Dna Structure

  • Uploaded by: Elizabeth Morris
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Dna Structure as PDF for free.

More details

  • Words: 1,436
  • Pages: 30
DNA GEOMETRY   

A POLYMER OF DEOXYRIBONUCLEOTIDES DOUBLE-STRANDED INDIVIDUAL deoxyNUCLEOSIDE TRIPHOSPHATES ARE COUPLED BY PHOSPHODIESTER BONDS – – –



ESTERIFICATION LINK 3’ CARBON OF ONE RIBOSE WITH 5’ C OF ANOTHER TERMINAL ENDS : 5’ AND 3’

A “DOUBLE HELICAL” STRUCTURE – – –

COMMON AXIS FOR BOTH HELICES “HANDEDNESS” OF HELICES ANTIPARALLEL RELATIONSHIP BETWEEN 2 DNA STRANDS

DNA GEOMETRY 

PERIPHERY OF DNA –



SUGAR-PHOSPHATE CHAINS

CORE OF DNA – –

BASES ARE STACKED IN PARALLEL FASHION CHARGAFF’S RULES A=T G=C 



“COMPLEMENTARY” BASE-PAIRING

TAUTOMERIC FORMS OF BASES 

TWO POSSIBILITIES – –

 



KETO (LACTAM) ENOL (LACTIM)

PROTON SHIFTS BETWEEN TWO FORMS IMPORTANT IN ORDER TO SPECIFY HYDROGEN BONDING RELATIONSHIPS THE KETO FORM PREDOMINATES

MAJOR AND MINOR GROOVES 

MINOR –



MAJOR –



EXPOSES EDGE FROM WHICH C1’ ATOMS EXTEND EXPOSES OPPOSITE EDGE OF BASE PAIR

THE PATTERN OF H-BOND POSSIBILITIES IS MORE SPECIFIC AND MORE DISCRIMINATING IN THE MAJOR GROOVE –

STUDY QUESTION: LOCATE ALL OF THE POSSIBILITIES FOR H-BONDING IN THE MAJOR AND MINOR GROOVES FOR THE 4 POSSIBLE BASE-PAIRS

STRUCTURE OF THE DOUBLE HELIX 

THREE MAJOR FORMS – – –



B-DNA A-DNA Z-DNA

B-DNA IS BIOLOGICALLY THE MOST COMMON – –

RIGHT-HANDED (20 ANGSTROM (A) DIAMETER) COMPLEMENTARY BASE-PAIRING (WATSON-CRICK)  



A-T G-C

EACH BASE PAIR HAS ~ THE SAME WIDTH  

10.85 A FROM C1’ TO C1’ A-T AND G-C PAIRS ARE INTERCHANGEABLE –

“PSEUDO-DYAD” AXIS OF SYMMETRY

GEOMETRY OF B-DNA  

IDEAL B-DNA HAS 10 BASE PAIRS PER TURN BASE THICKNESS –

    

AROMATIC RINGS WITH 3.4 A THICKNESS TO RINGS

PITCH = 10 X 3.4 = 34 A PER COMPLETE TURN AXIS PASSES THROUGH MIDDLE OF EACH BP MINOR GROOVE IS NARROW MAJOR GROOVE IS WIDE IN CLASS EXERCISE: EXPLORE THE STRUCTURE OF B-DNA. PAY SPECIAL ATTENTION TO THE MAJOR, MINOR GROOVES

A-DNA    

RIGHT-HANDED HELIX WIDER AND FLATTER THAN B-DNA 11.6 BP PER TURN PITCH OF 34 A 



BASE PLANES ARE TILTED 20 DEGREES WITH RESPECT TO HELICAL AXIS – 



 AN AXIAL HOLE

HELIX AXIS PASSES “ABOVE” MAJOR GROOVE  DEEP MAJOR AND SHALLOW MINOR GROOVE

OBSERVED UNDER DEHYDRATING CONDITIONS

A-DNA 

WHEN RELATIVE HUMIDITY IS ~ 75% –





B-DNA  A-DNA (REVERSIBLE)

MOST SELF-COMPLEMENTARY OLIGONUCLEOTIDES OF < 10 bp CRYSTALLIZE IN A-DNA CONF. A-DNA HAS BEEN OBSERVED IN 2 CONTEXTS: – –

AT ACTIVE SITE OF DNA POLYMERASE (~ 3 bp ) GRAM (+) BACTERIA UNDERGOING SPORULATION SASPs INDUCE B-DNA TO  A-DNA  RESISTANT TO UV-INDUCED DAMAGE – CROSS-LINKING OF PYRIMIDINE BASES 

Z-DNA  

A LEFT-HANDED HELIX SEEN IN CONDITIONS OF HIGH SALT CONCENTRATIONS –



IN COMPLEMENTARY POLYNUCLEOTIDES WITH ALTERNATING PURINES AND PYRIMIDINES – –



REDUCES REPULSIONS BETWEEN CLOSEST PHOSPHATE GROUPS ON OPPOSITE STRANDS (8 A VS 12 A IN B-DNA)

POLY d(GC) · POLY d(GC) POLY d(AC) ⋅ POLY d(GT)

MIGHT ALSO BE SEEN IN DNA SEGMENTS WITH ABOVE CHARACTERISTICS

Z-DNA     

12 W-C BASE PAIRS PER TURN A PITCH OF 44 DEGREES A DEEP MINOR GROOVE NO DISCERNIBLE MAJOR GROOVE REVERSIBLE CHANGE FROM B-DNA TO Z-DNA IN LOCALIZED REGIONS MAY ACT AS A “SWITCH” TO REGULATE GENE EXPRESSION –

? TRANSIENT FORMATION BEHIND ACTIVELY TRANSCRIBING RNA POLYMERASE

STRUCTURAL VARIANTS OF DNA  DEPEND –

UPON:

SOLVENT COMPOSITION  WATER  IONS



BASE COMPOSITION

 IN-CLASS

QUESTION: WHAT FORM OF DNA WOULD YOU EXPECT TO SEE IN DESSICATED BRINE SHRIMP EGGS? WHY?

RNA  

UNLIKE DNA, RNA IS SYNTHESIZED AS A SINGLE STRAND THERE ARE DOUBLE-STRANDED RNA STRUCTURES – – –



RNA CAN FOLD BACK ON ITSELF DEPENDS ON BASE SEQUENCE GIVES STEM (DOUBLE-STRAND) AND LOOP (SINGLESTRAND STRUCTURES)

DS RNA HAS AN A-LIKE CONFORMATION –

STERIC CLASHES BETWEEN 2’-OH GROUPS PREVENT THE B-LIKE CONFORMATION

HYBRID DNA-RNA STRUCTURES



THESE ASSUME THE A-LIKE CONFORMATION USUALLY SHORT SEQUENCES



EXAMPLES:



– –

DNA SYNTHESIS IS INITIATED BY RNA “PRIMERS” DNA IS THE TEMPLATE FOR TRANSCRIPTION TO RNA

FORCES THAT STABILIZE NUCLEIC ACID STRUCTURES    

SUGAR-PHOSPHATE CHAIN CONFORMATIONS BASE PAIRING BASE-STACKING,HYDROPHOBIC IONIC INTERACTIONS

SUGAR-PHOSPHATE CHAIN IS FLEXIBLE TO AN EXTENT 

CONFORMATIONAL FLEXIBILITY IS CONSTRAINED BY: –

SIX TORSION ANGLES OF SUGAR-PHOSPHATE BACKBONE



TORSION ANGLES AROUND N-GLYCOSIDIC BOND



RIBOSE RING PUCKER

TORSION ANGLES  

SIX OF THEM GREATLY RESTRICTED RANGE OF ALLOWABLE VALUES – –



STERIC INTERFERENCE BETWEEN RESIDUES IN POLYNUCLEOTIDES ELECTROSTATIC INTERACTIONS OF PHOS. GROUPS

A SINGLE STRAND OF DNA ASSUMES A RANDOM COIL CONFIGURATION

THE N-GLYCOSIDIC TORSION ANGLE 

TWO POSSIBILITIES, STERICALLY – –



SYN ANTI

PYRIMIDINES –

ONLY ANTI IS ALLOWED 



STERIC INTERFERENCE BETWEEN RIBOSE AND THE C2’ SUBSTITUENT OF PYRIMIDINE

PURINES –

CAN BE SYN OR ANTI

IN MOST DOUBLE-HELICAL STRUCTURES, ALL BASES IN ANTI FORM

GLYCOSIDIC TORSION ANGLES IN Z-DNA 

ALTERNATING – –



PYRIMIDINE: ANTI PURINE: SYN

WHAT HAPPENS WHEN B-DNA SWITCHES TO Z-DNA? – –

THE PURINE BASES ROTATE AROUND GLYCOSIDIC BOND FROM ANTI TO SYN THE SUGARS ROTATE IN THE PYRIMIDINES 

THIS MAINTAINS THE ANTI CONFORMATIONS

RIBOSE RING PUCKER 

THE RING IS NOT FLAT –

 

CROWDING IS RELIEVED BY PUCKERING TWO POSSIBILITIES FOR EACH OF C2’ OR C3’: – – – –



SUBSTITUENTS ARE ECLIPSED IF FLAT

ENDO: OUT-OF-PLANE ATOM ON SAME SIDE OF RING AS C5’ EXO; DISPLACED TO OPPOSITE SIDE C2’ ENDO IS MOST COMMON CAN ALSO SEE C3’-ENDO AND C3’-EXO

LOOK AT RELATIONSHIPS BETWEEN THE PHOSPHATES: –

IN C3’ ENDO- THE PHOSPHATES ARE CLOSER THAN IN C2’ ENDO-

RIBOSE RING PUCKER   

B-DNA HAS THE C2’-ENDO-FORM A-DNA IS C3’-ENDO Z-DNA – –



PURINES ARE ALL C3’-ENDO PYRIMIDINES ARE ALL C2’-ENDO

CONCLUSION: THE RIBOSE PUCKER GOVERNS RELATIVE ORIENTATIONS OF PHOSPHATE GROUPS TO EACH SUGAR RESIDUE

IONIC INTERACTIONS 

THE DOUBLE HELIX IS ANIONIC –





DOUBLE-STRANDED DNA HAS HIGHER ANIONIC CHARGE DENSITY THAT SS-DNA THERE IS AN EQUILIBRIUM BETWEEN SS-DNA AND DS-DNA IN AQUEOUS SOLUTION: –



MULTIPLE PHOSPHATE GROUPS

DS-DNA == SS-DNA

QUESTION: WHAT HAPPENS TO THE Tm OF DSDNA AS [CATION] INCREASES? WHY?

IONIC INTERACTIONS  

DIVALENT CATIONS ARE GOOD SHIELDING AGENTS MONOVALENT CATIONS INTERACT NON-SPECIFICALLY –



DIVALENT INTERACT SPECIFICALLY –



FOR EXAMPLE, IN AFFECTING Tm BIND TO PHOSPHATE GROUPS

MAGNESIUM (2+) ION – –

STABILIZES DNA AND RNA STRUCTURES ENZYMES THAT ARE INVOLVED IN RXNS’ WITH NUCLEIC ACID USUALLY REQUIRE Mg(2+) IONS FOR ACTIVITY

BASE STACKING 



PARTIAL OVERLAP OF PURINE AND PYRIMIDINE BASES IN SOLID-STATE (CRYSTAL) –



VANDERWAALS FORCES

IN AQUEOUS SOLUTION – – – –

MOSTLY HYDROPHOBIC FORCES ENTHALPICALLY-DRIVEN ENTROPICALLY-OPPOSED OPPOSITE TO THAT OF PROTEINS

BASE-PAIRING 

WATSON-CRICK GEOMETRY –



THE A-T PAIRS USE ADENINE’S N1 AS THE H-BOND ACCEPTOR

HOOGSTEEN GEOMETRY –

N7 IS THE ACCEPTOR 



IN DOUBLE HELICES, W-C IS MORE STABLE –



SEEN IN CRYSTALS OF MONOMERIC A-T BASE PAIRS

ALTHOUGH HOOGSTEIN IS MORE STABLE FOR A-T PAIRS, W-C IS MORE STABLE IN DOUBLE HELICES

CO-CRYSTALLIZED MONOMERIC G-C PAIRS ALWAYS FOLLOW W-C GEOMETRY –

THREE H-BONDS

HYDROGEN BONDING   

REQUIRED FOR SPECIFICITY OF BASE PAIRING NOT VERY IMPORTANT IN DNA STABILIZATION HYDROPHOBIC FORCES ARE THE MOST IMPT.’

THE TOPOLOGY OF DNA  

“SUPERCOILING” : DNA’S “TERTIARY STRUCTURE L = “LINKING NUMBER” – –



A TOPOLOGIC INVARIANT THE # OF TIMES ONE DNA STRAND WINDS AROUND THE OTHER

L=T+W –

T IS THE “TWIST 



THE # OF COMPLETE REVOLUTIONS THAT ONE DNA STRAND MAKES AROUND THE DUPLEX AXIS

W IS THE “WRITHE” 

THE # OF TIMES THE DUPLEX AXIS TURNS AROUND THE SUPERHELICAL AXIS

DNA TOPOLOGY 

THE TOPOLOGICAL PROPERTIES OF DNA HELP US TO EXPLAIN – – –

DNA COMPACTING IN THE NUCLEUS UNWINDING OF DNA AT THE REPLICATION FORK FORMATION AND MAINTENANCE OF THE TRANSCRIPTION BUBBLE 

MANAGING THE SUPERCOILING IN THE ADVANCING TRANSCRIPTION BUBBLE

DNA TOPOLOGY 

AFTER COMPLETING THE 13 IN-CLASS EXERCISES, TRY TO ANSWER THE FOLLOWING QUESTIONS:



(1) THE HELIX AXIS OF A CLOSED CIRCULAR DUPLEX DNA IS CONSTRAINED TO LIE IN A PLANE. THERE ARE 2340 BASE PAIRS IN THIS PIECE OF DNA AND, WHEN CONSTRAINED TO THE PLANE, THE TWIST IS 212. –



DETERMINE “L”, “W” AND “T” FOR THE CONSTRAINED AND UNCONSTRAINED FORM OF THIS DNA.

(2) A CLOSED CIRCULAR DUPLEX DNA HAS A 100 BP SEGMENT OF ALTERNATING C AND G RESIDUES. ON TRANSFER TO A SOLUTION WITH A HIGH SALT CONCENTRATION, THE SEGMENT MAKES A TRANSITION FROM THE B-FORM TO THE Z-FORM. WHAT IS THE ACCOMPANYING CHANGE IN “L”, “W”. AND “T”?

Related Documents

Dna Structure
November 2019 14
Dna Structure
June 2020 7
Dna Structure
April 2020 32

More Documents from ""

Dna Structure
June 2020 7
Ms Mobility Study-2
October 2019 51
June 2020 17
Oct. N&v Pdf
October 2019 43