Ejercicio 1p Y E.docx

  • Uploaded by: Javi Lopez
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ejercicio 1p Y E.docx as PDF for free.

More details

  • Words: 162
  • Pages: 1
1. Sea X una variable aleatoria discreta cuya función de probabilidad es: X P(X)

0 0.1

1 0.2

2 0.1

3 0.4

4 0.1

5 0.1

a) Calcular la función de distribución de probabilidad Solución:

Xi 0 1 2 3 4 5

Tabla de distribución de probabilidad P(x= Xi) P(X≤Xi) 0.1 F(0)=P(X≤0)= 0.1 0.2 F(1)=P(X≤1)= 0.3 0.1 F(2)=P(X≤2)= 0.4 0.4 F(3)=P(X≤3)= 0.8 0.1 F(4)=P(X≤4)= 0.9 0.1 F(5)=P(X≤5)= 1

b) Calcular i) P(X<3.5) ii) P (X≥2) iii) P (1<X≤4.5) Solución: i) P(X<3.5) = P (X≤3) = 0.8 ii) P (X≥2)= 1- P (X≤1) = 1-0.3= 0.7 iii) P (1<X≤4.5)= no podemos calcular esta probabilidad porque no tenemos el valor de 4.5 que es una distribución continua. c) determine la media y desviación estándar Solución: Media= 𝑬[𝑿] = ∑𝒊 𝑿𝒊 ∗ 𝑷[𝑿 = 𝑿𝒊) Var(X) = E[X2] - (E[X])2 s= √𝐄[𝐱 𝟐 ]– (𝐄[𝐱])𝟐 E[X]= 0(0.1)+1(0.2)+2(0.1)+3(0.4)+4(0.1)+5(0.1)= 0+0.2+0.2+1.12+0.4+0.5= 2.5 E[X2]= (0)2(0.1)+(1)2(0.2)+(2)2(0.1)+(3)2(0.4)+(4)2(0.1)+(5)2(0.1) =0+0.2+0.4+3.6+1.6+2.5= 8.3 Var(X)= 8.3- (2.5)2 = 8.3-6.25 = 2.05 Desviación estándar= √𝟐. 𝟎𝟓= 1.43

Related Documents

Ejercicio 1p Y E.docx
June 2020 12
Anaximandro 1p
June 2020 7
Pitagoras 1p
June 2020 15
1p'4
June 2020 5
Repaso 1p
October 2019 10
Ga-1p
June 2020 6

More Documents from ""

June 2020 5
Ejercicio 1p Y E.docx
June 2020 12
Monopolio.docx
June 2020 8