Edited Fertech_lect 3_microbial Regulation.pdf

  • Uploaded by: Afwa Nururrahmah
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Edited Fertech_lect 3_microbial Regulation.pdf as PDF for free.

More details

  • Words: 2,042
  • Pages: 18
9/3/2015

ITP 321 Lecture Note 3

Microbial Regulation

Ratih Dewanti-Hariyadi Department of Food Science and Technology Bogor Agricultural University

microorganisms

catabolism Source of C Source of C  Source of Energy

E

E

E

E

E

E

E

ATP

Regulation

amino acids organelle/structures biomass

E

E

E

E

E

E

+ other  metabolites

E Enzymes E= Enzymes

E

anabolism

survival 03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

2

2

1

9/3/2015

Keys in Metabolisms • In addition to ATP, enzymes (proteins) are keys in  metabolisms • Enzyme synthesis in microbes  is tightly regulated,  microorganisms are economical : ‐

Constitutive Enzymes (Enzim Konstitutif) : always  present in microbial cells at  constant amount ,  independent of metabolic state of microorganisms



Inducible Enzymes (Enzim Terinduksi) :  present/synthesized at different amount  depending on factors such as  metabolic state of  microorganisms, availability of substrates etc

03/09/2015

RDH/ITP/IPB

3

3

Strategy of Microbial Regulation • Generally microorganisme regulates the synthesis of inducible protein (enzymes) at trancriptional level • Control is “On/Off” : Off is basic level, 1 transcription per generation • Model is well developed for bacteria

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

4

4

2

9/3/2015

3

5

5

3 5

double‐stranded DNA 3’

3

replication

5

5’

5’

3’

newly synthesized DNA transcription mRNA mRNA

regulation n

3

translation protein 03/09/2015

RDH/ITP/IPB

5

5

Regulation in Bacteria : Coordinate Regulation • Definition : Coordinate regulation is control of synthesis of polycistronic mRNA • Polycistronic mRNA is an mRNA that encodes for several gene products, i.e. enzymes that will work in a sequence in one pathway

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

6

6

3

9/3/2015

Coordinate Regulation on polycistronic mRNA P

O

a

a

b

c

DNA P=promoter O=operator a,b,c=gene

polycistronic

A X

b

c

B

C

Y

Z

mRNA Protein  (enzymes) V

7

03/09/2015

RDH/ITP/IPB

7

Types of Regulation Negative Regulation : a regulation in which under normal  condition an inhibitor (= repressor) is present thus inhibit  transcription; an inducer is needed to allow transcription to  occur Normal

gene A No transcription

DNA repressor

Inducer present inducer

gene A repressor inactive Transcription of A

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

8

8

4

9/3/2015

Types of Regulation Positive Regulation : a regulation in which under normal condition no transcription occurs; an effector is needed to  activate the promoter and allow transcription to occur Normal

gene B No transcription

Effector present gene B effector protein transcription of gene B 03/09/2015

RDH/ITP/IPB

9

9

Regulation of Bacterial Catabolism Lac Operon and Lactose Catabolism

• To metabolize lactose To metabolize lactose in the medium, in the medium bacteria need (and  need (and therefore, synthesize) 2 proteins : ‐ Lactose Permease  ‐ produced/encoded for  by gene lac Y ‐ to carry and transport lactose through cytoplasmic  membrane to cytoplasm ‐ ‐galactosidase enzyme  ‐ produced/encoded for by gene lac Z ‐ to convert lactose into glucose and galactose 03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

10

10

5

9/3/2015

Regulation of Bacterial Catabolism Lac Operon and Lactose Catabolism • Lactose Regulation is studied from mutants Lac–, which do not  produce lactose permease and/or b‐galaktosidase and can not  metabolize lactose  • These mutants may have mutation in their chromosome and/or  their plasmid

F’lac+/lac‐ F’lac‐/lac+

F’lac Y‐ lac Z+ / lac Y+ lac Z‐ F’lac Y+ lac Z‐ / lac Y‐ lac Z+ F’lac Y‐ lac Z+ / lac Y‐ lac Z+ F’lac Y+ lac Z‐ / lac Y+ lac Z‐

03/09/2015

RDH/ITP/IPB

: Lac+ : Lac+ : Lac‐ : Lac‐

11

11

Lac Operon Model (Jacob & Monod) •

Lac Operon that metabolizes lactose consists of 2 components : - Structural genes to transport and cleave lactose, lacY and lacZ (lacA=transasetilase, functions is unknown) - Regulatory genes, i.e. lacI, lacO dan lacP



Gene products of lacY and lacZ are encoded for by a polycistronic mRNA. Promoter (early transcription area) of lacY and lacZ is located besides lac O (Operator)



lacI ac product p oduct is s a repressor ep esso p protein ote tthat at b binds ds to a u unique que sequence of DNA called operator



When repressor binds to operator, no transcription occurs



Presence of an inducer will cause inducer to bind the repressor thus allow induction or de-repression

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

12

12

6

9/3/2015

Regulation of Lac Operon 1. When E. coli Lac+ is grown in medium containing no lactose,  [ gal] & [lac permease] low, 1‐2 molecules/cell.  When  lactose concentration is high , [ gal] & [lac permease  i increases 1000x 1000 2. When lactose is   gal Z added to lactose‐ lac permease Y free medium, the  lac mRNA behavior of E coli  (Lac+) is as follows  + lactosa 3. In Lac+, genes encoding for proteins for lactose catabolism is  inducible; their transcription is induced by an inducer (lactose) 4. Mutans sythesize the two proteins in the presence/absence of  lactose 13

03/09/2015

RDH/ITP/IPB

13

Negative Regulations of Lac Operon Regulatory gene

i

p

Structural gene

o

Repressor gene

z

y

a

operator

Normal Condition

promoter

i mRNA

p

o

z

y

a

repressor binds to  operator Transcriptions of gene z, y, a do not occur

repressor 03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

14

14

7

9/3/2015

Negative Regulations of Lac Operon

i

p

o

z

y

a

mRNA

repressor

In the presence of  Inducer  galactosidase Lac permease

Inducer (lactose) 03/09/2015

RDH/ITP/IPB

transasetilase 15

15

Positive Regulations of Lac Operon • Fact : When E. coli is grown in a medium containing lactose  and glucose, the bacterium does not metabolize lactose until  all glucose is used up :

-gal, lac permease is low in the presence of inducer, why? • It turns out that Lac operon is also regulated indirectly by  glucose : presence of glucose influence the concentration of glucose : presence of glucose influence the concentration of  cAMP (cyclic‐AMP) in the cell that plays a role in the positive  regulation of Lac operon

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

16

16

8

9/3/2015

Positive Regulations of Lac Operon • Medium with high [glucose] results in low level of cAMP level within cells • Medium without glucose (starved) increases the cAMP level C source

[cAMP] within cell

Glucose

low

y Glycerol

high g

Lactose

high

Lactose+glucose

low

Lactose+glycerol

high

03/09/2015

RDH/ITP/IPB

17

17

Positive Regulations of Lac Operon • E. coli produces CRP (cAMP Receptor Protein) that binds to cAMP • CRP-cAMP has to be associated with the promoter to allow RNA polymerase to bind to lac p • Binding of cAMP-CRP to the Promoter is required for lac Y, Y lac Z synthesis (positive regulation)

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

18

18

9

9/3/2015

Positive Regulations of Lac Operon i

p

o

z

y

i

p

o

z

y

i

p

o

z

y

mRNA lac Medium synthesis + glucose ‐ lactose  NO CAMP repressor active ‐ glucose ‐ lactose  NO CAMP repressor active

CAMP‐CRP

‐ glucose YES + lactose + lactose CAMP repressor inactive

CAMP‐CRP lactose

i

repressor

o

p

+ glucose + lactose NO CAMP repressor inactive

y

z

19

03/09/2015

RDH/ITP/IPB

19

Regulation of Bacterial Anabolism Trp Operon and Tryptophan Synthesis

Trp D

Trp O

chorismic acid

Trp L

Trp E

Trp D

Trp C

Trp B

Trp A

E

D

C

B

A

anthranilic acid

PRA

CDRP

INGP

Trp

INGP : indolglycerolphosphate CDRP: carboxylphenylamino ‐ deoxyrybosil phosphate PRA : phospho ribosyl anthranylate 03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

20

20

10

9/3/2015

Regulation of Bacterial Anabolism Trp Operon and Tryptophan Synthesis When tryptophan is Wh h i absent or present in low amount in the cell, b i l i h ll bacteria will synthesize Trp

Repressor gene

P

O

L

Trp E

D

C

B

A

transcription transcription occurs

RNA  polymerase Represor inactive [Aporepresor]

21

03/09/2015

RDH/ITP/IPB

21

Regulation of Bacterial Anabolism • When Trp is present in large amount in the cell, Trp is not  synthesized

Repressor gene

P

O

RNA  polymerase

L

Trp E

D

C

B

A

No transcription occurs

Represor inactive [Aporepresor]

Trp present  [corepressor] 03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

+

22

22

11

9/3/2015

Trp Operon regulatory

structural

L P

O

Trp E

D

C

B

A

leader/ attenuator

E

D

C

B

A Tryptophan yp p

23

03/09/2015

RDH/ITP/IPB

23

Trp Operon Repressor Gene Trp R

R = aporepresor

• When [Trp] is low        Aporepresor is present, co‐repressor is absent, no  repression, transcription of mRNA trp A  E occurs • When [Trp] is high Aporepressor binds Trp, repressor active, repressor  binds to operator at the L sequence, resulting in  inactive operator and no transcription occurs 03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

24

24

12

9/3/2015

Trp Operon Wild Type • In the presence of [Trp]

:  transcription stops at bases  number 123 ‐ 150 Trp + aporepresor binds to operator  such that attenuator  forms a stem‐loop configuration

Mutants • In some mutants synthesis of Trp increases to up to 6X • Mutants do synthesize Trp in the presence of Trp • Mutants has base deletion at bases # 123‐150, the bases that  form stem‐loop configuration in wild type 25

03/09/2015

RDH/ITP/IPB

25

Stem-loop configuration Formed when repressor binds to operator at bases 120‐136 120

110

130

AGCCCGC

AUACC

CUAAUGA

140

GCGGGCU

UUUUU

A A

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

U G A GCGGGCU G

AUACC

AGCCCGC

U C

transcription stops UUUUU

26

26

13

9/3/2015

General Scheme of Anabolism Regulation : Feedback Regulation

_

A

_

_

B

C

D

_

inhibition repression

27

03/09/2015

RDH/ITP/IPB

27

Feedback Regulation Concerted Feedback Regulation A

B

D

G

C

E

H

_

F

I

Sequential Feedback Regulation _

C

D

B

A _

E

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

_

F 28

28

14

9/3/2015

Feedback Regulation 25%

Cumulative Feed  back Control  A

C

B

G

E

H

F

25% 50%

Isoenzyme Feed  back Control back Control 

D



D

G

E

H

Enz A

A

Enz B

B

C

— 03/09/2015

RDH/ITP/IPB

F 29

29

Other Example Of Regulation : Environmental Control In Extracellular Enzyme Production Constitutive Enzymes :  Synthesis rate is constant at any medium e.g.  Amylase of B.licheniformis,  protease of B.amyloliquefaciens

Inducible Enzymes y Synthesis rate increases dramatically when substrate is  available  When substrate is not available, enzyme is synthesized at basal  level 03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

30

30

15

9/3/2015

How Do Bacteria “Sense” The Presence Of Substrate For Extracellular Enzyme?  Substrate for extracellular enzyme is usually  high MW   substance which is too large for bacteria to take up substance  which is too large for bacteria to take up  Bacteria detect the presence of the macromolecule in their  environment because of the constitutive enzymes  The degradation products are E (inducible the inducer E(const.)

E(const.) S

P Low MW

transported in 03/09/2015

RDH/ITP/IPB

31

31

Examples of Inducible Enzymes

1. Pectinase and Pectic Lyase y of Erwinia carotovora are induced by digalacturonic acid : Pectin  Digalacturonic acid (inducer, when concentration in cell is high it acts as repressor) 2. -amylase of Bacillus stearothermophilus and Bacillus licheniformis are induced by maltotetraose and maltopentaose, respectively : Starch  Maltotetraose (B. stearothermophilus ) Maltopentaose (B. licheniformis) 03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

32

32

16

9/3/2015

Q and A E. coli grown in lactose : A Will produce ‐galactosidase and lac permease because of  A. Will produce  galactosidase and lac permease because of high cAMP that result in cAMP‐CRP binding to promoter B. Will produce ‐galactosidase and lac permease because  repressor is removed by lactose C. Are regulated both negatively and positively to metabolize  lactose D. A,B correct E. A,B,C correct

33

03/09/2015

RDH/ITP/IPB

33

Q and A Regulation of microbial metabolism : A. B. C. D. E.

Shows that microorganisms are economical Only in catabolisms Only in anabolism , A,B correct A,B,C correct

03/09/2015

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

34

34

17

9/3/2015

Q and A A mutant is found to produce tryptophan 10 times  more than the wild type The following may have more than the wild type.  The following may have  occurred : A.The structural genes in the Trp operon is blocked B. The Trp R gene no longer produce aporepressor  C. The promoter lose the sequences for repressor  attachment h D. A,B correct E. B, C correct 03/09/2015

35

35

03/09/2015

36

36

RDH/ITP/IPB

RDH/ITP/IPB

ITP 321/Dept ITP/Fateta/IPB

18

Related Documents

Edited
December 2019 41
Resume Edited
April 2020 15
Edited Paper
December 2019 15
Edited Pictures
May 2020 9
Caribbean Edited
October 2019 23
Edited-colums.docx
May 2020 8

More Documents from "Lestat Brett"