eβ1000t (A2 SEN 1000t)
ππ‘
ππ(π‘)
= (eβ1000t )Β΄ (A1 COS 1000t) +(eβ1000t )(A1 COS 1000t)Β΄ +
ππ‘ β1000t Β΄
) (A2 SEN 1000t) + (eβ1000t ) (A2 SEN 1000t)Β΄
(e
ππ(π‘)
ππ‘
= (β1000eβ1000t )(A1 COS 1000t) +(eβ1000t )(-A1 SEN
1000t)(1000) + (β1000eβ1000t ) (A2 SEN 1000t) + (eβ1000t ) (A2 COS 1000t)(1000) t=0
0=
πΏππ(π‘)
ππ‘
πΏππ(π‘) ππ‘ ππ(π‘) ππ‘
+ VR + Vc
= -Vc ππ
=-πΏ
ππ(π‘) ππ‘
= -2000
-2000 = 1000 A2 β 1000 A1 A2 = -2 i(t) = -2(eβ1000t )SEN 1000t [A]
Ejercicios de segundo orden mediante ecuaciones diferenciales
Ξ± > Wo
V
Subreamortiguado
L=0.1H
C=100uF
R=200Ὡ
Wo =
1 ΞΎπΏπΆ
Wo =316.22 1414
Ξ²= ΞΎππ2 β Ξ±2
π
Ξ± = 2πΏ
Ξ± = 1000
Ξ= 948.68
i(t)= A1es1t + A2es2t
S1= - Ξ± + Ξ² = - 51.32 S1= - Ξ± - Ξ² = - 1948.68 i(t)= A1eβ51.3t + A2eβ1948.68t
0= A1 + A2
t=0
ππ(π‘) ππ‘
= - 51.3 A1eβ51.3t β 1948.68 A2eβ1948.68t
200 = VR + Vc +
πΏππ(π‘) ππ‘
ππ(π‘)
ππ‘
= 2000
2000 = - 51.3 A1 β 1948.68 A2 Aplicando sistema de ecuacines nos queda
A1 = 1.054
A2 = - 1.054
i(t)= 1.054 A1eβ51.3t β 1.054 A2eβ1948.68t
Ejercicios de segundo orden mediante ecuaciones diferenciales
Ξ± = Wo
V
Criticamente
L=0.1H
amortiguado C=100uF
R=200Ὡ 1
ππ2 = πΏπΆ
1
C = πΏππ2
C = 10 uF
π
Ξ± = 2πΏ
Ξ± = 1000