1
Bridge abutments
Walls to support roadways, either single, or tiered
2
Reinforced slopes
Walls for access ramps 3
Facing : recast concrete panels
high adherence galvanised steel strips
4
A > 1m
A
H
D
β
D > 0.40m L # 0.8H
L
D/H 1/5 1/7 1/10 1/20 18°
27°
34°
β 5
+ differential settlements <1/100 6
• Excessive tensile forces within strips elongation or breakage of strips • Excessive induced shear stresses along strips ( and within the surrounding backfill) failure by pullout
7
• Aims of design : Determining maximum developed tension forces Location along a probable critical slip surface Testing the resistance provided by strips (pullout capacity & tensile strength)
8
Tmax T0
τ
True maximum tensile loci
dl T
τ
T+dT
τ =
dT 2b.dl 9
# 1mm for 75 years
T Tmax T0
τ
with T0 ≤ 0.75Tmax
∆H ∆H
Tmax
Tmax = σ H′ .∆H per unit width of wall
σ H′ = K .σ v′ • 0 ≤ z ≤ z0 = 6 m
z z K = K 0 1 − + K a z0 z0
• z0 ≥ 6 m
K = Ka
K 0 = 1 − sinφ π φ K a = tan2 − 4 2 10
1 Fa (z) = K a z 2 2
σ v′ (z ) 2e L
z
Equivalent uniform vertical stress (Meyerhoff method) (per unit width of wall)
σ v′ ( z ) =
Rv ( z ) L − 2e
with
e=
M (z ) Rv (z)
M (z ) =
1 K a .γ .z 3 6
Rv (z ) = γ .z.L
11
• Design criterion : elongation or breakage of strips
Tmax
1 ≤ nσ a .b.Ec FSb FSb = 1.5 n : number of strips by unit width of wall σ a : allowed maximum stress in strips
12
• Design criterion : pullout resistance
1 ≤ 2b.n ∫ µ * ( z ).σ v′ ( x)dx La FS PO La L
Tmax
FS PO
: length of the active zone
: 1.35 for reinforced slopes : 1.5 for abutments
• 0 ≤ z ≤ z0 = 6 m • z0 ≥ 6 m
z z µ = µ 1 − + tan φ ′ z0 z0 ′ = 36° µ * = tan φ ′ φmin *
* 0
µ0* = 1.5
µ * : coefficient of apparent friction 13
e
Ex: e=1m
14
Density:
n=5
15
Ex: 9m high
Ribbed strips HA:
φ ' = 34° γ = 20kN / m 3
Ec = 5mm b = 40mm σ a = 240 MPa ∆H = 0.73m
Pre-design: L/H=1 for reinforced slope !!! Long term calculation strip thickness Ec= 5-1mm = 4mm
Tmax = σ H′ ( z ).∆ H
Tbreak =
1 nσ a .b.Ec FSb
1 2b.n * * = 2b.n ∫ µ ( z ).σ v′ ( x)dx ≈ µ ( z ).σ v′ ( z )( L − La ) FS PO FS PO La L
Tpullout
z
K
σ v′ (z ) σ H′ (z ) Tmax Tbreak
La
µ*
T pullout
0.75m 16
1.5m