Dunearn Prelim 2009 Am P1 Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Dunearn Prelim 2009 Am P1 Solutions as PDF for free.

More details

  • Words: 1,117
  • Pages: 4
A.Maths Paper 1 – prelim 2009 – Answers and marking scheme Answer all the questions 1. (a) 5x + 2y = 3 2x – 3y = 5  5 2  x   3        ……(M1)  2  3  y   5   x 1   3  2  3         ……(M1) 19   2 5  5   y  x 1   19        ………(B1) 19  19   y  x  1       …….(A1)  y    1 x 2 (b) (3 ) – 10(3x . 3) + 81 = 0 a2 – 30a + 81 = 0 …… (M1) (a – 27)(a – 3) = 0 ………(B1) a = 27 or a = 3 ---------(A1) 3x = 33 or 3x = 31 x = 3 or x = 1 ….(A1) 2. (a)

Max.Mark: 80

Total marks = 4

Total marks = 4

lg(2x -1) = 1 + lgx – lg(x +3) lg(2x -1) = lg 10 + lgx – lg(x +3) ……..(M1) 10 x Hence, 2x – 1 = ………………… (M1) x3 2x2 – 5x – 3 = 0 .......................(M1) x = - ½ (NA) or x = 3 ................(A1) Total marks = 4

(b) using (0,5), we get, a = 5 ……….(A1) 2 5 2 5 using  ,  , we get  5  b 3 ……..(M1) 4 3 4 2

b3 

1 4 2

2  13   b    1  ---------(B1)   2   3

1 1 b   …….(A1) 8 2

6. (a) 2x2 -5x - 6 = 0 , ( and ),  +  = 5/2 and   = -3 ………(B1) (i) 2 + 2 = ( + )2 – 2   …….(M1) = (5/2)2 – 2(-3) = 49/4 ……(A1)

Total marks = 4

Total marks = 3

A.Maths Paper 1 – prelim 2009 – Answers and marking scheme

6 (a) (ii) Sum of roots =

2 2( 2   2 ) 49 2 + =  …..(B1)    6

2 2 x = 4 ……(B1)   Equation, x2 – (SR)x + PR = 0 ........(M1) 6x2 +49x + 24 = 0 ………(A1) Total marks = 4 2 (b) b – 4ac < 0 [ 1 M]  16 – 4(2)(3-k) < 0 [ 1 M ]  k < 1 [ 2A] Product of roots =

4. (a) (x + 2) is a common factor for both, hence we have, (-2)3 + a(-2)2 – (-2) + b = 0 and (-2)3 + b(-2)2 -5(-2) + 3a = 0 …..(M2) We get, 4a + b = 6 and 3a + 4b = -2, ……..(M2) Solving, a = 2 and b = -2 ………(A1) Total marks = 5

(b)

7. (a)

(b)

(3 + ax)5 = 35 +(5)(34)(ax) + (10)(33)(ax)2 + … ……(M1) = 243 + 405a x + 270 a2 x2 ………(B1) Compare with = 243 – 810x + bx2 405 a = - 810 and b = 270 a2 ........(M1) a = -2 and b = 1080 …..(A2) Total marks = 5 |2x – 7| = |x – 3| (2x – 7)2 = (x-3)2 3x2 – 22x + 40 = 0 …….(M2) (3x – 10) (x – 4) = 0 x = 10/3 or x = 4 ……(A2)

Total marks = 4

4  2x A Bx  c =  2 ……..(M1) 2 ( x  1)( x  7) x  1 x  7 4 – 2x = A(x2 + 7) + (Bx + C)(x -1)……….(M2) Solving for A, B & C: A = ¼, B = - ¼ & C = - 9/4 ……..(B1) 4  2x 1 x9 Hence, =  ….(A1) 2 ( x  1)( x  7) 4( x  1) 4( x 2  7)

Hence, change x to (-x), we get, …………(M1) 4  2x 1 x9 =  …(A1) 2 ( x  1)( x  7) 4( x  1) 4( x 2  7)

A.Maths Paper 1 – prelim 2009 – Answers and marking scheme 8. (a) (i) 2(cos x + 5 sin x ) = 3 sin x 2 cos x = -7 sin x ……..(M1) tan x = -2/7 x = 164.1º , 344.1º …….(A2) (ii)

6 sin x = 7 + cos 2x 6 sin x = 7 + ( 1 – 2 sin2 x)…….(M1) 2 sin2 x + 6 sin x – 8 = 0 sin2 x + 3 sin x – 4 = 0……(M1) Solving for sin x and then solve for x (sin x + 4) (sin x – 1) = 0……(B1) Sinx = -4 (NA) sinx = 1  x = 90º……..(A1)

(iii)

cos x + cos 3x = 0 2 cos 2x cos x = 0 ..........(M2) cos 2x = 0 or cos x = 0…..(B1) x = 45 º, 90 º, 135 º……….(A1)

8 (b)

tan (3x + 2) = 2.4 ……(M1) Using radian measure for angles selecting the angle after 12, we get x = 12.3…….(A2)

5 (a) y = 2x3 - 3x2 – 9x + 1 dy  6 x 2  6 x  9 …….(B1) dx Gradient of y – 3x = 4 is 3 …….(M1) Solving 6x2 – 6x – 9 = 3 …….(M1) (x-2)(x+1) = 0  x = 2 or x = -1 ……(B1) Coordinates (2, -13) and (-1, 5)……(A1) (b) (i) y = tan3(3x – 1) dy  3 tan 2 (3 x  1)  (sec 2 (3 x  1))(3) ………(M1) dx = 9 tan2(3x-1)sec2(3x-1) ……(A1) (ii) y = (x2 – 1) cos 2x dy  ( x 2  1)( sin 2 x )(2)  cos 2 x(2 x ) …..(B2) dx = 2[x cos 2x – (x2 -1) sin 2x].........(A1)

A.Maths Paper 1 – prelim 2009 – Answers and marking scheme

3.

y

m xn

y(x – n) = m  yx – ny = m  ny = xy – m  y 

1 m xy  n n

…..(M1)

let Y = y and X = xy X= xy Y=y

1.19 1.19

1.74 0.87

2.07 0.69

2.28 2.40 0.57 0.48 ...... (B1)

graph, ………………………………………….( 3marks) 1 m (i)  0.59 and   1.9 n n We get, n = -1.69 and m = 3.21 (A2) (ii) when y = Y = 0.75, from graph X = 1.93, xy = 1.93 x = 2.57 ………(A1)

Related Documents