Ejercicios-1.docx

  • Uploaded by: Juan Jose Perdomo
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ejercicios-1.docx as PDF for free.

More details

  • Words: 345
  • Pages: 3
Evaluar las siguientes integrales impropias y grafiquelas en Geogebra para determinar si convergen o divergen.

1. 3 0

3

𝑑π‘₯

∫

(π‘₯ βˆ’

2 1)3

2

= ∫ (π‘₯ βˆ’ 1)3 0

v=xβˆ’1 dv = 1dx 2

(x βˆ’ 1)βˆ’3+1 = 2 βˆ’3 + 1 1

(x βˆ’ 1)3 3 = = 3√x βˆ’ 1|0 como limite inferior y 3 como superior 1 3 Reemplamos 3

3

= (3√3 βˆ’ 1) βˆ’ (3√0 βˆ’ 1) 3

3

= 3 √2 βˆ’ 3βˆšβˆ’1 3

= 3√2 βˆ’ 3(βˆ’1) πŸ‘

= πŸ‘ √𝟐 + πŸ‘ 6. ∫

7 𝑑π‘₯ π‘₯ 2 βˆ’ 6π‘₯ + 25

Sol: π‘‡π‘Ÿπ‘–π‘›π‘œπ‘šπ‘–π‘œ π‘π‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘‘π‘œ π‘π‘’π‘Ÿπ‘“π‘’π‘π‘‘π‘œ 6 2 6 2 π‘₯ βˆ’ 6π‘₯ + ( ) βˆ’ ( ) + 25 2 2 2

π‘₯ 2 βˆ’ 6π‘₯ + 9 βˆ’ 9 + 25 π‘₯ 2 βˆ’ 6π‘₯ + 9 + 16

= (π‘₯ βˆ’ 3)2 + 16 πΈπ‘›π‘‘π‘œπ‘›π‘π‘’π‘  π‘Ÿπ‘’π‘’π‘ π‘π‘Ÿπ‘–π‘π‘–π‘šπ‘œπ‘  ∫

7 + 16 π‘₯βˆ’3

π΄π‘π‘™π‘–π‘π‘Žπ‘šπ‘œπ‘  ∫

𝑑𝑣 1 π‘£βˆ’π‘Ž = ln | |= 𝑣 2 βˆ’ π‘Ž2 2π‘Ž 𝑣+π‘Ž 𝑣 =π‘₯βˆ’3 π‘Ž2 = 16 π‘Ž = √16 π‘Ž=4

π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘  π‘™π‘Ž π‘“π‘œπ‘Ÿπ‘šπ‘’π‘™π‘Ž =

1 π‘₯βˆ’3βˆ’4 ln | | 2(4) π‘₯βˆ’3+4 1 π‘₯βˆ’7 = ln | |+𝐢 8 π‘₯+1

12. ∫ 𝑆𝑒𝑛5 (π‘₯)𝑑π‘₯

Sol: ∫ 𝑆𝑒𝑛4 (π‘₯)𝑠𝑒𝑛(π‘₯)𝑑π‘₯ 2

∫(𝑆𝑒𝑛2 (π‘₯)) 𝑠𝑒𝑛(π‘₯)𝑑π‘₯ πΌπ‘›π‘‘π‘’π‘‘π‘–π‘‘π‘Žπ‘‘ π‘‡π‘Ÿπ‘–π‘”π‘œπ‘›π‘œπ‘šπ‘’π‘‘π‘Ÿπ‘–π‘π‘Ž 𝑆𝑒𝑛2 π‘₯ + Cos2 π‘₯ = 1 𝑆𝑒𝑛2 π‘₯ = 1 βˆ’ πΆπ‘œπ‘  2 π‘₯ ∫(1 βˆ’ πΆπ‘œπ‘  2 π‘₯)2 . 𝑆𝑒𝑛(π‘₯) π‘…π‘’π‘ π‘œπ‘™π‘£π‘’π‘Ÿπ‘šπ‘œπ‘  π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘œ π‘›π‘œπ‘‘π‘Žπ‘π‘™π‘’: (π‘Ž + 𝑏)2 = π‘Ž2 + 2π‘Žπ‘ + 𝑏 2

∫(1 βˆ’ 2πΆπ‘œπ‘  2 π‘₯ + πΆπ‘œπ‘  4 π‘₯)𝑆𝑒𝑛π‘₯ π‘…π‘’π‘’π‘šπ‘π‘™π‘Žπ‘§π‘Žπ‘šπ‘œπ‘  𝑒 𝑒 = πΆπ‘œπ‘ π‘₯ π·π‘’π‘Ÿπ‘–π‘£π‘Žπ‘šπ‘œπ‘  𝑑𝑒 = βˆ’π‘†π‘’π‘›π‘₯. 𝑑π‘₯ π·π‘’π‘ π‘π‘’π‘—π‘Žπ‘šπ‘œπ‘  𝑑π‘₯ 𝑑π‘₯ =

𝑑𝑒 βˆ’π‘ π‘’π‘›π‘₯

πΈπ‘›π‘‘π‘œπ‘›π‘π‘’π‘  π‘…π‘’π‘’π‘ π‘π‘Ÿπ‘–π‘π‘–π‘šπ‘œπ‘  1 2 4 ∫ (1 βˆ’ 2πΆπ‘œπ‘  π‘₯ + πΆπ‘œπ‘  ). 𝑆𝑒𝑛π‘₯. 𝑆𝑒𝑛π‘₯ π‘†π‘œπ‘šπ‘π‘™π‘–π‘“π‘–π‘π‘Žπ‘šπ‘œπ‘  𝑦 π‘Ÿπ‘’π‘’π‘šπ‘π‘™π‘Žπ‘§π‘Žπ‘šπ‘œπ‘  πΆπ‘œπ‘ π‘₯ = 𝑒 βˆ’ ∫(βˆ’π‘’4 βˆ’ 2𝑒2 + 1) π‘…π‘’π‘’π‘šπ‘π‘™π‘Žπ‘§π‘Žπ‘šπ‘œπ‘  π‘π‘Žπ‘Ÿπ‘’π‘›π‘‘π‘’π‘ π‘–π‘  π‘π‘œπ‘› (βˆ’) ∫ βˆ’π‘’4 + 2𝑒2 βˆ’ 1 ∫ 𝑒𝑛 𝑑𝑒 =

𝑒𝑛+1 𝑛+1

π‘…π‘’π‘ π‘œπ‘™π‘£π‘’π‘šπ‘œπ‘  βˆ’

𝑒5 2 3 + 𝑒 βˆ’π‘’ 5 3

π‘†π‘’π‘ π‘‘π‘–π‘‘π‘’π‘–π‘šπ‘œπ‘  𝑒 π‘π‘œπ‘Ÿ πΆπ‘œπ‘ π‘₯ πΆπ‘œπ‘  5 π‘₯ 2 =βˆ’ + πΆπ‘œπ‘  3 π‘₯ βˆ’ πΆπ‘œπ‘ (π‘₯) + 𝐢 5 3

More Documents from "Juan Jose Perdomo"

Tarea1_grupo_58.docx
November 2019 20
Aporte Fase 4.docx
December 2019 21
Ejercicios-1.docx
December 2019 11
November 2019 14