GCE Edexcel GCE
Core Mathematics C3 (6665)
January 2006
Core Mathematics C3 (6665)
Edexcel GCE
Mark Scheme (Results)
January 2006 6665 Core Mathematics C3 Mark Scheme Question Number
1.
Scheme
Marks
(a) y
(2, 7)
O
(b)
Shape unchanged Point
B1 B1
(2)
Shape Point
B1 B1
(2)
Shape (2, 4) ( −2, 4)
B1 B1 B1
x
y
(2, 4)
O
x
(c) ( −2, 4) y
O
(2, 4)
x
(3) [7]
Question Number
Scheme
Marks
x 2 − x − 2 = ( x − 2 )( x +1)
2.
At any stage
x ( 2 x + 3) x 2 x 2 + 3x = = ( 2 x + 3)( x − 2 ) ( 2 x + 3)( x − 2 ) x − 2
B1 B1
x ( x + 1) − 6 2 x 2 + 3x 6 − 2 = ( 2 x + 3)( x − 2 ) x − x − 2 ( x − 2 )( x + 1)
M1
x2 + x − 6 ( x − 2 )( x + 1)
A1
= =
( x + 3)( x − 2 ) ( x − 2 )( x + 1)
M1 A1
=
x+3 x +1
A1
(7) [7]
Alternative method
x 2 − x − 2 = ( x − 2 )( x +1)
At any stage
( 2 x + 3) appearing as a factor of the numerator at any stage 2 x 2 + 3 x ) ( x + 1) − 6 ( 2 x + 3) ( 2 x 2 + 3x 6 − = ( 2 x + 3)( x − 2 )( x + 1) ( 2 x + 3)( x − 2 ) ( x − 2 )( x + 1) =
( x − 2) ( 2x2 + 9x + 9) = ( 2 x + 3)( x − 2 )( x + 1)
or
2 x 3 + 5 x 2 − 9 x − 18 ( 2 x + 3)( x − 2 )( x + 1)
( 2 x + 3) ( x 2 + x − 6 ) ( 2 x + 3)( x − 2 )( x + 1)
or
can be implied
( x + 3) ( 2 x 2 − x − 6 ) ( 2 x + 3)( x − 2 )( x + 1)
Any one linear factor × quadratic ( 2 x + 3)( x − 2 )( x + 3) Complete factors = ( 2 x + 3)( x − 2 )( x + 1) x+3 = x +1
B1 B1 M1 A1
M1
A1 A1
(7)
Question Number
Scheme
Marks
dy 1 = dx x dy 1 At x = 3, = ⇒ m′ = − 3 dx 3
3.
accept
3 3x
Use of mm′ = −1
y − ln1 = −3 ( x − 3) y = −3 x + 9
M1 A1 M1 M1
Accept y = 9 − 3 x
A1
(5) [5]
dy 1 leading to y = −9 x + 27 is a maximum of M1 A0 M1 M1 A0 =3/5 = dx 3 x
4.
(a) (i)
d 3x+2 e ) = 3e3 x + 2 ( or 3e 2 e3 x ) ( dx dy = 3 x 2 e 3 x + 2 + 2 x e3 x + 2 dx
At any stage Or equivalent
B1 M1 A1+A1 (4)
(
)
d cos ( 2 x 3 ) = −6 x 2 sin ( 2 x 3 ) dx
(ii)
At any stage
3 3 3 d y −18 x sin ( 2 x ) − 3cos ( 2 x ) = dx 9 x2 Alternatively using the product rule for second M1 A1 −1 y = ( 3x ) cos ( 2 x3 )
M1 A1 M1 A1 (4)
dy −2 −1 = −3 ( 3 x ) cos ( 2 x 3 ) − 6 x 2 ( 3 x ) sin ( 2 x 3 ) dx Accept equivalent unsimplified forms
(b)
1 = 8cos ( 2 y + 6 )
dy dx
or
dx = 8cos ( 2 y + 6 ) dy
dy 1 = dx 8cos ( 2 y + 6 ) dy = dx
⎛ ⎞ 1 ⎜ = (±) ⎟ ⎛ 2 √ (16 − x 2 ) ⎠⎟ ⎛ x ⎞ ⎞ ⎝⎜ 8cos ⎜ arcsin ⎜ ⎟ ⎟ ⎝ 4 ⎠⎠ ⎝
M1 M1 A1
1
M1 A1 (5) [13]
Question Number
5.
Scheme
Marks
4 =0 x 1 4 x2 = + 2 2x ⎛2 1⎞ x= ⎜ + ⎟ ¿ ⎝ x 2⎠ 2 x2 −1 −
(a)
Dividing equation by x
M1
Obtaining x 2 = …
M1
√
cso
(b) x1 = 1.41, x2 = 1.39, x3 = 1.39 If answers given to more than 2 dp, penalise first time then accept awrt above.
f (1.3915 ) ≈ −3 ×10 , f (1.3925 ) ≈ 7 ×10 −3
Change of sign (and continuity)
−3
M1 Both, awrt
(a)
cso
R = √ (12 2 + 4 2 ) = √ 160
Accept if just written down, awrt 12.6
4 , ⇒ α ≈ 18.43° 12
awrt 18.4°
7 ( ≈ 0.5534 ) their R x + their α = 56.4° awrt 56° 360° − their principal value = … , 303.6° Ignore solutions out of range x = 38.0°, 285.2° If answers given to more than 1 dp, penalise first time then accept awrt above.
(c)(i) (ii)
A1
(3) [9]
R cos α = 12, R sin α = 4
tan α =
(b)
A1
⇒ α ∈ (1.3915, 1.3925) ⇒ α = 1.392 to 3 decimal places ¿
6.
(3)
B1, B1, B1 (3)
Choosing (1.3915, 1.3925 ) or a tighter interval
(c)
A1
cos ( x + their α ) =
minimum value is − √ 160
ft their R
cos ( x + their α ) = −1
x ≈ 161.57°
cao
M1 A1 M1, A1(4)
M1 A1 M1 A1, A1 (5)
B1ft M1 A1
(3) [12]
Question Number
7.
Scheme
Marks
(a) (i) Use of cos 2 x = cos 2 x − sin 2 x in an attempt to prove the identity. cos 2 x cos 2 x − sin 2 x ( cos x − sin x )( cos x + sin x ) = = = cos x − sin x ¿ cos x + sin x cos x + sin x cos x + sin x (ii) Use of cos 2 x = 2 cos 2 x − 1 in an attempt to prove the identity. Use of sin 2 x = 2sin x cos x in an attempt to prove the identity. 1 1 1 ( cos 2 x − sin 2 x ) = ( 2 cos 2 x − 1 − 2sin x cos x ) = cos 2 x − cos x sin x − ¿ 2 2 2 (b)
cos θ ( cos θ − sin θ ) = cos 2 θ − cos θ sin θ −
1 2
cso
A1
tan 2θ = 1 π ⎛ 5π 9π 13π ⎞ 2θ = , ⎜ , , ⎟ 4 ⎝ 4 4 4 ⎠
M1 M1 cso
A1
Using (a)(i)
M1
Using (a)(ii)
M1 A1
A1
Obtaining at least 2 solutions in range
M1
The 4 correct solutions If decimals ( 0.393,1.963,3.534,5.105) or degrees ( 22.5°,112.5°, 202.5°, 292.5° ) are
A1
π 5π 9π 13π 8
,
8
,
8
,
8
(3)
(3)
M1 any one correct value of 2θ
θ=
(2)
1 =0 2
1 ( cos 2θ − sin 2θ ) = 0 2 cos 2θ = sin 2θ ¿
(c)
M1
given, but all 4 solutions are found, penalise one A mark only. Ignore solutions out of range.
(4) [12]
Question Number
8.
Scheme
Marks
gf ( x ) = e 2( 2 x + ln 2)
(a)
= e 4 x e 2ln 2 = e 4 x e ln 4 = 4 e4 x ( Hence gf : x a 4 e4 x , x ∈
M1
)
M1 M1 Give mark at this point, cso A1
(4)
Shape and point
B1
(1)
B1
(1)
(b) y
4
O
(c) (d)
Range is
x Accept gf ( x ) > 0, y > 0
+
d ⎡⎣ gf ( x ) ⎤⎦ = 16 e 4 x dx 3 e4 x = 16 3 4 x = ln 16 x ≈ −0.418
M1 A1 M1 A1
(4) [10]