Recent Trends in
Synthesis & Characterization Of
Multifunctional Materials (RTSCTMN-09) 22nd June 2009
Nano Materials Characterization
Sulabha Kulkarni Indian Institute of Science Education & Research, Pune
Ref. Nanotechnology : Principles and Practices By Sulabha K. Kulkarni Capital Publishing Co. 7/28, Mahaveer Street, Ansari Road Daryaganj, New Delhi -110002
Nano Materials,Characterization Techniques
Contents Introduction to Quantum Mechanics Structure and Bonding Synthesis of Nanomaterials (Physical Methods) Synthesis of Nanomaterials (Chemical Methods) Synthesis of Nanomaterials (Biological Methods) Analysis Techniques Properties of Nanomaterials Nanolithography Some Special Nanomaterials Applications Practicals Nano Materials,Characterization Techniques
Lecture I
• Which are the Nanomaterials are we looking for • Methods of Synthesis
Lecture II
• What kind of analysis is needed • Available and commonly required analysis techniques • Principles of some analysis techniques with Illustrative examples Nano Materials, Characterization Techniques
What kind of analysis is needed Depends upon the Properties of Interest ! But Sample Purity (Composition) ……. Essential Size, Shape & Structure ……. Essential Porosity, Surface Area etc. Mechanical, Optical, Thermal, Electrical, Magnetic Nano Materials,Characterization Techniques
Size, Shape & Structure ……. Essential Available Techniques
Microscopes
Confocal Microscope Scanning Near Field Optical Microscope Scanning Electron Microscope, Transmission Electron Microscope Scanning Tunneling Microscope Atomic Force Microscope Magnetic Force Microscope
X-ray Diffraction
Wide Angle X-ray Scattering Small Angle X-ray scattering Nano Materials,Characterization Techniques
Size, Shape and Distribution Analysis Microscopes
Nano Materials,Characterization Techniques
Confocal Microscope Scanned point Detector
Resolution Objective lens Transparent specimen
Limited by Wavelength Of the Radiation used
Collector
Laser source
Nano Materials,Characterization Techniques
Scanning Near Field Optical Microscope Overcomes Diffraction Limit Amplifier Photomultiplie r
20 nm – 60 nm
Laser Beam
Evanescent Beam generated by nano collector
Optical fiber
Sampl e Propagating Waves
Incident Rays
Computer
Scaner distance control
Detector
Sourc e
Piezo drive
Metal coating
Sulabha Kulkarni,Nanotechnology Principles and Practices Nano Collector Evanescent Beam generated by nanostructured object Sample surface
Nano Materials,Characterization Techniques
Scanning Electron Microscope (SEM) E ~ 5 –100 KeV Incident beam Back scattered electrons Auger electrons Characteristic X-rays Secondary electrons
Resolution : ~ 50 –100 nm Electron gun Scanning generator
Condenser lenses
CRT
Bottom of the sample Scanning coils
Specimen
Amplifier
Sulabha Kulkarni,Nanotechnology Principles and Practices Nano Materials,Characterization Techniques
ZnO micro particles: different morphologies
Needles
Rods
Flowers
Tetrapods
Belts
Kulkarni et al
Growth of ZnO particles with central cavity SEM (b)
(a)
(2)
(1)
(c) 1µm
(3)
1µm (5)
(4)
0.5 µm
(6)
communicated
Aligned SnO2 Rods
Obtained by Sol-Gel route On Glass Slide/Si
20 μm
50 µ m
Thin Solid Films 515 (2006) 1450 10
Silica-Titania Core-Shell Particles
After Second coating step
After first coating step Silica Particles
Silica @ Titania core - shell Particles
Intensity
328 nm
Titania Particles 300
400
Silica@Titania Particles 600 700
500
800
Silica Particles
Wavelength (nm)
Silica Particles of size ~ 213 nm coated with 39 nm thick shell of titania Uncoated particles
Thin coating
Thick coating
Titania-Silica Core-Shell Particles Titania@Silica Particles Intensity (arb units)
Titania Particles
348 nm 325 nm
Titania@Silica Particles 300
400
500
600
700
Titania Particles
Wavelength (nm)
Titania Particles Size ~ 350 nm Titania@Silica Particle Size ~520 nm Pramana 65 (2005) 787
800
Mechanism for the binding antibody and antigene to silica@silver particles.
Kulkarni et al, CPL 404 (2005) 136
SEM Images Silica Particles
(a)
(c)
Core shell particles with rabbit antibodies
(b)
Silver core shell particles
(d)
With goat anti rabbit antibodies
Kulkarni et al, CPL 404 (2005) 136
Nanoporous Materials….Aerogels Aerogels are highly porous (~ 90 -98%porous) , low density materials (~ 0.8 - 0.05 gm/cc) Aerogels of many materials and composites can be made
Thermally Insulating Silica Aerogel Transparent Silica Aerogel SEM of an Aerogel
Department of Physics, University of Pune
Transmission Electron Microscope Electron source CdS
Condensor lens Sample
~ 3 nm
Objective lens Direct beam
Back focal plane Diffracted of objective lens beam
Resolution ~ 0.1 nm Image
SiO2@CdS
Gold nanorods
J. Coll. Int. Sci. 278 (2004) 107 SiO2@ZnS
Surf. Engg. 20, no.4 (2004)
Nano Materials,Characterization Techniques
Fe2O3 particles
Fe2O3 particles (TEM ) (TEM)
Kulkarni et al
SiO2 particles (~ 250 nm) prepared for making core-shell particles or functional materials
Kulkarni et al
Silver Nanoshells (TEM)
CdSe Rods (TEM)
Kulkarni et al
Silica Tubes Coated with Silver Nanoparticles
0.3
425 nm
398 nm
0.2
0.1
0.0
) sti nu br a( yti s net nI
300
400
500
300
400
600
Wavelength (nm)
Kulkarni et al
500
700
600
800
Scanning Tunneling Microscope
Atoms on silicon surface
Nano Materials,Characterization Techniques
Atomic Force Microscope laser
metal tip
Nano Materials,Characterization Techniques
AFM Images of Candida bombicola cells immobilized on Al-Membrane
Friction
Height 3D Images
SEM Images at Low and High magnification of Immobilized Candida bombicola Cells on Al-Membrane
Candida bombicola Cells
Kulkarni et al
Size and Structure Analysis
Nano Materials,Characterization Techniques
Determination of Size and Structure Schematic of X-ray Diffractometer.
Monochromatic x-ray beam
detector 2θ
x-ray tube sample
Nano Materials,Characterization Techniques
X-Ray Diffraction (XRD) X-rays
gas
I 0
X-rays X-rays
X-rays
liqui d
I
amorpho us solid
0
single crystal
nanocryst al
θ
I 0
X-rays
θ
θ
I 0
θ
Sulabha Kulkarni,Nanotechnology Principles and Practices
Nano Materials,Characterization Techniques
Scherrer AC D B θ θ 1
2
formula for average size determination C′ A′ D′
B′
Imax
θ B
O
d
Intensity
T
P
β
½*Ima x
L N
M′ L′
M S
N′ 2 2 θ 22 θ θ B
2 θ
0.9λ T = β cosθ B
1
Sulabha Kulkarni,Nanotechnology Principles and Practices Nano Materials,Characterization Techniques
Analysis of ZnS (1.4 nm) Nanoparticles
Kulkarni et al Nano Materials,Characterization Techniques
5
◊ Gold (NPs) 22 nm Fited line ∆ 10% Au-PMMA 38 nm □ 20% Au-PMMA 39 nm ○ 40% Au-PMMA 39 nm
log I (a. u.)
4
3
2
Size and Shape Determination Sizes ~ 100 – 5 nm
1
0.00
Small Angle X-ray Scattering (SAXS)
0.05
0.10
-1
S (nm )
0.15
0.20
Fractal Dimensions Kulkarni et al Nanotechnology (2006)
Nano Materials,Characterization Techniques
Composition Analysis ESCA hν = Ek + EB hν
Sulabha Kulkarni,Nanotechnology Principles and Practices
Nano Materials,Characterization Techniques
XPS
As3d
Ga3d hν=1486.6 eV
Using Al target
Ga3d
As3d
Using Synchrotron (55 eV)
Nano Materials,Characterization Techniques
What is Synchrotron Radiation?
Some Characteristics of Synchrotron Radiation
Petman,BESSY
Nano Materials,Characterization Techniques
Synchrotron Sources
SPRING-8 (8GeV )
ESRF(6GeV ) Photon Factory
ELETTRA
BESSYII INDUS-II
DARES BURY
INDUS-I (400MeV )
Nano Materials,Characterization Techniques
P h o to e m issio nS p e ctra C d SN a n o p a rticle s
Photoemission Spectra CdS Nanoparticles
S 2p hn =203 eV
(d=7.0nm)
(d = 4 .0 n m )
S 2p
(d = 2 .7 n m ) d ) hn = 2 0 3e V (E = 4 1 e V )
S2 p
b ) hn = 2 0 3e V ( E = 4 1 e V )
(b) hn =203 eV (E =41eV)
S2 p
k in
k in
kin
ox. 2.7 nmS
S ox. 4.0 nm
Intensity (a. u.)
I
x2
II
Intensity (a. u.)
Intensity (a. u.)
S 2p Spectra of CdS Nanoparticles
III
I
I III
II a
x 3
2 b x
x3
(a) hn =500 eV (E =338eV)
S2 p
a ) hn = 5 0 0e V ( E kin = 3 3 8 e V )
S2 p
c) hn = 5 0 0e V ( E kin = 3 3 8 e V )
kin
S ox.
IV
I
I
I II
II III
7.0 nm
II
III
III x 2
x2 166
165
164
163
162
Binding Energy (eV)
Binding Energy (eV)
IV
II III
161
1 6 6
1 6 5
1 6 4
1 6 3
1 6 2
1 6 1
1 6 0
1 6 6
x 2 1 6 5
1 6 4
1 6 3
1 6 2
1 6 1
1 6 0
B in d in gE n e rg y(e V )
Binding Energy (eV)
Appl. Surf. Sci. 169-170(2003)438 CPL 306 (1999)95 Phys. Stat. Sol. 173 (1999)253
Nano Materials,Characterization Techniques
Electronic Structure of CdS Nanoparticles Valence Band and NEXAFS Measurements Observation of Band Gap Variation with Size Expts at BESSY ∆ EOptical
4.3 eV
3.5 eV
3.3 eV
CBM 1.5 eV
1.2 eV
Ef 4.3 eV
3.8 eV
1 eV 2.7 eV
VBM 163 eV
162.7 eV
162.5 eV 161.5 eV
CdS-NP
VBPES (hυ = 200 eV)
1.1 nm
1.8 nm
2.3 nm
S 2p Bulk
BESSY Annual Report (2004) 97
Concentration mapping Of a single semiconductor quantum dot
Ge / Si (111)
Kulkarni et al, Phys Rev Lett (2006) Small (2006)
Analysis of Metal, Semiconductor Nanoparticles Some Quick Methods
Nano Materials,Characterization Techniques
M o n o
Optical (UV-Vis-NIR) Spectrometer Sample
Detector
Reference
U V
Chopper Sample Sample Chamber
Detector Monochrom ator
Absorption Spectra of Gold Nanoparticles
Nano Materials,Characterization Techniques
Effect of Size Variation on Energy Gap in Semiconducors
Eg
Eg
Eg
CdS Nanoparticles Kulkarni et al
Appl. Surf. Sci. 169-170(2003)438 CPL 306 (1999)95 Phys. Stat. Sol. 173 (1999)253
Nano Materials,Characterization Techniques
Optical Properties of Metal Nanoparticles Size Dependent Shifts (Au) Surface Plasmon Resonance
Kulkarni et al Xia et al. MRS Bull 30 (2005)338
Shape Dependent Shifts (Au)
Haes et al. MRS Bull 30 (2005) 368
Nano Materials,Characterization Techniques
Immunoassay for the detection of antibody using silica silver core shell particles 0.50
453 nm
0.45 0.40 0.35
Intensity
0.30 0.25 0.20
431 nm
0.15 0.10
494 nm
0.05 0.00
300
400
457 nm
500
600
700
Wavelength (nm)
Kulkarni et al, CPL 404 (2005) 136
Rapid Detection of E. Coli using Silver Nanoshells A 0.50
No cell 8 10 cells 10 10 cells 3 10 cells 2 10 cells 10 cells 5 10 cells
0.45
Intensity (Arb. Unit)
0.40
0.5 µ m
1µ m B
0.35 0.30
1µ m C
0.25 0.20 0.15 300
1µ m 400
500 600 700 Wavelength (nm)
Kulkarni et al. SMALL 2 (2005)335
800
D
1µ m
Intensity / (Arb.Unit)
0.8 0.7
458 nm
1.0
0.85 0.75
0.9
0.70 0.65 0.60 0.55 0
0.6
300 600 900 1200
Amount of Antibody (µg)
0.5 0.4 A B C
0.7 0.6 0.5
2.0
Silver Nanoshells Silver nanoshells Mixed with E. coli
1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4
0.3
0.2
D
0.1 300
0.8
0.4
0.3 0.2
Silver Nanoshells Silver Nanoshells with Antibody Silver Nanoshells with Bacillus Silver Nanoshells with Pseudomonas
0.80
Intensity / (Arb. Unit)
443 nm
Intensity / (Arb. Unit)
0.9
Intensity (A. U.)
Specific, Sensitive and Rapid detection using Silver Nanoshells
0.2 400
500 λ / nm
600
700
Interaction of nanoshells with antibodies
300
400
500
λ / nm
600
700
0.0 300
400
500
λ / nm
600
700
Detection is specific for Presence of Antibodies E. coli, presence of any is necessary for coupling other microorganism than E. coli to the nanshells E. coli could not be detected Kulkarni et al. SMALL 2 (2005) 335
Detection of Toxic Ions Using Nanoshells NoHgCl 0.05ml 0.1ml 0.2ml 0.3ml 0.5ml
1.0 0.9 0.8 0.7 0.6 0.5 0.4
1.1 1.0 0.9 0.8 0.7
2
0.6 0.5 0.4 0.3
0.3
0.2
0.2 0.1 300
NoZnCl 0.05ml 0.1ml 0.2ml 0.3ml 0.5ml 1ml 2ml 3ml 5ml
2
Intensity (Arb. Units)
Intensity (Arb. Units)
1.1
0.1
400 500 wavelength(nm )
600
700
300
400
500 wavelength(nm )
600
Detection of Hg2+ and Zn2+ using silica core silver shell particles Kulkarni et al
700
Detection of Toxic Ions Using Nanoshells 2.0 NoCdAc 0.05ml 0.1ml 0.2ml 0.3ml 0.5ml 1ml 2ml 3ml 5ml 8ml 10ml
0.9 0.8 0.7 0.6
Intensity (Arb. Units)
Intensity (Arb. Units)
1.0
0.5 0.4
NoPbCl 0.05ml 0.1ml 0.2ml 0.3ml 0.5ml 0.7ml 0.8ml 0.9ml 1ml
1.8 1.6 1.4 1.2
2
1.0 0.8 0.6
0.3 0.4 0.2
0.2
0.1 300
0.0 400 500 wavelength(nm )
600
700
400
500 W avelength(nm )
600
700
Detection of Cd2+ and Pb2+ using silica core silver shell particles Kulkarni et al
Band Edge Luminescence
Excitation
)
Photoluminescence
Conduction Band (LUMO Radiationless decay Defect States
Defect States
Blue emissio n
Dopants dStates Orange emission
CdSe Nanoparticles (<10 nm) Optical absorption 40 Min
30Min
20 Min
10Min
Dopants dStates
0Min
UV light
400
500
600 Wavelength(nm)
700
800
Kulkarni et al
Valence Band (HOMO)
Nano Materials,Characterization Techniques
Core-Shell Particles - ZnS:Mn@SiO2 SiO2
TEM
ZnS:Mn@SiO2
Photoluminescence Enhancement ESR of ZnS:Mn Nanoparticles
Variation of Mn Concentration
250 nm
800 nm
APL67 (11995)2506 Phys. Rev.B60 (1999)8659 JCP 118 (2003) 8945 & also chosen by Virtual J. Nano. Sci. & Nanotech. 7 (2003) Photoluminescence
Entrapment of Dye Molecules inside Silica particles
J. Lumin.114 (2005) 15
FTIR Spectrometer Fixed Mirror
Sour ce
Beam Splitter Movable Mirror Sample
Detect or
Nano Materials,Characterization Techniques
Synthesis of Core-Shell Particles Silica Particles TEOS (Tetraethylorthosilicate) + Ethanol+ Ammonium Hydroxide+ Water
Surface modified Silica Particles Use of 3-Aminopropyltriethoxysilane (APS) to functionalize the surface
Thioglycerol (TG) capped ZnS / CdS nanoparticles Salts of Zn / Cd + TG + Na2S Size selective precipitation
Core shell particles Attachment of TG capped nanoparticles to functionalized silica particles
Analysis of SiO2@CdS Particles H−S−CH2−CH−CH2OH | OH Thiogycerol (TG)
CdS −S−CH2−CH−CH2OH | OH TG capped CdS Nanoparticle
OCH3 | NH2−(CH2)3−Si−OCH3 | OCH3 3aminopropyltrimethoxysilane (APS) OCH3 | SiO2 NH2−(CH2)3−Si−O− | OCH3 3aminopropyltrimethoxysilane (APS) OCH3 |
SiO2 CdS −S−CH2−CH−CH2−O−N−(CH2)3−Si−O− | OH TG capped CdS Nanoparticle attached to APS functionalised SiO2particle
Kulkarni et al J. Coll. Int. Sci. 278 (2004) 107
FTIR Spectra for E. Coli Investigations
E. coli
C=O C=C C=N
NH
CH
D
E. coli with antibody-silver nanoshells
C
C=O OH C=C C=N NH
B
Antibodies – silver nanoshells
Silver nanoshells
A C=O
NO3 C=H
NH
C-O C-C C-N OH
Si-O-Si Si-O-Si
Si-OH Si-OH
450
antibodies
C-O C-C C-N
CH
C-O C-C C-N
NH
Transmittance(%)
CH
C-O C-C C-N OH
E
C=O,OH
900 1350 1800 -1 Wave number (cm )
2250
Kulkarni et al. SMALL (2005)335