Ejercicios De Pau De Matrices

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ejercicios De Pau De Matrices as PDF for free.

More details

  • Words: 1,544
  • Pages: 5
Ejercicio 2.1. Murcia. Septiembre 2008. Dada la matriz A=

1 2 2 1

, encontrar una matriz B tal que A•B =

0 3 3 0

Solución: A•B =

0 3 3 0

→ B = A-1•

0 3 3 0

Utilizamos el método de Gauss-Jordan para calcular la inversa de A:

A =

1 2 2 1

1 0 0 1



1 2 0 -3

F2 – 2 F1



1 0 0 1

- 1/3 2 / 3 2 / 3 - 1/3

1 0 -2 1



3 0 -1 2 0 -3 -2 1



3F1 + 2 F2

= A-1

F1 /3 F2 /–3

B = A-1•

0 3 3 0

=

- 1/3 2 / 3 • 2 / 3 - 1/3

0 3 3 0

2 -1 -1 2

=

Ejercicio 2.2. Castilla La Mancha. Junio 2008. (1) Despeja la matriz X en la ecuación 2•X – B = A•X

1 0 1 (2) Halla la matriz X de la ecuación anterior sabiendo que A = 2 1 0 -1 3 1 1 -2 B = -3 3 . 4 -3 Solución: (1) 2•X – B = A•X → 2•X – A•X = B → (2•I – A)•X = B → X =(2•I – A)-1•B

1 0 0 (2) 2•I – A = 2• 0 1 0 0 0 1

1 0 1 2 0 0 – 2 1 0 =0 2 0 -1 3 1 0 0 2

1 0 1 – 2 1 0 = -1 3 1

y

1 0 -1 = -2 1 0 1 -3 1

.

1 0 -1 1 0 0 (2•I – A) = - 2 1 0 0 1 0 1 -3 1 0 0 1

1 0 -1 1 0 0 0 1 -2 2 1 0 → 1 -3 1 0 0 1

→ F2 + 2•F1

1 0 -1 1 0 0 0 1 -2 2 1 0 0 - 3 2 -1 0 1

→ F3 – F1

4•F1 – F3





1 0 0 2 1 0 5 3 1



−1 − 3 -1 -1 −1 -1 5 3 1



F3 + 3•F2

4 0 0 0 1 -2 0 0 -4



1 0 -1 0 1 -2 0 0 -4

−1 − 3 -1 2 1 0 5 3 1

4 0 0 0 2 0 0 0 -4

→ 2•F2 – F3

4 0 0 0 2 0 0 0 -4

− 1 / 4 − 3 / 4 - 1/4 - 1/2 − 1 / 2 - 1/2 - 5/4 - 3/4 − 1 / 4

= (2•I – A)-1

F1/4, F2/2, F3/(–4)

− 1 / 4 − 3 / 4 - 1/4 1 -2 X = (2•I – A) •B = - 1/2 − 1 / 2 - 1/2 • - 3 3 = - 5/4 - 3/4 − 1 / 4 4 -3 -1

(-1/4) • 1+ (-3/4) • (-3) + (-1/4) • 4 (-1/4) • (-2) + (-3/4) • 3 + (-1/4) • (-3) = (-1/2) • 1+ (-1/2) • (-3) + (-1/2) • 4 (-1/2) • (-2) + (-1/2) • 3 + (-1/2) • (-3) = (-5/4) • 1+ (-3/4) • (-3) + (-1/4) • 4 (-5/4) • (-2) + (-3/4) • 3 + (-1/4) • (-3)

- 1/4 + 9/4 - 4/4 2/4 - 9/4 + 3/4 1 -1 = - 1/2 + 3/2 - 4/2 2/2 - 3/2 + 3/2 = - 1 1 - 5/4 + 9/4 - 4/4 10/4 - 9/4 + 3/4 0 1

Ejercicio 2.3. Valencia. Junio 2008. Determina la matriz X que verifica la ecuación AX + I = ABt, siendo I la matriz identidad, A =

1 1 2 1 ,B= -1 1 -1 1

Bt la traspuesta de la matriz B.

y

Solución: AX + I = ABt → X = A-1•(ABt – I) 2

1

2 -1

t 1 1 →B= 1 1

B=

1 ABt =

1

2 -1 1• 2 + 1• 1 1• (-1) + 1• 1 3 0 1 1 • 1 1 = (-1) • 2 + 1• 1 (-1) • (-1) + 1• 1 = - 1 2

ABt – I =

3 0 1 0 2 0 = -1 2 0 1 -1 1 F2 + F1

A=

1 1 1 0 -1 1 0 1



2F1 - F1

1 1 0 2

1 0 1 1



F1 /2



1 0 0 1

1/ 2 - 1/2 1/ 2 1/ 2

= A-1

F2 /2 X = A-1•(ABt – I) =

=

1/ 2 - 1/2 2 0 • 1/ 2 1/ 2 -1 1

1/ 2 • 2 + (-1/2) • 1 1/2 • 0 + (-1/2) • 1 1/ 2 • 2 + 1/ 2 • (-1) 1/ 2 • 0 + 1/ 2 • 1

=

=

1/ 2 - 1/2 1/ 2 1/2

2 0 0 2

1 -1 1 1

Ejercicio 2.4. Valencia. Septiembre 2008. 1 3

Dada la matriz A =

.

4 2

(a) Halla su inversa. 6

(b) Resuelve la ecuación XA² + 5A =

8

.

10 − 20

Solución: (a) F2 - 4F1 A=

1 3

1 0

4 2

0 1

F2/(-10)



10F1 + 3F2 1



3

1

0 − 10

1 0

−2

0 1

2 / 5 − 1 / 10

3

0

1



−4 1

−2 3

0

0 − 10

−4 1



= A-1

(b) XA² + 5A =

→X= =

=

6

10 − 20

1

8

10 − 25

=

6

. → XA² =

• A-2 =

1

8

10 − 20

8



10 − 25

1 ⋅ 26 / 5 + 8 ⋅ (−42 / 50)

- 5A → XA² =

26 / 5

- 63/10

− 42 / 50 121 / 100

1 ⋅ (−63 / 10) + 8 ⋅ (121 / 100)

26 / 5 − 336 / 50 − 63 / 10 + 968 / 100 260 / 5 + 21

− 63 / 10 − 121 / 4

−2

3

2 / 5 − 1 / 10

( − 2) ⋅ ( − 2) + 3 ⋅ 2 / 5



−2

= 3

2 / 5 − 1 / 10

− 76 / 50

338 / 100

365 / 5

− 1462 / 40

- 63/10

− 42 / 50 121 / 100

8



10 − 25

=

=

− 38 / 25

169 / 50

73

− 731 / 20

=

(-2) ⋅ 3 + 3 ⋅ (-1/10)

2 / 5 ⋅ (−2) + (−1 / 10) ⋅ 2 / 5 2 / 5 ⋅ 3 + (−1 / 10) ⋅ (−1 / 10) 26 / 5

1

=

10 ⋅ (26 / 5) + (−25) ⋅ (−42 / 50) 10 ⋅ (−63 / 10) + (−25) ⋅ (121 / 100)

A-2 = (A-1)2 =

=

8

=

4 + 6/5

- 6 - 3/10

− 4 / 5 − 2 / 50 6 / 5 + 1 / 100

=

Ejercicio 2.5. Castilla La Mancha. Septiembre 2008. (1) Despeja la matriz X en la ecuación: X•A – X = B

(2)Halla la matriz X de la ecuación anterior sabiendo que  1 −1 2     0 −1 8   A= 0 1 3  y B =  − 1 2 − 10    − 1 1 − 1   Solución: (1) X•A – X = B

→ X•(A – I) = B → X = B•(A – I)-1

(2)

1 −1 2 1 0 0 A–I= 0 1 3 – 0 1 0 −1 1 −1 0 0 1 F3

0 −1 2 1 0 0 A–I= 0 0 3 0 1 0 −1 1 − 2 0 0 1 F3

F2

→ 3F2 – 2F3

→ F1/(-3) F2/(-3) F3/3



-1

X = B•(A – I) =

=

=

−1 1 − 2 0 0 3 0 −1 2

3F1 + 2F3



−3 3 0 0 −1 2 0 0 3

0 0 1 0 1 0 1 0 0



0 2 3 1 0 0 0 1 0



F1 + F2

0 2 3 3 −2 0 0 1 0

−1 0 −1 −1 2 / 3 0 0 1/ 3 0

1 0 0 0 1 0 0 0 1

F1



−1 1 − 2 0 0 1 0 −1 2 1 0 0 0 0 3 0 1 0 −3 3 0 0 −3 0 0 0 3

0 −1 2 = 0 0 3 −1 1 − 2

0

−1

−1

2

(−1) ⋅ (−1)

−3 0 0 → 0 −3 0 0 0 3

= (A – I)-1

−1 0 −1 • −1 2 / 3 0 − 10 0 1/ 3 0 8

(-1) ⋅ 2/3 + 8 ⋅ 1/3

(−1) ⋅ (−1) + 2 ⋅ (−1)

2 ⋅ 2 / 3 + (−10) ⋅ 1 / 3

1

2

0

−1

−2

1

3 0 3 3 −2 0 0 1 0

=

0 (−1) ⋅ (−1)

=


Related Documents