Diseinu eta Simulazio Elektronikoa
PRACTICA DE AULA 2009-04-27 Etapas de salida
NOTA: despreciar las corrientes de base ANÁLISIS EN CONTINUA
VA = 15v ⇒ VB 3 = 15 + 0.6 = 15.6v ⇒ IC 2 =
VCC − VB 3 30 −15.6 = = 14.4mA RCb 1
VB 2 = IC 2 ⋅ REb + VBE 2,ON = 14.4 ⋅ 0.1+ 0.6 = 2.04v
⇒ I1b =
VCC − VB 2 30 − 2.04 = = 2.33mA R1b 12 R=
€
1
VB 2 2.04 = = 875Ω I1b 2.33
Diseinu eta Simulazio Elektronikoa ANÁLISIS EN ALTERNA (Calculamos
ΔvCC =
(h
)
+ 1) ⋅ RL'
fe 3,4
=
hie 3,4 + ( h fe 3,4 + 1) ⋅ R
' L
Δv EC Re = −
h fe 2 ⋅ RL'' hie 2 + ( h fe 2 + 1) ⋅ REb
(80 + 1) ⋅ 0.1 = 0.844 1.5 + (80 + 1) ⋅ 0.1
=−
RL'' = RCb RI CC =
150 ⋅ 0.9 = −7.25 3.5 + (150 + 1) ⋅ 0.1
1⋅ 9.6 = 0.9K 1+ 9.6
RI CC = hie 3,4 + ( h fe 3,4 + 1) ⋅ RL' = 1.5 + (80 + 1) ⋅ 0.1 = 9.6K
Δv EC = −
h fe1 ⋅ RL''' 300 ⋅ 0.438 =− = −13.14 hie1 10
RL''' = RC R1b R RI ECRe =
1 = 438Ω 1 1 1 1 + + + 1 12 0.875 18.6
RI EC = hie 2 + ( h fe 2 + 1) ⋅ REb = 3.5 + (150 + 1) ⋅ 0.1 = 18.6K Re
Δv = Δv EC ⋅ Δv EC Re ⋅ ΔvCC = (−13.14 ) ⋅ (−7.25) ⋅ (0.844 ) = 80.4
€
2
Diseinu eta Simulazio Elektronikoa
Rent = RI EC = 2.64K
RI EC = R1 R2 hie1 =
1 = 2.64K 1 1 1 + + 5.6 10 10
Rsal = ROCC = 31Ω
ROCC =
hie 3,4 + RS' 1.5 + 1 = = 31Ω h fe 3,4 + 1 80 + 1
RS' = RCb ROECRe = RCb ∞ = RCb = 1K
€
3