Edexcel Gce Core 3 Mathematics C3 6665 Advanced Subsidiary Jun 2005 Mark Scheme

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Edexcel Gce Core 3 Mathematics C3 6665 Advanced Subsidiary Jun 2005 Mark Scheme as PDF for free.

More details

  • Words: 1,182
  • Pages: 8
GCE Edexcel GCE Core Mathematics C3 (6665)

Summer 2005

Core Mathematics C3 (6665)

Edexcel GCE

Mark Scheme (Results)

June 2005 6665 Core C3 Mark Scheme Question Number

1. (a)

Scheme

Dividing by cos 2 θ :

sin 2 θ cos 2 θ 1 + ≡ 2 2 cos θ cos θ cos 2 θ

Completion : 1 + tan 2 θ ≡ sec 2 θ (b)

Use of 1 + tan 2 θ = sec 2 θ :

M1

(no errors seen)

2 (sec 2 θ − 1) + sec θ = 1 [ 2 sec 2 θ + sec θ − 3 = 0 ]

Factorising or solving: (2 sec θ + 3)(secθ − 1) = 0

[ sec θ = –

cos θ = –

2 3

;

3 2

Marks

A1 (2) M1

M1

or sec θ = 1 ]

θ =0 θ1 = 131.8 °

θ 2 = 228.2 °

B1 M1 A1 A1√ (6)

[A1ft for θ 2 = 360° – θ 1 ]

[8]

Question Number 2.

(a)

Scheme

(i) 6 sin x cos x + 2 sec 2 x tan 2 x or 3 sin 2 x + 2sec 2 x tan 2 x

Marks

[M1 for 6 sinx]

1

M1A1A1 (3) B1M1A1 (3)

(ii) 3( x + ln 2 x) 2 (1 + ) x

[ B1 for 3( x + ln 2 x) 2 ]

(b)

Differentiating numerator to obtain 10x – 10 Differentiating denominator to obtain 2(x-1) Using quotient rule formula correctly: dy ( x − 1) 2 (10 x − 10) − (5 x 2 − 10 x + 9)2( x − 1) = To obtain dx ( x − 1) 4 Simplifying to form =



2( x − 1)[5( x − 1) 2 − (5 x 2 − 10 x + 9) ( x − 1) 4

8 ( x − 1) 3

*

(c.s.o.)

B1 B1

M1 A1 M1 A1

(6) [12]

Alternatives for (b) Either Using product rule formula correctly: Obtaining 10x – 10 Obtaining −2( x − 1) −3 dy To obtain = (5 x 2 − 10 x + 9){−2( x − 1) −3 } + (10 x − 10)( x − 1) −2 dx

Simplifying to form =



10( x − 1) 2 − 2(5 x 2 − 10 x + 9) ( x − 1)3

8 ( x − 1) 3

*

4 ( x − 1) 2 Then differentiating to give answer Or Splitting fraction to give 5 +

(c.s.o.)

M1 B1 B1 A1 cao M1 A1

(6)

M1 B1 B1 M1 A1 A1 (6)

Question Number

Scheme

Marks

5x + 1 3 − ( x + 2)( x − 1) x + 2

3(a)

B1

5 x + 1 − 3( x − 1) M1 ( x + 2)( x − 1) M1 for combining fractions even if the denominator is not lowest common =

=

(b) y=

2 ⇒ x −1

2x + 4 2( x + 2) 2 = = ( x + 2)( x − 1) ( x + 2)( x − 1) x −1 M1 must have linear numerator xy − y = 2 ⇒ xy = 2 + y

f –1(x) = (c)

2

M1 A1 cso (4) M1A1

2+x x

o.e.

2 2 (attempt) [ ] " g" − 1 x +4 1 2 Setting 2 = and finding x2 = …; x =± 2 4 x +4

fg(x) =

*

A1

(3)

M1 M1; A1 (3) [10]

Question Number

4

(a)

(b)

Scheme

f ′ (x) = 3 ex –

3e x



1 2x

M1A1A1

(3) M1

1 =0 2x ⇒ 6α e α = 1

(c)

Marks

⇒α =

1 6

e

−α

x1 = 0.0613..., x 2 = 0.1568.., x3 = 0.1425..., x 4 = 0.1445....

(*)

A1 cso (2) M1 A1 (2)

[M1 at least x1 correct , A1 all correct to 4 d.p.] 1 with suitable interval 2x e.g. f ′ (0.14425) = – 0.0007 f ′ (0.14435) = + 0.002(1)

(d) Using f ′ (x) = 3 ex –

Accuracy (change of sign and correct values)

M1

A1

(2) [9]

Question Number 5. (a)

Scheme

cos 2A = cos2 A – sin2 A ( + use of cos2 A + sin2 A ≡ 1) = (1 – sin2 A); – sin2 A = 1 – 2 sin2 A

(b)

Marks

M1 A1

(*)

2sin 2θ − 3cos 2θ − 3sin θ + 3 ≡ 4sin θ cosθ ; −3(1 − 2sin 2 θ ) − 3sin θ + 3

B1; M1

≡ 4 sin θ cos θ + 6 sin 2 θ − 3 sin θ ≡ sin θ (4 cos θ + 6 sin θ − 3)

(c)

M1 (*)

4 cos θ + 6 sin θ ≡ R sin θ cos α + R cos θ sin α Complete method for R (may be implied by correct answer) [ R 2 = 4 2 + 6 2 , R sin α = 4 , R cos α = 6 ]

R = 52 or 7.21 Complete method for α ;

(2)

A1

(4)

M1 A1

α = 0.588 (allow 33.7º)

M1 A1 (4)

(d)

sin θ ( 4 cos θ + 6 sin θ − 3 ) = 0 θ =0 3 sin( θ + 0.588) = = 0.4160.. (24.6º) 52 θ + 0.588 = (0.4291), 2.7125 [or θ + 33.7 ° = (24.6º), 155.4°] θ = 2.12 cao

M1 B1 M1 dM1 A1 (5) [15]

Question Number

Scheme

6. (a)

Marks

y

– 2

0

2

Translation ← by 1

M1

Intercepts correct

A1

(2)

x

a

(b)

y B1 x ≥ 0, correct “shape” provided graph is not original graph –3

(c) (d)

0 b

3

x Reflection in y-axis

B1√

Intercepts correct

B1

(3)

B1B1

(2)

a = – 2, b = – 1

M1A1

Intersection of y = 5x with y = – x – 1 Solving to give x = –

1

M1A1 (4)

6

[Notes: (i) If both values found for 5x = – x – 1 and 5x = x – 3, or solved algebraically, can score 3 out of 4 for x = –

1 6

and x = – ¾;

required to eliminate x = – ¾ for final mark. (ii) Squaring approach: M1 correct method, 24x2 + 22x + 3 = 0 ( correct 3 term quadratic, any form) A1 Solving M1, Final correct answer A1.]

[11]

7. (a)

Setting p = 300 at t = 0 ⇒ 300 = (300 = 2500a);

(b)

1850 =

2800a 1+ a

a = 0.12 (c.s.o) *

2800(0.12)e 0.2 t ; 1 + 0.12e 0.2t

e 0.2 t = 16.2...

Correctly taking logs to 0.2 t = ln k t = 14 (13.9..)

(c)

(d)

Correct derivation: (Showing division of num. and den. by e 0.2 t ; using a)

dM1A1 (3) M1A1 M1 A1

(4)

B1

(1)

M1

Using t → ∞ , e − 0.2t → 0,

p→

M1

336 = 2800 0.12

A1

(2) [10]

Related Documents