Draft.docx

  • Uploaded by: Raeed
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Draft.docx as PDF for free.

More details

  • Words: 944
  • Pages: 2
Draft 1. What is Image Sensor? source An image sensor or imager is a sensor that detects and conveys information used to make an image. It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, digital imaging tends to replace analog imaging. Early analog sensors for visible light were video camera tubes. Currently, used types are semiconductor charge-coupled devices (CCD) or active pixel sensors in complementary metal–oxide–semiconductor (CMOS) or N-type metal-oxide-semiconductor (NMOS, Live MOS) technologies. Analog sensors for invisible radiation tend to involve vacuum tubes of various kinds. Digital sensors include flat panel detectors. In February 2018, researchers at Dartmouth College announced a new image sensing technology that the researchers call QIS, for Quanta Image Sensor. Instead of pixels, QIS chips have what the researchers call "jots." Each jot can detect a single particle of light, called a photon.[1] Related  What is APS?

Source

An active-pixel sensor (APS) is an image sensor where each picture element ("pixel") has a photodetector and an active amplifier. There are many types of integrated circuit active pixel sensors including the complementary metal–oxide–semiconductor (CMOS) APS used most commonly in cell phone cameras, web cameras, most digital pocket cameras since 2010, in most digital single-lens reflex cameras (DSLRs) and Mirrorless interchangeable-lens cameras (MILCs). Such an image sensor is produced using CMOS technology (and is hence also known as a CMOS sensor), and has emerged as an alternative to charge-coupled device (CCD) image sensors. The term 'active pixel sensor' is also used to refer to the individual pixel sensor itself, as opposed to the image sensor;[1] in that case the image sensor is sometimes called an active pixel sensor imager,[2] or active-pixel image sensor.[3]

2. What is Analog signal Processor? Analog signal processing is a type of signal processing conducted on continuous analog signals by some analog means (as opposed to the discrete digital signal processing where the signal processing is carried out by a digital process). "Analog" indicates something that is mathematically represented as a set of continuous values. This differs from "digital" which uses a series of discrete quantities to represent signal. Analog values are typically represented as a voltage, electric current, or electric charge around components in the electronic devices. An error or noise affecting such physical quantities will result in a corresponding error in the signals represented by such physical quantities.

Examples of analog signal processing include crossover filters in loudspeakers, "bass", "treble" and "volume" controls on stereos, and "tint" controls on TVs. Common analog processing elements include capacitors, resistors and inductors (as the passive elements) and transistors or opamps (as the active elements). 3. A/D Converters 4. What is Test pattern Generator? source When servicing and repairing televisions and other items of video equipment, it can be helpful to have a stable and recognisable test signal. A colour bar pattern is often used for this, and indeed many television and video recorder service sheets use this type of signal as a reference. A variety of other patterns are used for specific tests. For example, a crosshatch is useful for checking picture linearity and convergence (colour gun alignment), while a checkerboard pattern or dots are ideal for setting up the focus. The test pattern generator described here features these patterns as well as horizontal lines, vertical lines, dots, blank raster and white screen. The three primary colours are individually switchable. So for example the white screen can be switched to red, green or blue for checking colour purity. There have been several designs for test pattern generators published in the past. Many of these are monochrome only and are often based on the ZNA234E IC. Published designs for colour units are often complicated, and therefore probably too expensive for occasional home use.

5. What is Digital Signal Processor? A digital signal processor (DSP) is a specialized microprocessor (or a SIP block), with its architecture optimized for the operational needs of digital signal processing.[1][2] The goal of DSP is usually to measure, filter or compress continuous real-world analog signals. Most general-purpose microprocessors can also execute digital signal processing algorithms successfully, but may not be able to keep up with such processing continuously in real-time. Also, dedicated DSPs usually have better power efficiency, thus they are more suitable in portable devices such as mobile phones because of power consumption constraints.[3] DSPs often use special memory architectures that are able to fetch multiple data or instructions at the same time. 6. What is Image scaler? In computer graphics and digital imaging, image scaling refers to the resizing of a digital image. In video technology, the magnification of digital material is known as upscaling or resolution enhancement. When scaling a vector graphic image, the graphic primitives that make up the image can be scaled using geometric transformations, with no loss of image quality. When scaling a raster graphics image, a new image with a higher or lower number of pixels must be generated. In the case of decreasing the pixel number (scaling down) this usually results in a visible quality loss. From the standpoint of digital signal processing, the scaling of raster graphics is a two-dimensional example of sample-rate conversion, the conversion of a discrete signal from a sampling rate (in this case the local sampling rate) to another.

Commented [RSA1]: What is ATPG?

More Documents from "Raeed"

May 2020 1
Draft.docx
May 2020 0