Dr Sulbha Kulkarni-ii

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Dr Sulbha Kulkarni-ii as PDF for free.

More details

  • Words: 2,278
  • Pages: 58
Recent Trends in

Synthesis & Characterization Of

Multifunctional Materials (RTSCTMN-09) 22nd June 2009

Nano Materials Characterization

Sulabha Kulkarni Indian Institute of Science Education & Research, Pune

Ref. Nanotechnology : Principles and Practices By Sulabha K. Kulkarni Capital Publishing Co. 7/28, Mahaveer Street, Ansari Road Daryaganj, New Delhi -110002

Nano Materials,Characterization Techniques

Contents Introduction to Quantum Mechanics Structure and Bonding Synthesis of Nanomaterials (Physical Methods) Synthesis of Nanomaterials (Chemical Methods) Synthesis of Nanomaterials (Biological Methods) Analysis Techniques Properties of Nanomaterials Nanolithography Some Special Nanomaterials Applications Practicals Nano Materials,Characterization Techniques

Lecture I

• Which are the Nanomaterials are we looking for • Methods of Synthesis

Lecture II

• What kind of analysis is needed • Available and commonly required analysis techniques • Principles of some analysis techniques with Illustrative examples Nano Materials, Characterization Techniques

What kind of analysis is needed Depends upon the Properties of Interest ! But Sample Purity (Composition) ……. Essential Size, Shape & Structure ……. Essential Porosity, Surface Area etc. Mechanical, Optical, Thermal, Electrical, Magnetic Nano Materials,Characterization Techniques

Size, Shape & Structure ……. Essential Available Techniques

Microscopes

Confocal Microscope Scanning Near Field Optical Microscope Scanning Electron Microscope, Transmission Electron Microscope Scanning Tunneling Microscope Atomic Force Microscope Magnetic Force Microscope

X-ray Diffraction

Wide Angle X-ray Scattering Small Angle X-ray scattering Nano Materials,Characterization Techniques

Size, Shape and Distribution Analysis Microscopes

Nano Materials,Characterization Techniques

Confocal Microscope Scanned point Detector

Resolution Objective lens Transparent specimen

Limited by Wavelength Of the Radiation used

Collector

Laser source

Nano Materials,Characterization Techniques

Scanning Near Field Optical Microscope Overcomes Diffraction Limit Amplifier Photomultiplie r

20 nm – 60 nm

Laser Beam

Evanescent Beam generated by nano collector

Optical fiber

Sampl e Propagating Waves

Incident Rays

Computer

Scaner distance control

Detector

Sourc e

Piezo drive

Metal coating

Sulabha Kulkarni,Nanotechnology Principles and Practices Nano Collector Evanescent Beam generated by nanostructured object Sample surface

Nano Materials,Characterization Techniques

Scanning Electron Microscope (SEM) E ~ 5 –100 KeV Incident beam Back scattered electrons Auger electrons Characteristic X-rays Secondary electrons

Resolution : ~ 50 –100 nm Electron gun Scanning generator

Condenser lenses

CRT

Bottom of the sample Scanning coils

Specimen

Amplifier

Sulabha Kulkarni,Nanotechnology Principles and Practices Nano Materials,Characterization Techniques

ZnO micro particles: different morphologies

Needles

Rods

Flowers

Tetrapods

Belts

Kulkarni et al

Growth of ZnO particles with central cavity SEM (b)

(a)

(2)

(1)

(c) 1µm

(3)

1µm (5)

(4)

0.5 µm

(6)

communicated

Aligned SnO2 Rods

Obtained by Sol-Gel route On Glass Slide/Si

20 μm

50 µ m

Thin Solid Films 515 (2006) 1450 10

Silica-Titania Core-Shell Particles

After Second coating step

After first coating step Silica Particles

Silica @ Titania core - shell Particles

Intensity

328 nm

Titania Particles 300

400

Silica@Titania Particles 600 700

500

800

Silica Particles

Wavelength (nm)

Silica Particles of size ~ 213 nm coated with 39 nm thick shell of titania Uncoated particles

Thin coating

Thick coating

Titania-Silica Core-Shell Particles Titania@Silica Particles Intensity (arb units)

Titania Particles

348 nm 325 nm

Titania@Silica Particles 300

400

500

600

700

Titania Particles

Wavelength (nm)

Titania Particles Size ~ 350 nm Titania@Silica Particle Size ~520 nm Pramana 65 (2005) 787

800

Mechanism for the binding antibody and antigene to silica@silver particles.

Kulkarni et al, CPL 404 (2005) 136

SEM Images Silica Particles

(a)

(c)

Core shell particles with rabbit antibodies

(b)

Silver core shell particles

(d)

With goat anti rabbit antibodies

Kulkarni et al, CPL 404 (2005) 136

Nanoporous Materials….Aerogels Aerogels are highly porous (~ 90 -98%porous) , low density materials (~ 0.8 - 0.05 gm/cc) Aerogels of many materials and composites can be made

Thermally Insulating Silica Aerogel Transparent Silica Aerogel SEM of an Aerogel

Department of Physics, University of Pune

Transmission Electron Microscope Electron source CdS

Condensor lens Sample

~ 3 nm

Objective lens Direct beam

Back focal plane Diffracted of objective lens beam

Resolution ~ 0.1 nm Image

SiO2@CdS

Gold nanorods

J. Coll. Int. Sci. 278 (2004) 107 SiO2@ZnS

Surf. Engg. 20, no.4 (2004)

Nano Materials,Characterization Techniques

Fe2O3 particles

Fe2O3 particles (TEM ) (TEM)

Kulkarni et al

SiO2 particles (~ 250 nm) prepared for making core-shell particles or functional materials

Kulkarni et al

Silver Nanoshells (TEM)

CdSe Rods (TEM)

Kulkarni et al

Silica Tubes Coated with Silver Nanoparticles

0.3

425 nm

398 nm

0.2

0.1

0.0

) sti nu br a( yti s net nI

300

400

500

300

400

600

Wavelength (nm)

Kulkarni et al

500

700

600

800

Scanning Tunneling Microscope

Atoms on silicon surface

Nano Materials,Characterization Techniques

Atomic Force Microscope laser

metal tip

Nano Materials,Characterization Techniques

AFM Images of Candida bombicola cells immobilized on Al-Membrane

Friction

Height 3D Images

SEM Images at Low and High magnification of Immobilized Candida bombicola Cells on Al-Membrane

Candida bombicola Cells

Kulkarni et al

Size and Structure Analysis

Nano Materials,Characterization Techniques

Determination of Size and Structure Schematic of X-ray Diffractometer.

Monochromatic x-ray beam

detector 2θ

x-ray tube sample

Nano Materials,Characterization Techniques

X-Ray Diffraction (XRD) X-rays

gas

I 0

X-rays X-rays

X-rays

liqui d

I

amorpho us solid

0

single crystal

nanocryst al

θ

I 0

X-rays

θ

θ

I 0

θ

Sulabha Kulkarni,Nanotechnology Principles and Practices

Nano Materials,Characterization Techniques

Scherrer AC D B θ θ 1

2

formula for average size determination C′ A′ D′

B′

Imax

θ B

O

d

Intensity

T

P

β

½*Ima x

L N

M′ L′

M S

N′ 2 2 θ 22 θ θ B

2 θ

0.9λ T = β cosθ B

1

Sulabha Kulkarni,Nanotechnology Principles and Practices Nano Materials,Characterization Techniques

Analysis of ZnS (1.4 nm) Nanoparticles

Kulkarni et al Nano Materials,Characterization Techniques

5

◊ Gold (NPs) 22 nm Fited line ∆ 10% Au-PMMA 38 nm □ 20% Au-PMMA 39 nm ○ 40% Au-PMMA 39 nm

log I (a. u.)

4

3

2

Size and Shape Determination Sizes ~ 100 – 5 nm

1

0.00

Small Angle X-ray Scattering (SAXS)

0.05

0.10

-1

S (nm )

0.15

0.20

Fractal Dimensions Kulkarni et al Nanotechnology (2006)

Nano Materials,Characterization Techniques

Composition Analysis ESCA hν = Ek + EB hν

Sulabha Kulkarni,Nanotechnology Principles and Practices

Nano Materials,Characterization Techniques

XPS

As3d

Ga3d hν=1486.6 eV

Using Al target

Ga3d

As3d

Using Synchrotron (55 eV)

Nano Materials,Characterization Techniques

What is Synchrotron Radiation?

Some Characteristics of Synchrotron Radiation

Petman,BESSY

Nano Materials,Characterization Techniques

Synchrotron Sources

SPRING-8 (8GeV )

ESRF(6GeV ) Photon Factory

ELETTRA

BESSYII INDUS-II

DARES BURY

INDUS-I (400MeV )

Nano Materials,Characterization Techniques

P h o to e m issio nS p e ctra C d SN a n o p a rticle s

Photoemission Spectra CdS Nanoparticles

S 2p hn =203 eV

(d=7.0nm)

(d = 4 .0 n m )

S 2p

(d = 2 .7 n m ) d ) hn = 2 0 3e V (E = 4 1 e V )

S2 p

b ) hn = 2 0 3e V ( E = 4 1 e V )

(b) hn =203 eV (E =41eV)

S2 p

k in

k in

kin

ox. 2.7 nmS

S ox. 4.0 nm

Intensity (a. u.)

I

x2

II

Intensity (a. u.)

Intensity (a. u.)

S 2p Spectra of CdS Nanoparticles

III

I

I III

II a

x 3

2 b x

x3

(a) hn =500 eV (E =338eV)

S2 p

a ) hn = 5 0 0e V ( E kin = 3 3 8 e V )

S2 p

c) hn = 5 0 0e V ( E kin = 3 3 8 e V )

kin

S ox.

IV

I

I

I II

II III

7.0 nm

II

III

III x 2

x2 166

165

164

163

162

Binding Energy (eV)

Binding Energy (eV)

IV

II III

161

1 6 6

1 6 5

1 6 4

1 6 3

1 6 2

1 6 1

1 6 0

1 6 6

x 2 1 6 5

1 6 4

1 6 3

1 6 2

1 6 1

1 6 0

B in d in gE n e rg y(e V )

Binding Energy (eV)

Appl. Surf. Sci. 169-170(2003)438 CPL 306 (1999)95 Phys. Stat. Sol. 173 (1999)253

Nano Materials,Characterization Techniques

Electronic Structure of CdS Nanoparticles Valence Band and NEXAFS Measurements Observation of Band Gap Variation with Size Expts at BESSY ∆ EOptical

4.3 eV

3.5 eV

3.3 eV

CBM 1.5 eV

1.2 eV

Ef 4.3 eV

3.8 eV

1 eV 2.7 eV

VBM 163 eV

162.7 eV

162.5 eV 161.5 eV

CdS-NP

VBPES (hυ = 200 eV)

1.1 nm

1.8 nm

2.3 nm

S 2p Bulk

BESSY Annual Report (2004) 97

Concentration mapping Of a single semiconductor quantum dot

Ge / Si (111)

Kulkarni et al, Phys Rev Lett (2006) Small (2006)

Analysis of Metal, Semiconductor Nanoparticles Some Quick Methods

Nano Materials,Characterization Techniques

M o n o

Optical (UV-Vis-NIR) Spectrometer Sample

Detector

Reference

U V

Chopper Sample Sample Chamber

Detector Monochrom ator

Absorption Spectra of Gold Nanoparticles

Nano Materials,Characterization Techniques

Effect of Size Variation on Energy Gap in Semiconducors

Eg

Eg

Eg

CdS Nanoparticles Kulkarni et al

Appl. Surf. Sci. 169-170(2003)438 CPL 306 (1999)95 Phys. Stat. Sol. 173 (1999)253

Nano Materials,Characterization Techniques

Optical Properties of Metal Nanoparticles Size Dependent Shifts (Au) Surface Plasmon Resonance

Kulkarni et al Xia et al. MRS Bull 30 (2005)338

Shape Dependent Shifts (Au)

Haes et al. MRS Bull 30 (2005) 368

Nano Materials,Characterization Techniques

Immunoassay for the detection of antibody using silica silver core shell particles 0.50

453 nm

0.45 0.40 0.35

Intensity

0.30 0.25 0.20

431 nm

0.15 0.10

494 nm

0.05 0.00

300

400

457 nm

500

600

700

Wavelength (nm)

Kulkarni et al, CPL 404 (2005) 136

Rapid Detection of E. Coli using Silver Nanoshells A 0.50

No cell 8 10 cells 10 10 cells 3 10 cells 2 10 cells 10 cells 5 10 cells

0.45

Intensity (Arb. Unit)

0.40

0.5 µ m

1µ m B

0.35 0.30

1µ m C

0.25 0.20 0.15 300

1µ m 400

500 600 700 Wavelength (nm)

Kulkarni et al. SMALL 2 (2005)335

800

D

1µ m

Intensity / (Arb.Unit)

0.8 0.7

458 nm

1.0

0.85 0.75

0.9

0.70 0.65 0.60 0.55 0

0.6

300 600 900 1200

Amount of Antibody (µg)

0.5 0.4 A B C

0.7 0.6 0.5

2.0

Silver Nanoshells Silver nanoshells Mixed with E. coli

1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4

0.3

0.2

D

0.1 300

0.8

0.4

0.3 0.2

Silver Nanoshells Silver Nanoshells with Antibody Silver Nanoshells with Bacillus Silver Nanoshells with Pseudomonas

0.80

Intensity / (Arb. Unit)

443 nm

Intensity / (Arb. Unit)

0.9

Intensity (A. U.)

Specific, Sensitive and Rapid detection using Silver Nanoshells

0.2 400

500 λ / nm

600

700

Interaction of nanoshells with antibodies

300

400

500

λ / nm

600

700

0.0 300

400

500

λ / nm

600

700

Detection is specific for Presence of Antibodies E. coli, presence of any is necessary for coupling other microorganism than E. coli to the nanshells E. coli could not be detected Kulkarni et al. SMALL 2 (2005) 335

Detection of Toxic Ions Using Nanoshells NoHgCl 0.05ml 0.1ml 0.2ml 0.3ml 0.5ml

1.0 0.9 0.8 0.7 0.6 0.5 0.4

1.1 1.0 0.9 0.8 0.7

2

0.6 0.5 0.4 0.3

0.3

0.2

0.2 0.1 300

NoZnCl 0.05ml 0.1ml 0.2ml 0.3ml 0.5ml 1ml 2ml 3ml 5ml

2

Intensity (Arb. Units)

Intensity (Arb. Units)

1.1

0.1

400 500 wavelength(nm )

600

700

300

400

500 wavelength(nm )

600

Detection of Hg2+ and Zn2+ using silica core silver shell particles Kulkarni et al

700

Detection of Toxic Ions Using Nanoshells 2.0 NoCdAc 0.05ml 0.1ml 0.2ml 0.3ml 0.5ml 1ml 2ml 3ml 5ml 8ml 10ml

0.9 0.8 0.7 0.6

Intensity (Arb. Units)

Intensity (Arb. Units)

1.0

0.5 0.4

NoPbCl 0.05ml 0.1ml 0.2ml 0.3ml 0.5ml 0.7ml 0.8ml 0.9ml 1ml

1.8 1.6 1.4 1.2

2

1.0 0.8 0.6

0.3 0.4 0.2

0.2

0.1 300

0.0 400 500 wavelength(nm )

600

700

400

500 W avelength(nm )

600

700

Detection of Cd2+ and Pb2+ using silica core silver shell particles Kulkarni et al

Band Edge Luminescence

Excitation

)

Photoluminescence

Conduction Band (LUMO Radiationless decay Defect States

Defect States

Blue emissio n

Dopants dStates Orange emission

CdSe Nanoparticles (<10 nm) Optical absorption 40 Min

30Min

20 Min

10Min

Dopants dStates

0Min

UV light

400

500

600 Wavelength(nm)

700

800

Kulkarni et al

Valence Band (HOMO)

Nano Materials,Characterization Techniques

Core-Shell Particles - ZnS:Mn@SiO2 SiO2

TEM

ZnS:Mn@SiO2

Photoluminescence Enhancement ESR of ZnS:Mn Nanoparticles

Variation of Mn Concentration

250 nm

800 nm

APL67 (11995)2506 Phys. Rev.B60 (1999)8659 JCP 118 (2003) 8945 & also chosen by Virtual J. Nano. Sci. & Nanotech. 7 (2003) Photoluminescence

Entrapment of Dye Molecules inside Silica particles

J. Lumin.114 (2005) 15

FTIR Spectrometer Fixed Mirror

Sour ce

Beam Splitter Movable Mirror Sample

Detect or

Nano Materials,Characterization Techniques

Synthesis of Core-Shell Particles Silica Particles TEOS (Tetraethylorthosilicate) + Ethanol+ Ammonium Hydroxide+ Water

Surface modified Silica Particles Use of 3-Aminopropyltriethoxysilane (APS) to functionalize the surface

Thioglycerol (TG) capped ZnS / CdS nanoparticles Salts of Zn / Cd + TG + Na2S Size selective precipitation

Core shell particles Attachment of TG capped nanoparticles to functionalized silica particles

Analysis of SiO2@CdS Particles H−S−CH2−CH−CH2OH | OH Thiogycerol (TG)

CdS −S−CH2−CH−CH2OH | OH TG capped CdS Nanoparticle

OCH3 | NH2−(CH2)3−Si−OCH3 | OCH3 3aminopropyltrimethoxysilane (APS) OCH3 | SiO2 NH2−(CH2)3−Si−O− | OCH3 3aminopropyltrimethoxysilane (APS) OCH3 |

SiO2 CdS −S−CH2−CH−CH2−O−N−(CH2)3−Si−O− | OH TG capped CdS Nanoparticle attached to APS functionalised SiO2particle

Kulkarni et al J. Coll. Int. Sci. 278 (2004) 107

FTIR Spectra for E. Coli Investigations

E. coli

C=O C=C C=N

NH

CH

D

E. coli with antibody-silver nanoshells

C

C=O OH C=C C=N NH

B

Antibodies – silver nanoshells

Silver nanoshells

A C=O

NO3 C=H

NH

C-O C-C C-N OH

Si-O-Si Si-O-Si

Si-OH Si-OH

450

antibodies

C-O C-C C-N

CH

C-O C-C C-N

NH

Transmittance(%)

CH

C-O C-C C-N OH

E

C=O,OH

900 1350 1800 -1 Wave number (cm )

2250

Kulkarni et al. SMALL (2005)335

Related Documents

Dr Sulbha Kulkarni-1
July 2020 4
Dr Sulbha Kulkarni-ii
July 2020 3
Dr
November 2019 18
Dr
November 2019 16
Dr
November 2019 18
Dr
November 2019 21