Dunearn Prelim 2009 Am P2 Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Dunearn Prelim 2009 Am P2 Solutions as PDF for free.

More details

  • Words: 1,095
  • Pages: 4
Prelim 2009 a maths paper 2 marking scheme AMaths Paper 2 Answers 5. (a) y = 8 – x 3x2 + 4(8-x) = 36 …….(M1) 3x2 – 4x -4 = 0…….. (3x + 2)(x-2) = 0………(M1) x = - 2/3 or x = 2…….(A1) y = 26/3 or y = 6…….(A1)

Max.Mark: 100

(b) does not intersect means, the roots are not real b2 – 4ac < 0 In the equation mx – 1 = x2 – 2x + 3 x2 – (2+m)x + 4 = 0 (2 + m)2 – 4(4) < 0……………….(M2) (2 + m +4)(2 + m -4)< 0………….(B1) (m + 6) (m – 2) < 0 -6 < m < 2 ………………..(A1) Tangent means, (m+6)(m-2) = 0 …….(M1) m = -6 or m = 2 ……(A1) 6. (a) Eqn of BC: y + 3 = ½ (x+1) …….(M2) x - 2y = 5 ……………..(A1) or by y = mx + c method gr(AB ) = 2,  gr(AC) = - ½ ……..(M1) eqn of AC: y – 5 = - ½ (x-3)  x + 2y = 13 ….(A1) (b) solving the above equations: C(9,2) ……(A2) (c) gr(AD) = -2 …….(M1) Eqn of AD: 2x + y = 11 ……(B1) Solving AD and BC, D(27/5, 1/5) ……(A1) 12 5 (d) distance AD = …….(A1) 5 2. (a) radius2 = 9 + 16 = 25 …….(M1) Eqn of circle; (x-3)2 + (y+4)2 = 25 …….(M1) x2 + y2 – 6x + 8y = 0 …….(A1) (b)

x2 + y2 – 6x – 2y – 15 = 0 , center ( 3, 1) …….(M1) Gr of joining (3,1) & (2,3) = -2 ………..(M1) Eqn of chord: x – 2y = -4 ……..(A1)

Page 1 of 4

Prelim 2009 a maths paper 2 marking scheme 32  5 3 10  3 3  ……..(M1) 10  3 3 10  3 3 365  146 3 =  5  2 3 ……(A2) 100  27 1 Volume =  (32  5 3 )  (8  2 3) …….(M1) 3 226 =  8 3 …(A1) 3 4 (b) LHS = sin2x(1 + tan2x) = sin2 x(sec2 x) = tan2x = RHS ( each 1 M – total 3 M)

4. (a) width =

9. (a)  ABD =  DCB (right angles) ……(M1)  DAB =  CDB ( alternate segment theorem)…..(M1) Third angles are equal Hence, by AAA, ABD and DCB are similar …..(A1) Triangles similar to ABD are (i) DBT (ii) ADT (iii) BCT (A3- each one mark) (Order/orientation of the triangles are important here otherwise no marks) (b) (i) we have, ABD and DCB are similar AB BD AD   ……..(M1) DC CB DB Hence, DB 2  DA  CB ……(A1) (ii) From right triangle DCB, DC2 = DB2 – CB2 = DAxCB – CBxCB from (i) …..(M1) = CB x (DA – CB) …….(A1) (b) 3 cos x – 4 sin x = 1 R = 5 and  = tan-1(4/3) …..(M2) 5 cos (x + ) = 1 …..(M1) x = 25.3º, 228.4º ……(A2) dy  5  2 x  1 …..(M2) dx At x = 3, y = 6 (3,6) Eqn of tangent, x + y = 9 …….(A1)

10. (a) (i) at x = 3,

(ii) A(5,0) C(9,0) -------(B1) 5

Shaded area = ½ x 6 x 6 -  (5 x  x 2 )dx ……(M1) 3

Page 2 of 4

Prelim 2009 a maths paper 2 marking scheme 5x 2 x3  5 = 18 -    ……(M1) 3 3  2 32 = sq. units ……(A1) 3

10 (b) (i) 2[6] – 8 = 4 …..(A2) (ii) – [ 0 to 3 + 3 to 5 ] ….(M1) = - [ 6 + 4] = -10 …….(A1) (iii)

  f ( x )  me 3

2x

0

dx

5

 e 2 x  +m   from 0 to 3 = 5 …….. (M2)  2  

6

m 6 e  1  1 …….(B1) 2 2 m = 6 e 1 2 7 (a) v = 3t + 2(1 – t)2 (i) initial velocity = 2 m/s …….(A1)





(ii) a = 6t -4(1-t) --------(M1) At t = 2, acceleration = 16 m s-2 ……..(A1) (iii) v = 0 does not have any real solution, there is no turning points Integrating velocity will give displacement …….(M1) Displacement, s = t3 –(2/3)(1 – t)3 + C …….(B1) t = 0, s = 0  c = 2/3 ……….(M1) Hence, displacement at t = 3 is 33 m ……(A1) 7 (b) f(x) = x3 – 7x2 + 4x + 12 f(-1) = 0 , hence, (x +1) is a factor …….(M1) using the division the other factors are (x -2) (x -6) …..(B2) Solution, x = -1 or x = 2 or x = 6 ……(A1) 8. (a)

x2 y = 36 …….(A1) A = 6xy + 4x2 …….(M1) Using, x2 y = 36 We get, A = 4 x 2 

216 .(detail working) ….(A1) x

dA 216   2  8 x …….(M1) dx x

Page 3 of 4

Prelim 2009 a maths paper 2 marking scheme

d 2 A 432  3  8 …….(M1) dx 2 x Solve the first diff, we get x = 3 ……(A1) Sub, in second, we get positive  A is minimum ….(M1) Min area = 108 cm2 ………(A1) 8. (b) (i) y 

ln x 3x  6

1 (3 x  6)    ln x3 dy  x  ………(M2) dx ( 3 x  6) 2 At x = 1, -1/3 …….(A1) (ii)

dy  dy  dx    …….(M1) dt  dx  x1 dt Rate of change of x at x = 1 is 0.3 units per second …..(A1)

2x  3  4 x  0 4x2 = 3 – 4x ………..(M1) (2x -1)(2x + 3) = 0 ……(B1) x = ½ or x = -3/2 ……..(A1) 1 (b) 4 3 x  log 2    5 8 3x 4 -3 = 5 ………(M1) 26x = 23 ……….(B1) x = ½ ………(A1)

3. (a)

1. y = sin x cos3x for 0 < x <  dy  sin x  3 cos 2 x sin x  cos 3 xcos x  ……..(M2) dx = cos2x [ -3sin2x +cos2x] = 0 for turning points ……(M1) x = /6, /2, 5/6 ……….(A2)





Page 4 of 4

Related Documents