GCE Edexcel GCE
Core Mathematics C4 (6666)
January 2006
Core Mathematics C4 (6666)
Edexcel GCE
Mark Scheme (Results)
January 2006 6666 Core Mathematics C4 Mark Scheme Question Number 1.
Scheme
Marks M1
Differentiates to obtain :
6 x + 8 y dy dx − 2,
A1,
....................... + (6 x dy dx + 6 y ) = 0
+(B1)
⎡ dy 2 − 6 x − 6 y ⎤ ⎢ = ⎥ 6x + 8 y ⎦ ⎣ dx
Substitutes x = 1, y = – 2 into expression involving
dy dx
,
to give
dy dx
= − 108
Uses line equation with numerical ‘gradient’ y – (– 2) = (their gradient)(x – 1) or finds c and uses y = (their gradient ) x + " c" To give 5 y + 4 x + 6 = 0 (or equivalent = 0)
2. (a)
0
π
π
x
16
8
y
1
1.01959
1.08239
M1, A1 M1
A1√
3π 16
π
1.20269
1.41421
4 M1 A1 (2)
M1 for one correct, A1 for all correct
(b)
(c)
Integral =
1 π × × {1 + 1.4142 + 2(1.01959 + ... + 1.20269)} 2 16 ⎛ π ⎞ x 9.02355 ⎟ = 0.8859 ⎜= ⎝ 32 ⎠
Percentage error =
M1 gained for (± )
approx − 0.88137 ×100 = 0.51 % (allow 0.5% to 0.54% for A1) 0.88137 approx − ln (1 + 2 ) ln (1 + 2 )
[7]
M1 A1√ A1 cao (3)
M1 A1
(2) [7]
Question Number 3.
Scheme
Uses substitution to obtain x = f(u) and to obtain u
Reaches
Marks
M1
⎡ u 2 + 1⎤ ⎥ , ⎢ ⎣ 2 ⎦
du = const. or equiv. dx
M1
3(u 2 + 1) ∫ 2u udu or equivalent
Simplifies integrand to Integrates to
1 2
⎛
∫ ⎜⎝ 3u
2
+
A1 M1
3⎞ ⎟ du or equiv. 2⎠
M1 A1√
u 3 + 23 u
A1√ dependent on all previous Ms Uses new limits 3 and 1 substituting and subtracting (or returning to function of x with old limits)
M1
To give 16
A1
cso
[8]
“By Parts” Attempt at “ right direction” by parts
⎛ ⎜ ⎝
1 2
M1
⎞ ⎟ – { ∫ 3 (2 x − 1) dx } ] M1{M1A1} ⎠ 1 2
[ 3 x ⎜ 2 x − 1) ⎟
……………. – Uses limits 5 and 1 correctly; [42 – 26]
16
3
(2 x − 1)2
M1A1√ M1A1
4.
∫
M1
Attempts V = π x 2 e 2 x dx
⎡ x 2e2 x ⎤ − ∫ xe 2 x dx ⎥ ⎣ 2 ⎦
=π ⎢
(M1 needs parts in the correct direction)
x 2 e 2 x ⎛ xe 2 x e 2x ⎞ ⎜ = π[ dx ⎟⎟ −⎜ −∫ 2 2 2 ⎠ ⎝ M1A1√ refers to candidates
= π
[x
2
∫ xe
2x
]
(M1 needs second application of parts)
M1 A1
M1 A1√
dx , but dependent on prev. M1
e 2 x ⎛ xe 2 x e 2 x ⎞ ⎟] − ⎜⎜ − 2 4 ⎟⎠ ⎝ 2
Substitutes limits 3 and 1 and subtracts to give… [dep. on second and third Ms] = π ⎡⎣ 134 e6 − 14 e 2 ⎤⎦ or any correct exact equivalent. [Omission of π loses first and last marks only]
A1 cao
dM1
A1 [8]
Question Number 5.
(a)
Scheme
Marks
Considers 3x 2 + 16 = A(2 + x) 2 + B (1 − 3 x)(2 + x) + C (1 − 3 x) M1
and substitutes x = –2 , or x = 1/3 , or compares coefficients and solves simultaneous equations
A1, A1
To obtain A = 3, and C = 4 Compares coefficients or uses simultaneous equation to show B = 0.
B1 (4)
(b)
M1
Writes 3(1 − 3 x) −1 + 4(2 + x) −2
(M1, A1)
= 3(1 + 3 x, +9 x + 27 x + ......) + 2
3
2
3
4 (−2) ⎛ x ⎞ (−2)(−3) ⎛ x ⎞ (−2)(−3)(−4) ⎛ x ⎞ (1 + ⎜ ⎟+ ⎜ ⎟ + ⎜ ⎟ +….) 4 1 ⎝ 2⎠ 1.2 ⎝ 2 ⎠ 1.2.3 ⎝ 2⎠ = 4 + 8 x, + 27 34 x 2 + 80 12 x 3 + ...
( M1 A1 )
A1, A1 (7)
Or uses (3 x 2 + 16)(1 − 3 x) −1 (2 + x) −2
M1
(3x 2 + 16) (1 + 3x, +9 x 2 + 27 x3 +) ×
(M1A1)× 2
3
(−2) ⎛ x ⎞ (−2)(−3) ⎛ x ⎞ (−2)(−3)(−4) ⎛ x ⎞ ¼ (1 + ⎜ ⎟+ ⎜ ⎟ + ⎜ ⎟ ) 1 ⎝ 2⎠ 1.2 ⎝ 2 ⎠ 1.2.3 ⎝ 2⎠ = 4 + 8 x, + 27 34 x 2 + 80 12 x 3 + ...
(M1A1) A1, A1 (7) [11]
6. (a)
(b)
λ = −4 → a = 18,
µ =1→ b = 9
M1 A1, A1 (3)
⎛8 + λ ⎞ ⎛ 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜12 + λ ⎟ • ⎜ 1 ⎟ =0 ⎜14 − λ ⎟ ⎜ −1⎟ ⎝ ⎠ ⎝ ⎠
M1
∴ 8 + λ + 12 + λ − 14 + λ = 0
A1
Solves to obtain λ
dM1
( λ = −2 )
Then substitutes value for λ to give P at the point (6, 10, 16) (c)
OP = (=
7. (a)
36 + 100 + 256
M1, A1 (5) M1 A1 cao
392 ) = 14 2
(2) [10]
dV = 4π r 2 dr
B1 (1)
dr dV dr = . dt dt dV
1000 4π r 2 (2t + 1) 2
(b)
Uses
(c)
V = ∫ 1000(2t + 1) dt and integrate to p (2 t + 1) − 1 ,
in any form,
=
−2
Using V=0 when t=0 to find c ,
∴V = 500(1 − (d)
(any form)
M1,A1 (2)
= −500(2t + 1) −1 (+ c)
(c = 500 , or equivalent)
1 ) 2t + 1
(any form)
(i) Substitute t = 5 to give V,
⎛ 3V ⎝ 4π
then use r = 3 ⎜
⎞ ⎟ to give r , = 4.77 ⎠
(≈ 2.90 x10 − 2 ) ( cm/s) ∗
M1 A1 (4) M1, M1, A1 (3)
(ii) Substitutes t = 5 and r = ‘their value’ into ‘their’ part (b)
dr = 0.0289 dt
M1, A1
AG
M1 A1 (2) [12]
8.
(a)
Solves y = 0 ⇒ cos t =
1 2
to obtain t =
π 3
5π 3
or
(need both for A1)
M1 A1 (2)
Or substitutes both values of t and shows that y = 0
dx = 1 − 2 cos t dt
(b) 5π
π
=
3
∫
= 1 − 4 cos t + 4 cos 2 tdt
Area
5π 3
3
∫ ydx = ∫ (1 − 2 cos t )(1 − 2 cos t )dt
Area=
(c)
M1 A1
∫
= 1 − 4 cos t + 2(cos 2t + 1)dt =
∫ 3 − 4 cos t + 2 cos 2tdt
=
[3t − 4sin t + sin 2t ]
Substitutes the two correct limits t = = 4π + 3 3
∫ (1 − 2 cos t ) dt 2
∗
AG
B1 (3)
π
3
3 terms (use of correct double angle formula)
M1 M1
M1 A1
5π π and subtracts. and 3 3
M1 A1A1 (7) [12]