Dunearn Prelim 2009 Em P2 Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Dunearn Prelim 2009 Em P2 Solutions as PDF for free.

More details

  • Words: 1,471
  • Pages: 9
Dunearn Secondary School Preliminary Examination 2009 Secondary Four Express Mathematics Paper 2

1(a)

QRP 

74  37 ( at centre) 2

B1

(b)

QSP  37 ( in same segment )

B1

(c)

OPQ 

180  74  53 (isos. ) 2 OPA  90 (tgt  rad )

M1

QPA  90  53 (complementary )  37

(d)

PQA  180  37  36 ( sum of )  107 PQR  180  107 (adj.  on str . line)  73 PSR  180  73 ( in opp. segment )  107

A1

M1

A1

OR

PQA  180  37  36 ( sum of )  107 PSR  107 (ext.  of cyclic quad ) (e)

2

M1 A1

RPQ  180  37  73 sum of RPQ   70

M1

RPO  70  53  17

A1

28 x 28 (ii) x 1

(a)(i)

B1

B1

2 2 (b) 10  28 5  28   55 x x 1 280 x  280  140 x  55 x( x  1)

M1

M1 M1

2

420 x  280  55 x  55 x 0  55 x 2  475 x  280 (c)

x x

95 

 952  41156  211

95  6561 22

x  8 or

x

A1 7 (reject); refer to condition in part(a)(ii 11

d) 8 kg of aluminium costs $28. 1 kg of aluminium costs $3.50

3(a)

M1

$43.08  $0.75  20  $0.90  20  $10.08 $10.08  $1.05  9.6

B1

M1

Volume of water used = 20 + 20 + 9.6 m3 = 49.6 m3 (b)

A1

(i) Total chargeable income = $(55 800 + 750 – 3635) = $52 915

B1

(ii) Income tax

 $40 000  2.25%  $12 915  8.5%  $1 997.78 (c)

5800 1.16  A$5 000

M1 A1

(i) S $ 5 800  A$

(ii) Amount withdrawn  5.5  2  = A$50001    A$ 5 550 100  

B1

M1

3 A$ 5 550 = S$ 5 550  1.09  S $6 049.50 Gain = S $ 6 049.50  5 800  = S$ 249.50

4(a)

M1 A1

(i) $370

B1

(ii) $280

B1

(iii) $450 − $280

M1

= $170

A1

(iv) % of workers earning $350 or less a week 320  100 760  42.1% (3 s. f .) 

OR 42 (b)

2 % 19

M1 Either answer A1

Prob. He earns more than $350 a week

760  220 760 27  38 

(c)

(i) The median of Supermarket B ($410) is

B1

B1

higher than the median of Supermarket A ($370). The interquartile range of Supermarket B

B1

($250) is wider than the interquartile range of Supermarket A ($170). (ii)

Supermarket B.

The median weekly wages is higher in Supermarket B than in Supermarket A.

B1

4 5(a)

1 432   162  h 3 h  8cm

(i)

B1

r 2  162 22 7 r  7.179516317cm

(ii) r  162 

Slant height =

(b)

8 2  7.179516317 2 = 10.74920716  10.7cm

M1

A1

Volume of solid figure

 vol of hemisphere  vol of cylinder - vol of cone

(c)

1 4        r 3   base area  height   432 2 3   1 4 22       7.179516317 3   (162  25)  432 2 3 7   775.3877622  4050  432  4393.387762

M1

 4390cm 3

A1

M1

Surface area of solid figure = surface area of hemisphere +surface area of cylinder + curved surface area of cone 1     4    r 2   2rh   rl 2  22 1   22  M1    4   7.179516317 2    2   7.179516317  25  7 7 2    M1  22     7.179516317  10.74920716  M1  7   324  1128.209707  242.5471972  1694.756904  1690cm 2

A1

5 6(a)

(i) 2(2a  5)(2a  5) (ii)

3 y ( x  3b)  5( x  3b)  ( x  3b)(3 y  5)

(b) (i) G 

M1 A1

3  4048  40  7

= 11.7 (3 s.f.)

B1

3 AD  A 7

M1

(ii) G 2 

7G 2  3 AD  3 A 2 D OR D  (c)

B2

7G 2  3 A 2 3A

7G 2 A 3A

15 units: 180ْ 2 units: 24ْ

M1 Either answer A1

M1 A1 A1

15sides 7(a)

(i)

sin PRS sin 78  7. 2 9.5

M1

sin PRS  0.741332918 PRS  47.84508384  47.8 (1 dec pl )

A1

(ii) PRQ  180  PRS  132.1549162

Area of PQR 

1  9.5  6.4  sin PRQ 2



1  9.5  6.4  sin 132.1549162 2  22.53652069

M1

 22.5 cm 2 (3 s. f .)

A1

6

(iii)

PQ 2  9.5 2  6.4 2  29.56.4  cos132.154...  212.8203165 PQ  212.8203165 PQ  14.58836237 PQ  14.6 cm (3 s. f .)

M1

M1 A1

(iv)Let U be the perpendicular from R to PQ. RU is the shortest distance from R to PQ. Since area of PQR  22.53652069cm 2 , 1  RU  14.588...  22.53652069 2 RU  3.089657375

M1

 3.09 cm (3 s. f .)

A1 7(b)

Greatest angle of elevation of T occurs at U. 8. 4 3.08965... RUT  69.8 (1 dec pl )

tan RUT 

8(a)

(c)

A1

Arc length PQR = 26(1.5) =39 cm

(b)

M1

r 26  r 26 sin 0.75  r sin 0.75  r r 1  sin 0.75  26 sin 0.75 26 sin 0.75 r 1  sin 0.75 r  10.5388911 r  10.5 (3 s. f .)

sin 0.75 

  Reflex AOC  2  2  0.75  2 

B1 M1

M1

A1

7

 2    1.5  4.641592654 rad .

M1

Area of major sector AOCQ 

1 10.53889112 4.641592654  2

 257.7667301 cm 2

M1 A1

 258 cm 2

(= 255.8677951 cm2 if using r = 10.5) (= 256 cm2)

8(d)

Area of sector BPQR =

1  26 2  1.5 2

 507 cm 2

10.5388911 BA 10.5388... BA  tan 0.75  11.31272128 cm ( 11.27097456 if u sin g r  10.5)

M1

tan 0.75 

M1

Area of shaded region 1 =507 − 257.7667..− 2   10.5388  11.312... 2

M1

=130.0097323 cm2 (= 132.786972 cm2 if r is

A1

10.5) =130 cm2 (3s.f.) 9(a)

(i)

(= 133 cm2 )

M C

(ii) Teenagers who play computer games but

B1 B2

do not play games on the playstation nor on the M-Box.

(iii) Teenagers who play either computer games or games on the playstation but do not play games on the M-Box.

B1

8 9(b) (i)

(ii)

 80     60  B  50    35     80     220 410 535 335  60    AB    260 410 495 355  50   35     80 675     82 575  

(iii)

B1

The elements of AB represents the total

B1 B1

amount collected from ticket sales for Saturday and Sunday respectively.  1    220 410 535 335 1   (iv) D   260 410 495 355  1  1   1500     1520  (v) The elements of D represents the total

B1 B1

number of tickets sold for Saturday and Sunday respectively. 1500   (vi) F  1 1 1520  = 3 020 F shows the total number of tickets sold for both nights of performances.

B1

9

10(b) (c)

360 books (20) (i) gradient 

26  9.5 100  800

= − 0.02 (up to  0.03)

B1 M1 A1

26.5  9.5 25.5  9.5 to ) 100  750 100  820 (0.0263 to  0.0222)

Range (

(ii) Cost is reduced at the rate of 2 cents per copy.

Either one B1

OR Represents the rate of reduction of the cost of production per copy of book (d)

(ii) 240 (20)  x  770 (20)

B2

Related Documents