Client:
L&T Infrastructure Engineering Ltd. NCC Ltd. Mumbai
Project:
Project No.: Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road B1163502 in Nagpur Metro Reach I (North-South Corridor)
Title:
Design of Substructure & Foundation 28m + 28m Span, 19.6m Width, 22m Height
This document is the property of L&T Infrastructure Engineering Ltd. (formerly known as L&T-Rambøll Consulting Engineers Limited) and must not be passed on to any person or body not authorised by us to receive it nor be copied or otherwise made use of either in full or in part by such person or body without our prior permission in writing.
Document No.:
Rev.:
DN102
0
File path: k:\2016\b1163502 - dd nmrcl metro flyover\inputs\calculations\metro 28m span\22m height\pdf files\dn102-r0-gpj-design of substructure & foundation 28m+28m span, 19.6m width, 22m height.docx
Notes: 1.
Revision Details:
0
13/05/2016 First Submission
Rev. Date
Details
GPJ
TPM
BSK
Init. Sign. Init. Sign. Init. Sign. Prepared
Checked
Approved
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (NorthSouth Corridor) B1163502 Design of Substructure & Foundation 28m + 28m Span, 19.6m Width, 22m Height DN102 rev. 0
TABLE OF CONTENTS 1
Introduction .....................................................................................................................................1 1.1 General Arrangement ...............................................................................................................1
2
Calculation of Loads and its Summary from Metro Structure ...................................................2
3
Calculation of Loads and its Summary from Flyover Structure ............................................. 25
4
Load Combination (Metro + Flyover) ......................................................................................... 49
5
Calculation of Reactions on Pile ................................................................................................ 53
6
Design of Pile ............................................................................................................................... 57
7
Calculation of Vertical Capacity of Pile ..................................................................................... 61
LIST OF FIGURES NIL LIST OF TABLES NIL LIST OF ENCLOSURES NIL
Table of Contents Page i
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (NorthSouth Corridor) B1163502 Design of Substructure & Foundation 28m + 28m Span, 19.6m Width, 22m Height DN102 rev. 0
1 Introduction M/s NCC Limited was awarded the construction of the Nagpur Metro viaduct in the NorthSouth Corridor between the New Airport and Sitaburdi Station from Chainage 6790.000 to Chainage 14400.000 including viaduct in five elevated stations in this portion of the Nagpur Metro Rail Project. NHAI has planned to construct an elevated 4 lane corridor in the same alignment as the metro. It has since been decided that the NHAI elevated corridor and the Metro Viaduct will share a common set of foundations and substructure. It has also been decided that the construction of the elevated corridor will be carried out by the Metro viaduct contractor namely NCC ltd. itself. The metro viaduct runs parallel and above the proposed NHAI flyover from Chainage 10253.802 to Chainage 13663.802 in a double-decker arrangement with both viaducts being supported on common single piers. The design of the common substructure and foundations for the combined Metro and elevated corridor will be carried out by M/s L&T Infrastructure Engineering Ltd. (formerly known as L&T-RAMBOLL Consulting Engineers Ltd.)
1.1 General Arrangement This design note pertains to the design of pile foundation for Pier P62 to P67, P73 to P77, P82 to P94 and P101 to P115. The pile is designed for total height of 22m from Rail Top Level (RTL) to Existing Ground Level (EGL), which contains height of 12.4m (maximum amongst all above pier location) from Rail Top Level (RTL) to Finished Road Level (FRL) and height of 9.6m (maximum amongst all above pier location) from Finished Road Level (FRL) to Existing Ground Level (GL). The span c/c of expansion joints on either side of the pier is 28.0m. The span arrangement has been kept the same for both metro and flyover viaducts. The spans are simply supported with elastomeric bearings for the metro viaduct and spherical bearings for the flyover. The superstructure for the flyover consists of divided four-lane carriageway (2x7.5m) with a central median of 3.6m width. The total deck width is 19.6m. The central spine is 6.5m wide and each cantilever wings are 6.55m wide. The c/c distance of the bearings in the transverse direction has been kept as 3.5m. The flyover is supported on a single common pier of size 2.0m x 2.0m in the lower portion till the top of the flyover superstructure. The upper portion of the pier is 1.5mx1.5m, going up to the pier cap for the metro viaduct. Both metro and flyover superstructure are seated on rectangular pier caps at the respective levels. The double-decker viaducts are supported on pile foundation with 1.2m diameter bored castin-situ piles socketed in hard rock. The load derivation and design of pile foundation are furnished in the following pages.
1 Introduction Page 1
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
2
Calculation of Loads and its Summary from Metro Structure
2.1
Input Data
B1163502 DN102 rev. 0
General Arrangement of Structure (Metro) Total span of superstructure (left side) Total span of superstructure (right side) Effective span c/c of bearings (left side) Effective span c/c of bearings (right side) Radius of curvature used in design R Design speed V No of bearings Bearings c/c distance in transverse direction (Refer 877-N-117 of STRUCTCON) Bearings c/c distance in longitudinal direction (Refer 877-N-117 of STRUCTCON) Cross slope (Refer 877-N-117 of STRUCTCON) Total width of the superstructure (Refer 877-N-117 of STRUCTCON) Height of rail & plinth (Refer 877-N-117 of STRUCTCON) Depth of the box girder (Refer 877-N-117 of STRUCTCON) CG of the superstructure from top of box girder (Refer 877-N-117 of STRUCTCON) Bearing height (Refer 877-N-117 of STRUCTCON) Minimum pedestal height Height of crash barrier
= = = = = = = = = = = = =
28.0 28.0 26.0 26.0 3000 80 4 2.600 2.000 2.5 8.500 0.482 2.000 0.600 0.080 0.250 1.500
Levels (Metro) Rail top level Bearing top level Pier cap top level Pier cap bottom level Existing ground/road level Pile cap top level Pile cap bottom level
= = = = = = =
122.000 119.518 119.188 116.938 100.000 99.500 97.700
m m m m m m m
col_l long long
= 1.50 = 3.65 = 0.90 = =
x 1.50 x 3.10 x 0.72 2.250 0.750
m m m m m
foot_l foot_b
= = = = =
8.700 5.100 1.800 0.500 2.000
m m m m m
FRL
GL
Pier Dimensions (Metro) Effective Size of the pier Size of the pier cap top Size of the pedestal Depth of the Pier Cap at pier face Depth of the Pier cap at Edge
col_b trans trans
Foundation Dimensions Pile cap length in longitudinal direction Pile cap length in transverse direction Pile cap thickness Depth of the soil above pile cap top Height of Pier main steel curtailment from Pile Cap Top
= = =
m m m m m kmph Nos m m % m m m m m m m
Plan at Pier Top CL of pier / pier cap 0.525 m
1.30 m
1.30 m
0.525 m
B1
B2
B3
B4
Traffic Direction
0.550 m 1.00 m
1.00 m 0.550 m
3.65 m
Plan of Pier Cap (Metro)
2 Calculation of Loads and its Summary from Metro Structure Page 2
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Transverse Section (box girder section shown is schematic only) +ve 8.50 m 0.5 m
CG of Boggie = 123.830 RL = 122.000
2.50 %
2.50 %
1.5 m Super str. top = 121.518
1.95 m
1.95 m Super str. CG = 120.918
B1 & B3
B2 & B4
2.6 m
0.75 m
Pier Cap CG = 118.355
Pier Cap
1.08 m
Pier Cap
Pier
5.1 m
2 Calculation of Loads and its Summary from Metro Structure Page 3
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Longitudinal Section
Railway
Railway
B1 & B2
RL =
122.000 m
Rail Top Level
=
119.518 m
Bearing Top Level (Metro)
=
119.188 m
Pier Cap Top Level (Metro)
=
116.938 m
Pier Cap Bottom Level (Metro)
=
112.012 m
CG of Pier for Seismic Case (Metro)
FRL =
109.600 m
Road Top Level
2.81 m
B3 & B4
3.1 m 2.25 m
1.5 m 7.34 m 9.85 m
( at centre of C/W )
Road
Road
B1 and B2 B5 & B6
2.52 m
B3 and B4
=
107.535 m
Bearing Top Level (Flyover)
B7 & B8
=
107.085 m
Pier Cap Top Level (Flyover)
=
105.585 m
Pier Cap Bottom Level (Flyover)
=
102.793 m
CG of Pier for Seismic Case (Flyover)
=
101.500 m
Pier Rebar Curtailement level
=
100.000 m
Ground level
=
99.500 m
Pilecap Top Level
=
97.700 m
Pilecap Bottom Level
4.9 m 1.50 m
2.0 m 5.58 m 6.08 m
3.35 m
3.35 m 1.80 m
8.70 m
Material Properties Granular Backfill Unit weight of soil overburden above footing
γfill
=
20 kN /m3
Concrete Unit weight of Concrete for Design
γcon
=
25 kN /m3
2 Calculation of Loads and its Summary from Metro Structure Page 4
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
2.2
Calculation of Forces
2.2.1
Reactions from Superstructure (Refer 877-N-117 of STRUCTCON)
B1163502 DN102 rev. 0
V1
Bearing 1 (Inner) HL1
HT1
V2
Bearing 2 (Outer) HL2
HT2
kN
kN
kN
kN
kN
kN
920 295 165
0 0 0
0 0 0
920 295 165
0 0 0
5 0 1
i
Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)
602
0
0
602
0
0
ii
Max MT(LL)
-150
0
0
750
0
0
iii
Max ML(LL)
602
0
0
602
0
0
iv 5
Max MLT(LL)
-150 -150
0 0
0 0
750 750
0 0
0 0
V3
Bearing 3 (Inner) HL3
HT3
V4
Bearing 4 (Outer) HL4
HT4
kN
kN
kN
kN
kN
kN
920 295 165
0 0 0
0 0 0
920 295 165
0 0 0
0 0 0
i
Dead Load - Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)
191
0
0
191
0
0
ii
Max MT(LL)
-50
0
0
240
0
0
iii
Max ML(LL)
0
0
0
0
0
0
iv 5
Max MLT(LL)
0 -50
0 0
0 0
0 240
0 0
0 0
Sr. No. Load Case (Metro)
1 2 3 4
Derailment Load
Sr. No. Load Case (Metro)
1 2 3 4
Derailment Load Notation:
Pmax(LL)
-
Both track loaded in both span
Max MT(LL)
-
One track loaded in both span
Max ML(LL)
-
Both track loaded in one span
Max MLT(LL)
-
One track loaded in one span
Summary of Vertical Loads from Superstructure Sr. No. 1 2 3 4 i
Load Case (Metro)
Calculations
Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)
= 920+920+920+920 = 295+295+295+295 = 165+165+165+165
V (kN) 3680 1180 660
= 602+602+191+191
1586
ii
Max MT(LL)
= -150+750+-50+240
790
iii
Max ML(LL)
= 602+602+0+0
1204
Max MLT(LL)
= -150+750+0+0 = -150+750+-50+240
600 790
= MAX(920+920,920+920) = MAX(295+295,295+295) = MAX(165+165,165+165)
1840 590 330
iv 5 6
Derailment Load One Span Dislodged Condition Dead Load -Superstructure SIDL (Fixed) SIDL (Variable)
2 Calculation of Loads and its Summary from Metro Structure Page 5
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Summary of Longitudinal Moments from Superstructure
Sr. No. Load Case (Metro)
1 2 3 4 i
Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)
V1 + V2 ( kN )
1840 590 330
ii
Max MT(LL)
600
Max ML(LL)
1204
iv 5
Max MLT(LL)
600 600
6
One Span Dislodged Condition Dead Load -Superstructure SIDL Fixed SIDL Variable
Sr. No. Load Case (Metro)
1 2 3 4
0 190
1.00
1840 590 330
iii
Max ML(LL)
1204
iv 5
Max MLT(LL)
600 600
6
One Span Dislodged Condition
1.00
1840 590 330
1.00
382 0 0 190 Lever Arm ( m)
1840 590 330
1.00
1840 590 330
1.00
i ii
Max MT(LL)
600
iii
Max ML(LL)
1204
iv 5
Max MLT(LL)
600 600
6
One Span Dislodged Condition
0
1204
1840 590 330
1.00
382
20.02
0
21.82
0
190 1.00
0 0 0
0 190
0
Lever Arm ( m)
V3 + V4 ( kN )
Lever Arm ( m)
1840 590 330
1.00
1840 590 330
1.00
ML ( kN m )
1840 590 330
ML ( kN m )
0 0 0
1204 600 410
HL1 +HL2 or Lever Arm ( HL3 +HL4 m) ( kN )
0 0 0
1204
410 21.82
0 0
V1 + V2 ( kN )
0 0 0
822
0 1.00
ML ( kN m )
600 410
Longitudinal BM at Pile Cap Bottom level HL1 +HL2 V3 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HL3 +HL4 m) m) m) ( kN ) ( kN )
1.00
1840 590 330
410 20.02
HL1 +HL2 or Lever Arm ( HL3 +HL4 m) ( kN )
0 0 0
ML ( kN m )
822
0 0
V3 + V4 ( kN )
1840 590 330
20.02
0 1.00
Lever Arm ( m)
Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)
18.02
0
190 1.00
0 0 0
1204 600 410
HL1 +HL2 or Lever Arm ( HL3 +HL4 m) ( kN )
0 0 0
0 0 0
410 18.02
Longitudinal BM at Pile Cap Top level HL1 +HL2 V3 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HL3 +HL4 m) m) m) ( kN ) ( kN )
V1 + V2 ( kN )
V1 + V2 ( kN )
0
ML ( kN m )
822
0 0
1840 590 330
V1 + V2 ( kN )
18.02
0 1.00
1.00
600
Dead Load -Superstructure SIDL Fixed SIDL Variable
0
1840 590 330
Max MT(LL)
Derailment Load
190 1.00
0 0 0 0
Lever Arm ( m)
ii
1 2 3 4
382
V3 + V4 ( kN )
1204
Sr. No. Load Case (Metro)
1.00
Lever Arm ( m)
i
Dead Load -Superstructure SIDL Fixed SIDL Variable
1840 590 330
V1 + V2 ( kN )
Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)
Derailment Load
1.00
1204
iii
Derailment Load
Longitudinal BM at Rebar Curtailment level HL1 +HL2 V3 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HL3 +HL4 m) m) m) ( kN ) ( kN )
21.82
ML ( kN m )
1840 590 330
2 Calculation of Loads and its Summary from Metro Structure Page 6
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Summary of Transverse Moment from Superstructure
Sr. No. Load Case (Metro)
1 2 3 4
V1 + V3 ( kN )
Transverse BM at Rebar Curtailment level HT1 +HT2 V2 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HT3 +HT4 m) m) m) ( kN ) ( kN )
1840 590 330
i
Dead Load -Superstructure SIDL Fixed SIDL Variable Live load Reaction Without Impact Pmax(LL)
793
793
0
0
ii
Max MT(LL)
-200
990
0
1547
iii
Max ML(LL)
602
iv 5
Max MLT(LL) Derailment Load
-150 -200
6
One Span Dislodged Condition Dead Load -Superstructure SIDL Fixed SIDL Variable
Sr. No. Load Case (Metro)
1 2 3 4
1.30
1.30
1840 590 330
602
1.30
1.30
750 990
0
18.02
18.02
0 0
V2 - V1 ( kN )
Lever Arm ( m)
V4 - V3 ( kN )
Lever Arm ( m)
0 0 0
1.30
0 0 0
1.30
V1 + V3 ( kN )
5 0 1
MT ( kN m )
18.02
Transverse BM at Pile Cap Top level HT1 +HT2 V2 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HT3 +HT4 m) m) m) ( kN ) ( kN )
90 0 18
MT ( kN m )
1840 590 330
i
793
793
0
0
ii
Max MT(LL)
-200
990
0
1547
iii
Max ML(LL)
602
iv 5
Max MLT(LL) Derailment Load
-150 -200
6
One Span Dislodged Condition Dead Load -Superstructure SIDL Fixed SIDL Variable
Sr. No. Load Case (Metro)
1 2 3 4
602
1.30
750 990 Lever Arm ( m)
V4 - V3 ( kN )
Lever Arm ( m)
0 0 0
1.30
0 0 0
1.30
V1 + V3 ( kN )
1840 590 330
i ii
Max MT(LL)
-200
iii
Max ML(LL)
602
Max MLT(LL) Derailment Load
-150 -200
6
One Span Dislodged Condition
20.02
HT1 +HT2 or Lever Arm ( HT3 +HT4 m) ( kN )
5 0 1
1.30
1840 590 330
1.30
793
20.02
602
21.82
0
990 1.30
5 0 1
750 990
0
Lever Arm ( m)
V4 - V3 ( kN )
Lever Arm ( m)
0 0 0
1.30
0 0 0
1.30
100 0 20
MT ( kN m )
109 0 22
0 1170 1547
HT1 +HT2 or Lever Arm ( HT3 +HT4 m) ( kN )
5 0 1
MT ( kN m )
1547 21.82
0 0
V2 - V1 ( kN )
0
0
0 1.30
100 0 20
1170 1547
Transverse BM at Pile Cap Bottom level HT1 +HT2 V2 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HT3 +HT4 m) m) m) ( kN ) ( kN )
793
iv 5
0
20.02
0 0
V2 - V1 ( kN )
Dead Load -Superstructure SIDL Fixed SIDL Variable Live load Reaction Without Impact Pmax(LL)
Dead Load -Superstructure SIDL Fixed SIDL Variable
1.30
1.30
5 0 1
MT ( kN m )
Dead Load -Superstructure SIDL Fixed SIDL Variable Live load Reaction Without Impact Pmax(LL)
1.30
1840 590 330
0 1170 1547
HT1 +HT2 or Lever Arm ( HT3 +HT4 m) ( kN )
5 0 1
90 0 18
21.82
MT ( kN m )
109 0 22
2 Calculation of Loads and its Summary from Metro Structure Page 7
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
2.2.2
B1163502 DN102 rev. 0
Loads from Substructure Summary of Vertical Loads due to Self Weight of Substructure Load Description
V (kN)
Calculations
Pier Bearing pedestals =(0.90×0.72×0.250×4×25) Pier cap =(16.500×3.100×25) Pier =(9.853×1.50×1.50×25) Pier for seismic (Railway) =(9.853×1.50×1.50×25) Pier upto curtailment (Railway) =(116.938-107.085×1.50×1.50×25) Total for pier bottom Total for curtailment level Footing & Soil above Pilecap portion Soil above Pilecap Total ( Footing + Soil above ) Total ( Pier + Footing + Soil above )
16 1279 554 554 554 1849 1849 0 0 0 1849
Summary of Moments due to Self Weight of Substructure Longitudinal Moment ML Load Description Pier Bearing pedestals (Railway) Pier cap (Railway) Pier (Railway) Pier for seismic (Railway) Pier upto curtailment (Railway) Total for pier bottom Total for curtailment level Footing & Soil above Pilecap portion Soil above Pilecap Total ( Footing + Soil above ) Total (Pier+Footing+Soil above) 2.2.3
0 0 -
Loads Due to Centrifugal Forces, Fcf Centrifugal Force where,
W= R= V=
=
MT
Lever Arm Lever Arm Lever Arm BM(kN m) BM(kN m) BM(kN m) (m) (m) (m) Pile Cap Top Pile Cap Bottom Rebar Curtailment 1.00 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -
0 0 0 0
(kN m) 0 0 0 0 0 0 0 0 0 0 0
(IRS: Bridge Rule, cl.no.2.5.3) W V2 127R
Total Live load Radius of curvature in meters Velocity of the vehicle in KMPH
Lever Arms CG of vehicle from Curtailment level CG of vehicle from Pilecap top CG of vehicle from Pilecap bottom
R V C.G of Vehicle above rail level
= = =
3000 m 80 kmph 1.83 m
=122.000-101.500+1.83 =122.000-99.500+1.83 =122.000-97.700+1.83
= = =
22.3 m 24.3 m 26.1 m
2 Calculation of Loads and its Summary from Metro Structure Page 8
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Summary of Transverse Force due to Centrifugal Force Load Case
V kN
HT kN
Calculation
Pmax(LL)
1586
=1586×80^2/(127×3000)
27
Max MT(LL)
790
=790×80^2/(127×3000)
13
Max ML(LL)
1204
=1204×80^2/(127×3000)
20
Max MLT(LL)
600
=600×80^2/(127×3000)
10
Summary of Transverse Moment due to Centrifugal Force
Load Case
Transverse Moment from Metro (MT) at Rebar Pilecap Lever Arm Lever Arm Lever Arm Curtailment Top (m) (m) (m) (kN m) (kN m)
Pmax(LL) Max MT(LL) Max ML(LL)
595 296
22.33
452
Max MLT(LL) 2.2.4
Pilecap Top (kN m)
648 24.33
225
696
323
347
26.13
492
528
245
263
Braking/Traction Force Note: Forces due to braking and traction are considered as 18% of unfactored vertical loads and 20% of unfactored vertical loads respectively. Load per axle Number of axles accomodated within the given span Total vertical load in the span(in one lane) Point of action of Braking force above RL Loads due to braking Live load Reaction Without Impact Pmax(LL)
Loads to Bearings under Braking B1+B2+B3+B4 kN 960
= =
160 6
kN Nos
= =
960 1.83
kN m
Loads to Bearings % of load % of load under Traction for for kN traction braking B5+B6+B7+B8
Total Loads (Braking + Traction) kN
18
960
20
364.8
Max MT(LL)
0
18
960
20
192.0
Max ML(LL)
960
18
960
20
364.8
Max MLT(LL)
0
18
960
20
192.0
Lever Arms Bearing top to Pier curtailement Bearing top to Pilecap Top Bearing top to Pilecap Bottom
=119.518-101.500 =119.518-99.500 =119.518-97.700
= = =
18.018 20.018 21.818
Moments due to braking & traction
Load Case
Vertical reaction VL kN
Longitudinal Braking Moment at Rebar Pilecap Lever Arm Curtailment Lever Arm Lever Arm Top (m) section (m) (m) (kN m) (kN m)
Pilecap Bottom (kN m)
Pmax(LL)
60.50
18.02
6573
20.02
7303
21.82
7959
Max MT(LL)
31.84
18.02
3459
20.02
3843
21.82
4189
Max ML(LL)
60.50
18.02
6573
20.02
7303
21.82
7959
Max MLT(LL)
31.84
18.02
3459
20.02
3843
21.82
4189
2 Calculation of Loads and its Summary from Metro Structure Page 9
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
2.2.5
Force due to Bearing Friction Calculation of shear rating of bearings
B1163502 DN102 rev. 0
Overall length (transverse Direction)
l0
( Refer IRC: 83, Part II, cl.no. 915.2.1 ) = 600 mm
Overall breadth (longitudinal Direction)
b0
=
420 mm
Thickness of each layer of elastomer
hi
=
12 mm
Thickness of outer elastomer layer
he
=
6 mm
Thickness of steel laminates Number of internal elastomer layer Side elastomer cover
hs
= = =
4 mm 4 Nos. 6 mm
n hc
Total elastomer thickness
h
= n * hi + 2 he
=
Overall thickness of Bearing
h0
= h + (n + 1) hs
=
80 mm
Effective length of brg (excluding cover)
leff
= l0 - 2 hc
=
588 mm
Effective width of brg (excluding cover)
beff
= b0 - 2 hc
=
A G Vr
= leff * beff
= = =
Effective plan area of bearing Shear Modulus of Elastomer Shear rating of elastomeric bearing 26.00
=G*A/h
60 mm
408 mm 2 239904 mm 1 Mpa 3998 kN/m
26.00
Expansion of Deck Note: Longitudinal Moment due to thermal expansion or contraction will get cancelled for same length of span.
Age of concrete at the time of stressing Residual Shrinkage strain Creep Strain in Concrete
= = =
Coeff of thermal expansion, a
=
Thermal Contraction
= Total Strain
28 days 1.90E-04 4.30E-05 per Mpa o 1.17E-05 per C 35
o
6.43E-04
=
L0
Total Translation in Longitudinal Direction
= =
Note: Substructure & foundation is also designed for 10% variation in movement L0
Total Translation in Longitudinal Direction Horizontal Force on the pier
= Vr x Lc x No of Bearings
For one span dislodged condition Translation in Longitudinal direction (one span dislodged) Total Translation in Longitudinal Direction Horizontal Force on the pier Lever Arms Bearing top to Pier curtailement Bearing top to Pilecap Top Bearing top to Pilecap Bottom
From IRS-CBC Table:3 (As per Cl:5.2.4.1 IRS-CBC)
Lo L0
=119.518-101.500 =119.518-99.500 =119.518-97.700
=
(6.43E-04×26)-(6.43E-04×26) 0.000 m (IRC: 6-2014, cl.no. 211.5.1.4) 0.000 m
= =
=0.000×3998×4 0 kN
= = = =
0.0167 m 0.0184 =0.0184×3998×4/2 146.9452
= = =
18.018 m 20.018 m 21.818 m
2 Calculation of Loads and its Summary from Metro Structure Page 10
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Summary of Longitudinal Forces due to Bearing Friction
Load
V
HL
kN
kN
Frictional resistance 0 One span dislodged condition Frictional resistance 0 2.2.6 I
Longitudinal Moment ( ML ) at Pier Pilecap Lever Arm Curtailme Lever Arm Lever Arm Top (m) nt (kN (m) (m) (kN m) m) 18.02 20.02 21.82 0 0
0
18.02
146.9
2647.66
20.02
2941.5
21.82
Pilecap Bottom (kN m) 0 3206.1
Wind Loads (W) Wind without Live Load Length of the superstructure for wind load calculation
=
28.0 m
28.0 28.0
28.0
Pier Cap A
Wind Load on Superstructre (Metro Level) Height of the Crash barrier Total depth of superstructure exposed to wind
= = = = =
1.500 m =2.000+1.500
Probability factor (For 100 Years) Terrain, height and structure size factor Topography Factor Design wind speed =1.07×0.9×(44)
K1 K2 K3 Vz
m 23.50 m 44 m/sec (IS:875 Part 3-1987 , Appendix A cl.5.2) = 1.07 = 0.92 = 1.0 = 43.31 m/s
Design Wind Pressure
Pz
=
Height of structure above ground (form Parapet top to GL) Actual wind speed at the location of the structure
1.Transverse Wind Force FT Where,
A1
a/b h/b Cf
Transverse wind force
=0.6×(43.31×43.31)
3.500
=
PZ * A1 Cf
= = = = = =
Solid area (Exposed area in transverse direction) =28.0×3.500
1125.64 N/m2 (IS:875 Part 3- 1987 ,Cl.5.4) (IS:875 Part 3- 1987 ,Cl.6.3.3.2)
2
98 m =8.500/28.0 =3.500/28.0 Force Coefficient
=1125.64×98×1.2/1000
= = =
0.30 0.13 1.2
(IS 875 Part 3-1987, Fig 4)
=
132.4 kN
2 Calculation of Loads and its Summary from Metro Structure Page 11
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
2. Longitudinal Wind Force FL 3. Vertical Wind Load FV Where,
A3
G CL
=
=
25%×132.4
= 33.1 kN (IS:875 Part 3- 1987 ,Cl.209.3.6) =
Pz * A3 * G * CL
=
Plan area
= = = =
28.0×8.500
= =
Total vertical Wind load B
25% of Transverse wind force
B1163502 DN102 rev. 0
2
238 m Gust factor 2 Lift Coefficient 0.75 =1125.64×238×2×0.75/1000
= 0 kN (IS:875 Part 3- 1987 ,Cl.209.3.5)
Wind Force on Substructure 1.Pier Cap Transverse wind force on piercap Height of the pier Cap a/b = h/b = Exposed area = Force coefficent Transverse wind force on Piercap
=3.65/3.1 =2.25/4.90 =2.25×4.90 Cf =1125.64×11.03×1.00/1000
Longitudinal wind force on piercap a/b = h/b =
=3.1/3.65 =2.25/3.65
Exposed area ( from Autocad ) Force coefficent Longitudinal wind force on Piercap
Cf =1.20×16.50×1125.64/1000
2. Pier Transverse wind force on pier Depth of Pier a/b = h/b = Exposed area Force coefficent Transverse wind force on pier
=1.5/1.5 =9.85/1.5 =9.85×1.5 Cf =1125.64×14.78×1.40/1000
Longitudinal wind force on pier a/b = h/b = Exposed area Force coefficent Longitudinal wind force on pier
=1.5/1.5 =9.85/1.5 =9.85×1.5 Cf =14.78×1.40×1125.64/1000
= = = = =
2.25 m 1.18 0.46 m 2 11.03 m 1.00 = 12.41 kN (IS 875 Part 3-1987, Fig 4)
= = = =
0.85 0.62 16.50 m2 1.20 =
22.29 kN
9.85 1.00 6.57 14.78 1.40 =
23.29 kN
= = = = =
= = = =
1.00 6.57 14.78 1.40 =
m m m m2
23.29 kN
2 Calculation of Loads and its Summary from Metro Structure Page 12
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
II
A
Wind with Live Load Total Length of the superstructure
=
Wind Load on Superstructure Height of the crash Barrier Total depth of superstructure exposed of wind Height of structure above bed level Point of action of wind force on Vehicle above RL Actual wind speed at the location of the structure
= = = = =
28.0 m
Height of vehicle considered Maximum allowable wind speed for operation
Vz
1.500 m 3.500 m 23.5 m 1.8 m 44 m/sec (IS:875 Part 3-1987 , Appendix A cl.5.2) = 4.02 m = 25.00 m/s
Design Wind Pressure
Pz
=
1.Transverse Wind Force FT Where,
A1
a/b h/b Cf
=0.6×(25.00×25.00)
PZ * A1 Cf
= = = = = =
Solid area (Exposed area in transverse direction) 28.00×3.500 98 m2 =8.500/28.0 = 0.30 =3.500/28.0 = 0.13 Force Coefficient 1.2
(IS:875 Part 3- 1987 ,Cl.6.3.3.2)
=375.00×98×1.2/1000
2.Longitudinal Wind Force FL
=
25% of Transverse wind force
3.Vertical Wind Load FV
=
Pz * A3 * G * CL
= = = = = = =
Plan area 28.0×8.500 2 238 m Gust Factor 2 Lift Coefficient 0.75 = =375.00×238×2×0.75/1000
Where,
A3
G CL Total vertical Wind load Wind force on Live Load FT A1
a/b h/b Cf
375.00 N/m2 (IS:875 Part 3- 1987 ,Cl.5.4)
=
Transverse wind force
B
B1163502 DN102 rev. 0
=
PZ * A1 Cf
= = = = = =
Exposed area =28.0×(4.0-1.500) 2 70.42 m =8.500/28.0 =(4.0-1.500)/28.0 Force Coefficient
= = =
(IS 875 Part 3-1987, Fig 4)
=
44.1 kN
= =
25%×44.1 11.0 kN
=
0 kN
0.30 0.09 1.2
Transverse wind force
FT
=375.00×70.42×1.2/1000
=
31.7 kN
Longitudinal wind force
FL
= 25% of Transverse wind force
= =
25%×31.7 7.9 kN
2 Calculation of Loads and its Summary from Metro Structure Page 13
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
C
Wind force on Substructure 1. Pier Cap Depth of Pier Cap a/b h/b Exposed area Force coefficent Transverse wind force on Pier cap
=3.65/3.1 =2.25/4.900 =2.25×4.900 Cf =375.00×11.03×1.00/1000
Longitudinal wind force on Piercap a/b h/b Exposed area ( From Autocad ) Force coefficent Longitudinal wind force on Pier cap
Cf =1.20×16.50×375.00/1000
2. Pier Depth of Pier a/b h/b Exposed area Force coefficent Transverse wind force on pier
=1.5/1.5 =9.85/1.5 =9.85×1.5 Cf =375.00×14.78×1.40/1000
=3.1/3.65 =2.25/3.65
= = = = =
= = = =
= = = = =
2.25 1.18 0.46 11.03 1.00 =
B1163502 DN102 rev. 0
m m m m2 4.13 kN
0.85 0.62 16.50 m2 1.20 =
7.43 kN
9.85 1.00 6.57 14.78 1.40 =
7.76 kN
m m m m2
Longitudinal wind force on pier a/b h/b Exposed area Drag coefficent Longitudinal wind force on pier
=1.40×14.78×1007/1000
1.00 6.57 14.78 1.40 =
Lever Arm Calculations: Superstructure from curtailment level Superstructure from Pilecap Top level Superstructure from footing bot. level
=(119.518-101.500)+3.500/2 =(119.518-99.500)+3.500/2 =(119.518-97.700)+3.500/2
= = =
19.768 m 21.768 m 23.568 m
CG of Pier cap from curtailment level C.G of Pier cap to Pilecap Top level C.G of Pier cap to Bottom level
=1.417+(116.938-101.500) =1.417+(116.938-99.500) =1.417+(116.938-97.700)
= = =
16.855 m 18.855 m 20.655 m
C.G of Pier from curtailment level C.G of Pier to Pilecap Top level C.G of Pier to Pilecap Bottom level
=(105.585-101.500)/2 =(105.585-99.500)/2 =(105.585-99.500)/2+1.8
= = =
10.512 m 3.043 m 4.843 m
C.G of vehicle from curtailment level C.G of vehicle to Pilecap Top level C.G of vehicle to Pilecap Bottom level
=(122.000-101.500)+1.8 =(122.000-99.500)+1.8 =(122.000-97.700)+1.8
= = =
22.330 m 24.330 m 26.130 m
=1.5/1.5 =9.853/1.5 =9.853*1.5
= = = =
20.84 kN
The wind forces on superstructure in longitudinal direction are applied at the bearing level and the lever arm is calculated accordingly. The change in vertical reaction at bearing level due to these forces is not considered since the magnitude is negligible. Bearing top to curtailement section =119.518-101.500 = 18.018 m Bearing top to top of footing =119.518-99.500 = 20.018 m Bearing top to bottom of footing =119.518-97.700 = 21.818 m
2 Calculation of Loads and its Summary from Metro Structure Page 14
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Summary of Wind Forces (Without Live Load) V
Velocity of Wind
Transverse Superstructure Pier Cap Substructure Pier Total Longitudinal Superstructure Pier Cap Substructure Pier Total
Lever Arm Curtailment Lever Arm (m) section (m) (kN m)
Pilecap Bottom (kN m)
0 0
132 12 23 168
19.77 16.85 10.51
2617 209 245 3071
21.77 18.85 3.04
2882 234 71 3186
23.57 20.65 4.84
3120 256 113 3489
0
33 22 23 79
18.02 16.85 10.51
596 376 245 1217
20.02 18.85 3.04
662 420 71 1154
21.82 20.65 4.84
722 460 113 1295
Velocity of Wind
=
44 m/sec
Moment ( M ) at
H Rebar
2.2.7
Lever Arm(m)
kN
V
Transverse Superstructure Pier Cap Substructure Pier Live load Total Longitudinal Superstructure Pier Cap Substructure Pier Live load Total
Pilecap Top (kN m)
kN
Summary of Wind Forces (With Live Load)
Direction
44 m/sec
Moment ( M ) at
H Rebar
Direction
=
B1163502 DN102 rev. 0
Lever Arm Curtailment Lever Arm (m) section (m) (kN m)
Pilecap Top (kN m)
Lever Arm (m)
Pilecap Bottom (kN m)
kN
kN
0 0
44 4 8 32 88
19.77 16.85 10.51 22.33
872 70 82 708 1731
21.77 18.85 3.04 24.33
960 78 24 771 1833
23.57 20.65 4.84 26.13
1039 85 38 828 1990
0
11 7 21 8 47
18.02 16.85 10.51 22.33
199 125 219 177 720
20.02 18.85 3.04 24.33
221 140 63 193 617
21.82 20.65 4.84 26.13
241 153 101 207 702
Seismic force calculation (Feq) Load from Superstructure for longitudinal seismic (Total superstructure weight) Load from Superstructure for transverse seismic Size of each pier Average Response Acceleration Coefficient
As per section 219 of IRC:6-2014, Importance factor Zone factor for Zone III Response reduction Factor Seismic Coefficient
= = = =
(DL + SIDL)
=
5520 kN
(DL+SIDL+0.5*LL)
= =
6313 kN 1.5 x 1.5 m
= = =
Sa/g 2.5 1.00 / T
I Z R Ah
= = = =
( Soft Soil, Type - I ) 0 0.40
<= T <= <= T <=
0.4 4
1.5 0.1 3 (for ductile detailing) (z / 2) x (Sa / g) x (I / R)
2 Calculation of Loads and its Summary from Metro Structure Page 15
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Seismic Coefficient (Considering Fixed Pier base) Direction Transverse direction Longitudinal direction
Load 6313 5520
Time Period (T) (from eigen value 1.620 1.513
Sa/g 0.6 0.7
Ah 0.015 0.017
Lever Arm Calculations: C.G of vehicle from curtailment level C.G of vehicle to Pilecap Top level C.G of vehicle to bottom level
=123.83-101.500 =123.83-99.500 =123.83-97.700
= = =
22.33 m 24.33 m 26.13 m
Superstr CG from curtailment level Superstructure CG to Pilecap Top level Superstructure CG to Pilecap Bottom level
=120.918-101.500 =120.918-99.500 =120.918-97.700
= = =
19.418 m 21.418 m 23.218 m
SIDL from curtailment level SIDL to Pilecap Top level SIDL to Pilecap Bottom level
=(122.000+1.500/2)-101.500 =(122.000+1.500/2)-99.500 =(122.000+1.500/2)-97.700
= = =
21.250 m 23.250 m 25.050 m
SIDL Surfacing from curtailment level SIDL Surfacing to Pilecap Top level SIDL Surfacing to Pilecap Bottom level
=122.000-101.500 =122.000-99.500 =122.000-97.700
= = =
20.500 m 22.500 m 24.300 m
Pier cap from curtailment level Pier cap to Pilecap Top level Pier cap to Pilecap Top level
=118.3549947-101.500 =118.3549947-99.500 =118.3549947-97.700
= = =
16.855 m 18.855 m 20.655 m
Pier to Curtailment level Pier to Pilecap Top level Pier to Pilecap Bottom level
=(105.585-101.500)/2 =102.793-99.500 =102.793-97.700
= = =
10.512 m 12.512 m 14.312 m
The seismic forces from superstructure in longitudinal direction are applied at the bearing level and the lever arm is Bearing top level to curtailment level =119.518-101.500 = 18.018 m Bearing top level to Pilecap Top level =119.518-99.500 = 20.018 m Bearing top level to bottom level =119.518-97.700 = 21.818 m Seismic Forces and Moment in Transverse Direction: Description
V (kN)
Calculation
HT (kN)
Superstructure SIDL SIDL With Surfacing
3680 1180 660
= 3680×0.015 = 1180×0.015 = 660×0.015 Total
57 18 10 85
Substructure Piercap Pier Pier (curtailment Level)
1295 554 554
= 1295×0.015 = 554×0.015 = 554×0.015 Total
20 9 9 29
Live Load Pmax(LL)
= 1586×0.5
793
= 793×0.015
12
Max MT(LL)
= 790×0.5
395
= 395×0.015
6
Max ML(LL)
= 1204×0.5
602
= 602×0.015
9
Max MLT(LL)
= 600×0.5
300
= 300×0.015
6
2 Calculation of Loads and its Summary from Metro Structure Page 16
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Description Superstructure SIDL SIDL With Surfacing
Rebar Curtailment MT Lever Arm (m) (kN m) 19.42 1103 21.25 387 20.50 209 1699
Pilecap Top MT Lever Arm (m) (kN m) 21.42 1216 23.25 423 22.50 229 1869
B1163502 DN102 rev. 0
Pilecap Bottom MT Lever Arm (m) (kN m) 23.22 1319 25.05 456 24.30 248 2022
Substructure Piercap Pier
16.85 10.51
337 90 427
18.85 12.51
377 107 484
20.65 14.31
413 122 535
Live Load Pmax(LL)
22.33
273
24.33
298
26.13
320
Max MT(LL)
22.33
136
24.33
148
26.13
159
Max ML(LL)
22.33
207
24.33
226
26.13
243
Max MLT(LL)
22.33
129
24.33
141
26.13
151
Seismic Forces and Moment in Longitudinal Direction: Description
V (kN)
Calculation (V Ah)
HL (kN)
Superstructure SIDL SIDL With Surfacing
3680 1180 660
= 3680×0.017 = 1180×0.017 = 660×0.017 Total
61 19 11 91
Substructure Piercap Pier Pier (curtailment Level)
1295 554 554
= 1295×0.017 = 554×0.017 = 554×0.017 Total
21 9 9 31
Description Superstructure SIDL SIDL With Surfacing Substructure Piercap Pier
Rebar Curtailment ML Lever Arm (m) (kN m) 18.02 1096 18.02 351 18.02 196 1643
Pilecap Top ML Lever Arm (m) (kN m) 20.02 1217 20.02 390 20.02 218 1826
Pilecap Bottom ML Lever Arm (m) (kN m) 21.82 1327 21.82 425 21.82 238 1990
16.85 10.51
361 18.85 403 20.65 442 96 12.51 115 14.31 131 457 518 573 Note: Longitudinal and transverse moments at bottom of footing are increased by 35% as per RDSO Seismic Design
2 Calculation of Loads and its Summary from Metro Structure Page 17
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
2.2.8
B1163502 DN102 rev. 0
LWR LWR per m for 2 track
=
Live load Case Pmax(LL)
16 kN/m
(Refer 877-N-105 of STRUCTCON)
Total Loads 448
Max MT(LL)
224
Max ML(LL)
448
Max MLT(LL)
224
Lever Arms Rail top to Pier curtailement Rail top to Pilecap Top Rail top to Pilecap Bottom
=122.000-101.500 =122.000-100.000 =122.000-97.700
= = =
20.500 22.000 24.300
Moments due to LWR
Load Case
2.2.9
Vertical reaction VL kN
Pmax(LL)
0.00
Max MT(LL)
0.00
Max ML(LL)
0.00
Max MLT(LL)
0.00
Longitudinal Moment at Rebar Pilecap Lever Arm Curtailment Lever Arm Top (m) section (m) (kN m) (kN m) 9184 20.50
4592 9184
Lever Arm (m)
9856 22.00
4592
4928 9856
Pilecap Bottom (kN m) 10886
24.30
4928
5443 10886 5443
Nosing Nosing force at Rail level
=
Lever Arms Rail top to Pier curtailement Rail top to Pilecap Top Rail top to Pilecap Bottom
=122.000-101.500 =122.000-100.000 =122.000-97.700
100 kN
(Refer NMRCL DBR, cl. no. 7.17)
= = =
20.500 22.000 24.300
Moments due to Nosing
Load Case
Transverse Force
Vertical reaction VL kN 0.00
Transverse Moment at Rebar Pilecap Lever Arm Curtailment Lever Arm Top (m) section (m) (kN m) (kN m) 20.50 2050 22.00 2200
Lever Arm (m)
Pilecap Bottom (kN m)
24.30
2430
2 Calculation of Loads and its Summary from Metro Structure Page 18
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
2.3
Load Combination's
2.3.1
Summary of Forces at Base of Pile cap Load Case
P kN
HL kN
HT kN
ML kNm
MT kNm
G
3680 1849 5529
0 0 0
5 0 5
0 0 0
109 0 109 0 22
Notation
Dead Load Super structure DL Substructure Total
B1163502 DN102 rev. 0
SIDL Fixed SIDL Variable Live Load P max (LL)
Sf Sv
1180 660
0 0
0 1
0 0
Q1
1586
0
0
822
0
Max M T (LL)
Q2
790
0
0
410
1547
Max M L (LL)
Q3
1204
0
0
1204
0
Max M LT (LL)
Q4
600
0
0
600
1170
Centrifugal Force
F cf
P max (LL)
0
0
27
0
696
Max M T (LL)
0
0
13
0
347
Max M L (LL)
0
0
20
0
528
0
0
10
0
263
Max M LT (LL)
Fb
Braking + Traction P max (LL)
61
365
0
7959
0
Max M T (LL)
32
192
0
4189
0
Max M L (LL)
61
365
0
7959
0
32 0 0 0 0
192 0 0 0 0
0 100 0 0 0
4189 0 0 0 0
0 2430 0 0 0
0
448
0
10886
0
Max M T (LL)
0
224
0
5443
0
Max M L (LL)
0
448
0
10886
0
Max M LT (LL)
0 0
224 0
0 0
5443 0
0 0
0 0
79 47
168 88
1295 702
3489 1990
91 31 0 0 122
85 29 0 0 114
1990 573 0
2022 535
2563
0 2557
Max M LT (LL) Nosing Frictional Resistance force Derailment Vehicle Collision Rail Structure Interaction P max (LL)
N Ff D V LWR
Rail fracture Wind Force Without Live Load With Live Load Seismic forces (lateral & longitudinal) Superstructure DL+SIDL+SIDL Surfacing Substructure Vertical seismic force - for lateral case Vertical seismic force - for longitudinal case
Rf W
F eq
76 81 Total
Live Load
P max (LL)
8
0
12
0
320
Max M T (LL)
4
0
6
0
159
Max M L (LL)
6
0
9
0
243
Max M LT (LL)
4
0
6
0
151
2 Calculation of Loads and its Summary from Metro Structure Page 19
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
One Span Dislodged Condition
Notation
Permanent Loads Super structure Substructure Total
2.3.2
G
SIDL Fixed SIDL Variable Frictional resistance force Wind Force Without Live Load
Sf Sv Ff W
Seismic forces (lateral & longitudinal) Superstructure DL+SIDL Substructure Total Vertical seismic force - for lateral case Vertical seismic force - for longitudinal case
F eq
P kN
HL kN
HT kN
ML kNm
MT kNm
1840 1849 3689
0 0 0
5 0 5
1840 0 1840
109 0 109
590 330 0
0 0 147
0 1 0
590 330 3206
0 22 0
0
62
102
934
1929
91 31 122
43 29 71
995 573 1568
2022 535 2557
47 81
Load Combination for the Design of Pile Foundation Load Combinations at Base of Foundation
Load Case
I A 1.1.1
B1163502 DN102 rev. 0
Description
(IRS CBC:2014, Table 12) P kN
HL kN
HT kN
ML kNm
MT kNm
9707
0
8
0
180
6009
0
8
3698
180
12588 11145 11919 10812
638 336 638 336
230 206 219 201
15367 8048 16036 8381
5651 7747 5357 6941
9707 12012 10857 11477 10591
126 570 328 570 328
277 295 276 286 272
2072 13171 7316 13706 7582
5762 7045 8721 6810 8077
6009
99
171
5192
3266
Combination 1 Permanent Load 1.25 G + 1.25 Sf + 2 Sv
One Span Dislodged Condition 1.1.2
B
1.25 G + 1.25 Sf + 2 Sv
Live Load
1.2.1
1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q1 + Fcf + Fb + N)
1.2.2
1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q2 + Fcf + Fb + N)
1.2.3
1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q3 + Fcf + Fb + N)
1.2.4
1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q4 + Fcf + Fb + N)
II A
Combination 2 Wind Load
2.1.1
1.25 G + 1.25 Sf + 2 Sv + 1.6 W
2.1.2
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q1 + Fcf + Fb + N) + 1.25 W
2.1.3
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q2 + Fcf + Fb + N) + 1.25 W
2.1.4
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q3 + Fcf + Fb + N) + 1.25 W
2.1.5
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q4 + Fcf + Fb + N) + 1.25 W
2.1.6
1.25 G + 1.25 Sf + 2 Sv + 1.6 W
One Span Dislodged Condition
2 Calculation of Loads and its Summary from Metro Structure Page 20
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
2.2.1
1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq
2.2.2
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q1 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)
2.2.3
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q2 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)
2.2.4
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q3 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)
2.2.5
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q4 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)
2.2.6
1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq
2.3.1
1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq
2.3.2
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q1 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)
2.3.3
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q2 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)
2.3.4
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q3 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)
2.3.5
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q4 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)
2.3.6
1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq
B1163502 DN102 rev. 0
r3
r1
r2
r1
r2
0.30 9759 10904 10325 10636 10192
1.00 263 461 340 461 340
0.30 82 161 148 155 146
1.00 5536 10472 7544 10739 7677
0.30 1837 3825 4582 3668 4256
6062
263
54
7084
1837
0.30 9756 10902 10322 10633 10189
0.30 79 317 196 317 196
1.00 254 309 290 300 287
0.30 1661 7444 4517 7712 4650
1.00 5704 7224 7791 6976 7455
6040
79
162
4714
5704
12012 10857 11477 10591
511 269 511 269
186 167 177 162
12294 6439 12828 6705
4557 6233 4322 5589
6009
176
8
7545
180
9707
0
8
0
180
9707
0
8
0
180
One Span Dislodged Condition
0.3r1 + r2 + 0.3r3
Seismic Components
One Span Dislodged Condition
III
Combination 3 Temperature
3.1.1
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q1 + Fcf + Fb + N) + 1.15 Ff
3.1.2
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q2 + Fcf + Fb + N) + 1.15 Ff
3.1.3
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q3 + Fcf + Fb + N) + 1.15 Ff
3.1.4
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q4 + Fcf + Fb + N) + 1.15 Ff
3.1.5
1.25 G + 1.25 Sf + 2 Sv + 1.15 Ff
One Span Dislodged Condition
IV
Combination 5 Derailment
4.1.1
1.25 G + 1.25 Sf + 2 Sv + 1.75 D
4.2.1
1.25 G + 1.25 Sf + 2 Sv + 1.75 V
Vehicle Collision
Serviciability Limit State Load Case
I A 5.1.1
Description
(IRS CBC:2014, Table 12) P kN
HL kN
HT kN
ML kNm
MT kNm
7501
0
6
0
135
4675
0
6
2826
135
9312 8405 8892 8196
401 211 401 211
146 131 138 127
9659 5059 10080 5268
3574 4891 3390 4385
Combination 1 Permanent Load 1 G + 1 Sf + 1.2 Sv
One Span Dislodged Condition 5.1.2
B
1 G + 1 Sf + 1.2 Sv
Live Load
5.2.1
1 G + 1 Sf + 1.2 Sv + 1.1 (Q1 + Fcf + Fb + N)
5.2.2
1 G + 1 Sf + 1.2 Sv + 1.1 (Q2 + Fcf + Fb + N)
5.2.3
1 G + 1 Sf + 1.2 Sv + 1.1 (Q3 + Fcf + Fb + N)
5.2.4
1 G + 1 Sf + 1.2 Sv + 1.1 (Q4 + Fcf + Fb + N)
2 Calculation of Loads and its Summary from Metro Structure Page 21
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
II A
B1163502 DN102 rev. 0
Combination 2 Wind Load
6.1.1
1 G + 1 Sf + 1.2 Sv + 1 W
6.1.2
1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 1 W
6.1.3
1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 1 W
6.1.4
1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 1 W
6.1.5
1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 1 W
6.1.6
1 G + 1 Sf +1.2 Sv + 1 W
7501 9148 8323 8766 8133
79 412 239 412 239
174 221 207 214 204
1295 9483 5301 9865 5491
3624 5252 6449 5084 5989
4675
62
108
3760
2064
r3
r1
r2
r1
r2
0.30 7526 8351 7938 8160 7843
1.00 122 304 218 304 218
0.30 40 107 99 103 97
1.00 2563 6954 4863 7145 4958
0.30 902 2561 3112 2455 2880
4700
122
28
4394
902
0.30 7524 8350 7936 8158 7841
0.30 37 219 133 219 133
1.00 120 195 183 189 181
0.30 769 5160 3068 5351 3163
1.00 2693 4575 5014 4415 4776
4689
37
77
3296
2693
9148 8323 8766 8133
365 192 365 192
133 119 126 116
8781 4599 9163 4789
3261 4459 3094 3999
4675
118
6
5391
135
9148 8323 8766 8133
723 371 723 371
133 119 126 116
17490 8954 17872 9144
3261 4459 3094 3999
7369
0
6
0
131
7369
0
6
0
131
9148 8323 8766 8133
365 192 365 192
133 119 126 116
8781 4599 9163 4789
3261 4459 3094 3999
One Span Dislodged Condition
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
6.2.1
1 G + 1 Sf + 1.2 Sv + 1 Feq
6.2.2
1G + 1Sf +1.2Sv + 0.5*1*(Q1 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)
6.2.3
1G + 1Sf +1.2Sv + 0.5*1*(Q2 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)
6.2.4
1G + 1Sf +1.2Sv + 0.5*1*(Q3 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)
6.2.5
1G + 1Sf +1.2Sv + 0.5*1*(Q4 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)
6.2.6
1 G + 1 Sf + 1.2 Sv + 1 Feq
6.3.1
1 G + 1 Sf + 1.2 Sv + 1 Feq
6.3.2
1G + 1Sf +1.2Sv + 0.5*1*(Q1 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)
6.3.3
1G + 1Sf +1.2Sv + 0.5*1*(Q2 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)
6.3.4
1G + 1Sf +1.2Sv + 0.5*1*(Q3 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)
6.3.5
1G + 1Sf +1.2Sv + 0.5*1*(Q4 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)
6.3.6
1.25 G + 1.25 Sf + 2 Sv + 1.6 Feq
One Span Dislodged Condition
0.3r1 + r2 + 0.3r3
Seismic Components
One Span Dislodged Condition
III
Combination 3 Temperature
7.1.1
1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 0.8 Ff
7.1.2
1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 0.8 Ff
7.1.3
1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 0.8 Ff
7.1.4
1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 0.8 Ff
7.1.5
1 G + 1 Sf + 1.2 Sv + 0.8 Ff
7.2.1
1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 0.8 LWR
7.2.2
1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 0.8 LWR
7.2.3
1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 0.8 LWR
7.2.4
1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 0.8 LWR
One Span Dislodged Condition
Long Welded Rail (LWR)
IV
Combination 5 Derailment
8.1.1
1 G + 1 Sf + 1 Sv + 1.1 D
8.2.1
1 G + 1 Sf + 1 Sv + 1.1 V
8.3.1
1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 1 RF
8.3.2
1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 1 RF
8.3.3
1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 1 RF
8.3.4
1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 1 RF
Vehicle Collision
Rail Fracture
2 Calculation of Loads and its Summary from Metro Structure Page 22
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Unfactored Load Combination Load Case
I A 9.1.1
B1163502 DN102 rev. 0
(IRC 78:2014 Cl-706.1.1)
Description
P kN
HL kN
HT kN
ML kNm
MT kNm
7369
0
6
0
131
4609
0
6
2760
131
9016 8191 8634 8001
365 192 365 192
133 119 126 116
8781 4599 9163 4789
3257 4455 3089 3994
7369 9016 8191 8634 8001
79 412 239 412 239
174 220 207 214 204
1295 9483 5301 9865 5491
3620 5247 6445 5080 5985
4609
62
108
3694
2060
r3
r1
r2
r1
r2
0.30 7394 8219 7806 8028 7711
1.00 122 304 218 304 218
0.30 40 107 99 103 97
1.00 2563 6954 4863 7145 4958
0.30 898 2557 3108 2450 2875
4623
0
6
2760
131
0.30 7392 8218 7804 8026 7709
0.30 37 219 133 219 133
1.00 132 195 182 189 181
0.30 769 5160 3068 5351 3163
1.00 3008 4571 5009 4410 4771
4623
37
77
3230
2688
Combination 1 Permanent Load G + Sf + Sv
One Span Dislodged Condition 9.1.2
G + Sf + Sv
B
Live Load
10.1.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) 10.1.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) 10.1.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) 10.1.4 G + Sf + Sv + (Q4 + Fcf + Fb + N)
II
Combination 2
A
Wind Load
10.2.1 G + Sf + Sv + W 10.2.2 G + Sf + Sv + (Q1 + Fcf + Fb + N) + W 10.2.3 G + Sf + Sv + (Q2 + Fcf + Fb + N) + W 10.2.4 G + Sf + Sv + (Q3 + Fcf + Fb + N) + W 10.2.5 G + Sf + Sv + (Q4 + Fcf + Fb + N) + W
One Span Dislodged Condition 10.2.6 G + Sf +Sv + W
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
10.3.1 G + Sf + Sv + Feq 10.3.2 G + Sf +Sv + 0.5*(Q1 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.3 G + Sf +Sv + 0.5*(Q2 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.4 G + Sf +Sv + 0.5*(Q3 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.5 G + Sf +Sv + 0.5*(Q4 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3)
One Span Dislodged Condition 10.3.6 G + Sf + Sv + Feq
0.3r1 + r2 + 0.3r3
Seismic Components
10.4.1 G + Sf + Sv + Feq 10.4.2 G + Sf +Sv + 0.5*(Q1 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.3 G + Sf +Sv + 0.5*(Q2 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.4 G + Sf +Sv + 0.5*(Q3 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.5 G + Sf +Sv + 0.5*(Q4 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3)
One Span Dislodged Condition 10.4.6 G + Sf + Sv + Feq
2 Calculation of Loads and its Summary from Metro Structure Page 23
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
III
B1163502 DN102 rev. 0
Combination 3 Temperature
11.1.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + Ff 11.1.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + Ff 11.1.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + Ff 11.1.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + Ff
9016 8191 8634 8001
365 192 365 192
133 119 126 116
8781 4599 9163 4789
3257 4455 3089 3994
4609
147
6
5966
131
9016 8191 8634 8001
813 416 813 416
133 119 126 116
19668 10042 20050 10232
3257 4455 3089 3994
7369
0
6
0
131
7369
0
6
0
131
9016 8191 8634 8001
365 192 365 192
133 119 126 116
8781 4599 9163 4789
3257 4455 3089 3994
One Span Dislodged Condition 11.1.5 G + Sf + Sv + Ff
Long Welded Rail (LWR) 11.2.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + LWR 11.2.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + LWR 11.2.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + LWR 11.2.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + LWR
IV
Combination 5 Derailment
12.1.1 G + Sf + Sv + D
Vehicle Collision 12.2.1 G + Sf + Sv + V
Rail Fracture 12.3.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + RF 12.3.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + RF 12.3.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + RF 12.3.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + RF
2 Calculation of Loads and its Summary from Metro Structure Page 24
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
3
Calculation of Loads and its Summary from Flyover Structure
3.1
Input Data General Arrangement of Structure (Flyover) Total span of superstructure (left side) Total span of superstructure (right side) Effective span c/c of bearings (left side) Effective span c/c of bearings (right side) Radius of curvature used in design Design speed No of bearings Bearings c/c distance in transverse direction Bearings c/c distance in longitudinal direction Cross slope Total width of the superstructure Thickness of wearing coat Depth of the box girder CG of the superstructure from top of box girder Bearing height Minimum pedestal height Height of crash barrier
= = =
Levels (Flyover) Finished road level at centreline of carriageway edge Bearing top level Pier cap top level Pier cap bottom level Existing ground/road level Pile cap top level Pile cap bottom level Pier Dimensions (Flyover) Effective Size of the pier Size of the pier cap top Size of the pedestal Depth of the Pier Cap at pier face Depth of the Pier cap at Edge
R V
= = = = = = = = = = = = =
28.0 28.0 24.5 24.5 3000 80 4 3.500 3.500 2.5 19.600 0.065 2.000 0.620 0.200 0.250 1.000
FRL
= = = = = = =
109.600 107.535 107.085 105.585 100.000 99.500 97.700
m m m m m m m
col_l long long
= 2.0 = 4.9 = 0.9 = =
x 2.00 x 4.90 x 0.90 1.500 0.500
m m m m m
foot_l foot_b
= = = =
8.700 5.100 1.800 0.500
m m m m
GL
col_b trans trans
Foundation Dimensions Pile cap length in longitudinal direction Pile cap length in transverse direction Pile cap thickness Depth of the soil above pile cap top
B1163502 DN102 rev. 0
m m m m m kmph Nos m m % m m m m m m m
Plan at Pier Top CL of pier / pier cap 0.70 m
1.75 m
1.75 m
0.70 m
B6 Fixed
Free
Free
Free
Traffic Direction
B5 0.70 m 1.75 m
1.75 m 0.70 m
B7
B8 4.9 m
Plan of Pier Cap (Flyover)
3 Calculation of Loads and its Summary from Flyover Structure Page 25
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Transverse Section (box girder section shown is schematic only)
Pier Cap
+ve 0.5 m
7.50 m
3.60 m
7.50 m CG of Vehicle = 110.800
2.50 %
2.50 %
1.0 m
FRL = 109.600
Super str. CG = 108.915
B5 & B7
B6 & B8
3.5 m
0.50 m
Pier Cap CG = 106.437
Pier Cap
1.45 m Pier
2.0 m
5.1 m
3 Calculation of Loads and its Summary from Flyover Structure Page 26
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Longitudinal Section
Railway
Railway
B1 & B2
RL =
122.000 m
Rail Top Level
=
119.518 m
Bearing Top Level (Metro)
=
119.188 m
Pier Cap Top Level (Metro)
=
116.938 m
Pier Cap Bottom Level (Metro)
=
112.012 m
CG of Pier for Seismic Case (Metro)
FRL =
109.600 m
Road Top Level
2.81 m
B3 & B4
3.1 m 2.25 m
1.5 m 7.34 m 9.85 m
( at centre of C/W )
Road
Road
B1 and B2 B5 & B6
2.52 m
B3 and B4
=
107.535 m
Bearing Top Level (Flyover)
B7 & B8
=
107.085 m
Pier Cap Top Level (Flyover)
=
105.585 m
Pier Cap Bottom Level (Flyover)
=
102.793 m
CG of Pier for Seismic Case (Flyover)
=
101.500 m
Pier Rebar Curtailement level
=
100.000 m
Ground level
=
99.500 m
Pilecap Top Level
=
97.700 m
Pilecap Bottom Level
4.9 m 1.50 m
2.0 m 5.58 m 6.08 m
3.35 m
3.35 m 1.80 m
8.70 m
Material Properties Granular Backfill Unit weight of soil overburden above footing
γfill
=
20 kN /m3
Concrete Unit weight of Concrete for Design
γcon
=
25 kN /m3
3 Calculation of Loads and its Summary from Flyover Structure Page 27
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
3.2
Calculation of Forces
3.2.1
Reactions from Superstructure
Sr. No. Load Case (Flyover)
1 2 3 4 5 6 7 i
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL) ( 2 70R )
B1163502 DN102 rev. 0
V5 kN
Bearing 5 (Inner) HL5 kN
HT5 kN
V6 kN
Bearing 6 (Outer) HL6 kN
HT6 kN
1650 200 150 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1650 200 150 0 0 0
0 0 0 0 0 0
5 0 1 0 0 0
571
0
0
571
0
0
ii
Max MT(LL)
( 1 70R )
0
0
0
571
0
0
iii
Max ML(LL)
( 2 70R )
1142
0
0
1142
0
0
iv
Max MLT(LL)
( 1 70R )
0
0
0
1142
0
0
V7
Bearing 7 (Inner) HL7
HT7
V8
Bearing 8 (Outer) HL8
HT8
kN
kN
kN
kN
kN
kN
1650 200 150 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1650 200 150 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Sr. No. Load Case (Flyover)
1 2 3 4 5 6 7 i
Dead Load - Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL) ( 2 70R )
571
0
0
571
0
0
ii
Max MT(LL)
( 1 70R )
0
0
0
571
0
0
iii
Max ML(LL)
( 2 70R )
0
0
0
0
0
0
iv
Max MLT(LL)
( 1 70R )
0
0
0
0
0
0
Note:The above value for live loads of flyover are including the reduction factor of 20% as per cl 205 IRC6:2014 Pmax(LL) Notation: Maximum Vertical load case Pmin(LL)
-
Minimum Vertical load case
Max MT(LL)
-
Maximum Transverse moment case
Max ML(LL)
-
Maximum Longitudinal moment case
3 Calculation of Loads and its Summary from Flyover Structure Page 28
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Summary of Vertical Loads from Superstructure Sr. No. 1 2 3 4 5 6 7
Load Case (Flyover)
Calculations = 1650+1650+1650+1650 = 200+200+200+200 = 150+150+150+150 = 0+0+0+0 = 0+0+0+0 = 0+0+0+0
i
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)
V (kN) 6600 800 600 0 0 0
= 571+571+571+571
2284
ii
Max MT(LL)
= 0+571+0+571
1142
iii
Max ML(LL)
= 1142+1142+0+0
2284
iv 8
Max MLT(LL)
= 0+1142+0+0
1142
One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient
= MAX(1650+1650,1650+1650) = MAX(200+200,200+200) = MAX(150+150,150+150) = MAX(0+0,0+0) = MAX(0+0,0+0) = MAX(0+0,0+0)
3300 400 300 0 0 0
Summary of Longitudinal Moments from Superstructure
Sr. No. Load Case (Flyover)
1 2 3 4 5 6 7 i
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)
V5 + V6 ( kN )
3300 400 300 0 0 0
ii
Max MT(LL)
571
Max ML(LL)
2284
iv
Max MLT(LL)
1142
One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient
1.75
1142
iii
8
Longitudinal BM at Rebar Curtailment level HL5 +HL6 V7 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HL7 +HL8 m) m) m) ( kN ) ( kN )
V5 + V6 ( kN )
3300 400 300 0 0 0
3300 400 300 0 0 0
1.75
1142 1.75
571 0
0 0 0 0 0 0
6.04
0 1.75
0 0
ML ( kN m )
0 0 0 0 0 0 0
6.04
0 3997
0
0
1999
Lever Arm ( m)
V7 + V8 ( kN )
HL5 +HL6 or Lever Arm ( Lever Arm ( HL7 +HL8 m) m) ( kN )
ML ( kN m )
1.75
3300 400 300 0 0 0
0 0 0 0 0 0
5775 700 525 0 0 0
1.75
6.04
3 Calculation of Loads and its Summary from Flyover Structure Page 29
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Sr. No. Load Case (Flyover)
1 2 3 4 5 6 7
V5 + V6 ( kN )
i
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)
1142
1142
0
ii
Max MT(LL)
571
571
0
iii
Max ML(LL)
2284
iv
Max MLT(LL)
1142
8
One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient
Sr. No. Load Case (Flyover)
1 2 3 4 5 6 7
3300 400 300 0 0 0
Longitudinal BM at Pile Cap Top level HL5 +HL6 V7 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HL7 +HL8 m) m) m) ( kN ) ( kN )
V5 + V6 ( kN )
3300 400 300 0 0 0
V5 + V6 ( kN )
i
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)
1142
ii
Max MT(LL)
571
iii
Max ML(LL)
2284
iv
Max MLT(LL)
1142
8
One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient
3300 400 300 0 0 0
V5 + V6 ( kN )
3300 400 300 0 0 0
1.75
1.75
3300 400 300 0 0 0
0
1.75
1.75
0 0 0 0 0 0
0
8.04
B1163502 DN102 rev. 0 ML ( kN m )
0 0 0 0 0 0 0
8.04
0 3997
0
0
1999
Lever Arm ( m)
V7 + V8 ( kN )
HL5 +HL6 or Lever Arm ( Lever Arm ( HL7 +HL8 m) m) ( kN )
ML ( kN m )
1.75
3300 400 300 0 0 0
0 0 0 0 0 0
5775 700 525 0 0 0
1.75
8.04
Longitudinal BM at Pile Cap Bottom level HL5 +HL6 V7 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HL7 +HL8 m) m) m) ( kN ) ( kN )
1.75
3300 400 300 0 0 0
1.75
1142 1.75
571 0
V7 + V8 ( kN )
1.75
3300 400 300 0 0 0
9.83
0 1.75
0 Lever Arm ( m)
0 0 0 0 0 0
0 0
9.72
1.75
0 3997 1999
HL5 +HL6 or Lever Arm ( HL7 +HL8 m) ( kN )
0 0 0 0 0 0
0 0 0 0 0 0 0
0 Lever Arm ( m)
ML ( kN m )
9.83
ML ( kN m )
5775 700 525 0 0 0
3 Calculation of Loads and its Summary from Flyover Structure Page 30
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Summary of Transverse Moment from Superstructure
Sr. No. Load Case (Flyover)
V5 + V7 ( kN )
1 2 3 4 5 6 7 i
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)
ii
Max MT(LL)
0
iii
Max ML(LL)
1142
iv
Max MLT(LL)
0
8
One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient
Sr. No. Load Case (Flyover)
3300 400 300 0 0 0
1.75
1142
V6 - V5 ( kN )
0 0 0 0 0 0
V5 + V7 ( kN )
1 2 3 4 5 6 7 i
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)
ii
Max MT(LL)
0
3300 400 300 0 0 0
iii
Max ML(LL)
1142
Max MLT(LL)
0
8
One Span Dislodged Condition
V6 - V5 ( kN )
0 0 0 0 0 0
3300 400 300 0 0 0
1.75
1142 1.75
1142 1142
Lever Arm ( m)
V8 - V7 ( kN )
1.75
0 0 0 0 0 0
5 0 1 0 0 0
6.04
0 1.75
1142
0 0
6.04
0 Lever Arm ( m)
1.75
1.75
3300 400 300 0 0 0
1.75
1142 1.75
1142 1142
6.04
V8 - V7 ( kN )
1.75
0 0 0 0 0 0
8.04
0 1.75
1142 Lever Arm ( m)
5 0 1 0 0 0
0 0
8.04
1.75
0
MT ( kN m )
30 0 6 0 0 0
MT ( kN m )
40 0 8 0 0 0
1999 0 1999
HT5 +HT6 or Lever Arm ( HT7 +HT8 m) ( kN )
5 0 1 0 0 0
1999
0
0 Lever Arm ( m)
30 0 6 0 0 0
1999
HT5 +HT6 or Lever Arm ( HT7 +HT8 m) ( kN )
5 0 1 0 0 0
MT ( kN m )
0
Transverse BM at Pile Cap Top level HT5 +HT6 V6 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HT7 +HT8 m) m) m) ( kN ) ( kN )
1142
iv
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient
Transverse BM at Rebar Curtailment level HT5 +HT6 V6 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HT7 +HT8 m) m) m) ( kN ) ( kN )
8.04
MT ( kN m )
40 0 8 0 0 0
3 Calculation of Loads and its Summary from Flyover Structure Page 31
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Sr. No. Load Case (Flyover)
V5 + V7 ( kN )
1 2 3 4 5 6 7 i
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)
3300 400 300 0 0 0
ii
Max MT(LL)
0
iii
Max ML(LL)
1142
Max MLT(LL)
0
8
One Span Dislodged Condition
3.2.2
1.75
1142
iv
Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient
Transverse BM at Pile Cap Bottom level HT5 +HT6 V6 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HT7 +HT8 m) m) m) ( kN ) ( kN )
V6 - V5 ( kN )
0 0 0 0 0 0
3300 400 300 0 0 0
1.75
1142 1.75
1142 1142
V8 - V7 ( kN )
1.75
0 0 0 0 0 0
9.83
0 1.75
1142 Lever Arm ( m)
5 0 1 0 0 0
0 0
9.72
1.75
49 0 10 0 0 0
1999 0 1999
HT5 +HT6 or Lever Arm ( HT7 +HT8 m) ( kN )
5 0 1 0 0 0
MT ( kN m )
0
0 Lever Arm ( m)
B1163502 DN102 rev. 0
9.83
MT ( kN m )
49 0 10 0 0 0
Loads from Substructure Summary of Vertical Loads due to Self Weight of Substructure Load Description
Calculations
Pier Bearing pedestals =0.9×0.9×0.250×4×25 Bearing pedestals(Curtailment) =(0.90×0.90×0.250×4×25) Pier cap =(5.900×4.9×25) Pier cap (Curtailment) =(5.900×4.900×25) Pier =(6.085×2.00×2.00×25) Pier for seismic =(5.585×2.00×2.00×25) Pier upto curtailment =(105.585-101.500)×2.00×2×25 Total for pier bottom Total for curtailment level Footing & Soil above Pilecap portion =(8.700×5.100)×1.800×25 Soil above Pilecap =(8.700×5.100-2×2.000)×0.500×20 Total ( Footing + Soil above ) Total ( Pier + Footing + Soil above )
V (kN) 20 20 723 723 608 558 408 1352 1152 1997 404 2400 3752
3 Calculation of Loads and its Summary from Flyover Structure Page 32
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Summary of Moments due to Self Weight of Substructure Longitudinal Moment ML Load Description Pier Bearing pedestals (Road) Pier cap (Road) Pier (Road) Pier for seismic (Road) Pier upto curtailment (Road) Total for pier bottom Total for curtailment level Footing & Soil above Pilecap portion Soil above Pilecap Total ( Footing + Soil above ) Total (Pier+Footing+Soil above) 3.2.3
0 0 -
Loads Due to Centrifugal Forces, Fcf (Metro) Centrifugal Force where,
W= R= V=
=
MT
Lever Arm Lever Arm Lever Arm BM(kN m) BM(kN m) BM(kN m) (m) (m) (m) Pile Cap Top Pile Cap Bottom Rebar Curtailment 1.75 0 1.75 0 1.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -
0 0 0 0
(kN m) 0 0 0 0 0 0 0 0 0 0 0
(IRC: 6, cl.no. 212.1)
W V2 127R
Total Live load Radius of curvature in meters Velocity of the vehicle in KMPH R V Point of action of Fcf above FRL
= = =
3000 m 80 kmph 1.2 m
=109.600-101.500+1.2 =109.600-99.500+1.2 =109.600-97.700+1.2
= = =
9.3 m 11.3 m 13.1 m
Lever Arms CG of vehicle from Curtailment level CG of vehicle from Pilecap top CG of vehicle from Pilecap bottom
Summary of Transverse Force due to Centrifugal Force Load Case
V kN
HT kN
Calculation
Pmax(LL)
2284
=2284×80^2/(127×3000)
38
Max MT(LL)
1142
=1142×80^2/(127×3000)
19
Max ML(LL)
2284
=2284×80^2/(127×3000)
38
Max MLT(LL)
1142
=1142×80^2/(127×3000)
19
Summary of Transverse Moment due to Centrifugal Force
Load Case
Transverse Moment from Flyover (MT) at Rebar Pilecap Lever Arm Lever Arm Lever Arm Curtailment Top (m) (m) (m) (kN m) (kN m)
Pmax(LL)
357
434
Max MT(LL)
178
217
Max ML(LL) Max MLT(LL)
9.30
357 178
11.30
434 217
Pilecap Bottom (kN m)
503 13.10
251 503 251
3 Calculation of Loads and its Summary from Flyover Structure Page 33
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
3.2.4
Braking/Traction Force The Horizontal forces on the bearing are calculated as per clause 211.5 of IRC:6-2014. Following formulae are used to Successive Trains Class A = 70R =
Train 1 554 1000
Train 2 0 0
kN kN
% of Load to be taken Sl.No 1 2 3 4 5 6 7
B1163502 DN102 rev. 0
Load Case 1 Lane Class A Class A - 2 lanes 70R Eccentric 70R - 2-lane 4 Class A Class A+1 70 R 2 Class A+1 70 R
Sr. no.
st
1 Lane 20.0% 20.0% 20.0% 20.0% 20.0% 20.0% 20.0%
2
nd
Lane
Load of Vehicle in
3rd & 4th Lane
1 Lane
2nd Lane
3rd Lane
4th Lane
Braking Force
5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%
554 554 1000 1000 554 1000 1000
0 554 0 0 554 0 0
0 0 0 1000 554 554 554
0 0 0 0 554 0 554
111 111 200 250 166 228 255
0% 0% 0% 0% 0% 0% 0%
st
Braking Force (Fh)
Loads
Load Case
i
Pmax(LL)
( 2 70R )
250
ii
Max MT(LL)
( 1 70R )
200
iii
Max ML(LL)
( 2 70R )
250
iv
Max MLT(LL)
( 1 70R )
200
Fh
=
Applied horizontal force
Rg
=
Reaction at the free end due to Dead load
Rq R m
= = = =
Reaction at the free end due to live load Total Reaction Coefficient of friction between teflon and stainless steel 0.03 or 0.05 whichever is governing
Vertical force on Bearing ( from fixed bearing span ) Sr. no.
Loads
Rg
Rq
R
1142
5142
i
Pmax(LL)
4000
ii
Max MT(LL)
4000
571
4571
iii
Max ML(LL)
4000
2284
6284
iv
Max MLT(LL)
4000
1142
5142
Normal Load Case i
Pmax (LL) Fh
ii
<
4µR
=
1028 kN
Fh / 2 + µR
=
382 kN
4µR
=
914 kN
Fh / 2 + µR
=
329 kN
4µR
Max MT (LL) Fh
<
4µR
3 Calculation of Loads and its Summary from Flyover Structure Page 34
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
iii
Max ML (LL) Fh
iv
B1163502 DN102 rev. 0
<
4µR
=
1257 kN
Fh / 2 + µR
=
439 kN
4µR
=
1028 kN
Fh / 2 + µR
=
357 kN
Rg Rq R
= = =
4000 kN 0 kN 4000 kN
4µR
Max MLT (LL) Fh
<
4µR
Vertical force on Bearing ( from free bearing span ) Sr. no.
Loads
Rg
Rq
R
i
Pmax(LL)
4000
1142
5142
ii
Max MT(LL)
4000
571
4571
iii
Max ML(LL)
4000
0
4000
iv
Max MLT(LL)
4000
0
4000
Vertical force on bearing (one span dislodged condition) Reaction due to DL+SIDL+ SURFACING ( Opposite in Direction ) Reaction due to LIVE LOAD
Lever Arms Bearing top to Pier curtailement Bearing top to Pilecap Top Bearing top to Pilecap Bottom
=107.535-101.500 =107.535-99.500 =107.535-97.700
= = =
6.04 m 8.04 m 9.83 m
Summary of Longitudinal Forces due to Braking force and Frictional resistance
Sr. no. A
Load
V
HL
kN
kN
Longitudinal Moment ( ML ) at Rebar Pilecap Lever Arm Curtailment Lever Arm Lever Arm Top (m) section (m) (m) (kN m) (kN m)
Pilecap Bottom (kN m)
i
Braking + Frictional Resistance Normal Load Case Pmax(LL) 33.3
382
6.04
2306
8.04
3070
9.83
3758
ii
Max MT(LL)
26.7
329
6.04
1983
8.04
2640
9.83
3231
iii
Max ML(LL)
33.3
439
6.04
2651
8.04
3529
9.83
4320
iv B
Max MLT(LL)
26.7
357
6.04
2155
8.04
2869
9.83
3512
i
Frictional Resistance Normal Load Case ( µ * R ) Pmax(LL) 0
257
6.04
1552
8.04
2066
9.83
2529
ii
Max MT(LL)
0
229
6.04
1379
8.04
1836
9.83
2248
iii
Max ML(LL)
0
200
6.04
1207
8.04
1607
9.83
1967
iv C
Max MLT(LL) 0 200 6.04 Frictional Resistance (one span dislodged condition) Normal Load Case 0 200 6.04 µ∗R
1207
8.04
1607
9.83
1967
1207
8.04
1607
9.83
1967
i
3 Calculation of Loads and its Summary from Flyover Structure Page 35
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
3.2.5 I
B1163502 DN102 rev. 0
Wind Loads (W) Wind without Live Load Length of the superstructure for wind load calculation
=
28.0 m
28.0 28.0
28.0
Pier Cap a
Wind Load on Superstructre Height of the Crash barrier Total depth of superstructure exposed to wind Height of structure above ground (form Parapet top to GL) Actual wind speed at the location of the structure
= = = = =
From Table 5 of IRC:6-2014 Hourly Mean Wind Speed ( Plain terrain ) Hourly Mean Wind Pressure Basic Wind Speed Considered
= = =
28.08 m/sec 473.46 N/mm2 33 m/sec 842 N/m2
for 10.6 m height
Hourly Mean wind Pressure
=473×44^2/33^2
PZ
=
Hourly Mean wind Speed
=28.08×44/33
VZ
=
1.Transverse Wind Force FT Where,
=
P Z * A 1 * G * CD
A1
= = =
G
= = = = =
Solid area (Exposed area in transverse dirction) 28.0×3.000 2 84 m Gust factor 2 (IRC:6,CL:209.3.3) Drag Coefficient 28.00/3.00 = 9.33 1.13 For Bridge with single Girder
CD width/ depth
b/d
CD
=
Transverse wind force
=
842×84×2×1.13/1000
=
25% of Transverse wind force
3. Vertical Wind Load FV
=
Pz * A3 * G * CL
A3
= = =
CL
= =
Plan area 28.0×19.600 2 549 m Lift Coefficient 0.75 = 842×549×2×0.75/1000
Total vertical Wind load
3.000 m 10.60 m 44 m/sec (IRC:6-2014)
37 m/sec (IRC:6,CL:209.2)
1.13
2. Longitudinal Wind Force FL
Where,
1.000 m 2+1
=
160.3 kN
= =
25%×160.3 40.1 kN
=
693 kN
3 Calculation of Loads and its Summary from Flyover Structure Page 36
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
b
Wind Force on Substructure 1.Pier Cap Transverse wind force on piercap Height of the pier Cap t/b H/b Exposed area Drag coefficent Transverse wind force on Piercap
=842×7.35×2×0.80/1000
Longitudinal wind force on piercap =4.9/4.9 t/b =1.5/4.9 H/b Exposed area ( from Autocad ) Drag coefficent Longitudinal wind force on Piercap 2. Pier Transverse wind force on pier Depth of Pier t/b H/b Exposed area Drag coefficent Transverse wind force on pier Longitudinal wind force on pier t/b H/b Exposed area Drag coefficent Longitudinal wind force on pier II
a
= = = = =
=4.9/4.9 =1.50/4.90 =1.50×4.90
1.50 1.00 0.31 7.35 0.80 =
= = = = =1.30×5.90×2×842/1000
=842×11.17×2×1.30/1000
=2/2 =5.58/2 =5.58×2
m m m m2 (Table 6, IRC:6-2014) 9.90 kN
1.00 0.31 5.90 m2 1.30 =
= = = = =
=2/2 =5.58/2 =5.58×2
= = = =
=11.17×1.30×2×842/1000
12.91 kN
5.58 1.00 2.79 11.17 1.30 =
m m m m2 24.44 kN
1.00 2.79 11.17 1.30 =
24.44 kN
Wind with Live Load Total Length of the superstructure
=
Wind Load on Superstructure Height of the crash Barrier Total depth of superstructure exposed of wind Height of structure above bed level Point of action of wind force on Vehicle above FRL Actual wind speed at the location of the structure
= = = = =
From Table 5 of IRC6:2014 Hourly Mean wind Speed Hourly Mean wind Pressure Basic Wind Speed Considered
= = =
28.08 m/sec 473.46 N/mm2 33 m/sec 563 N/m2
Hourly Mean wind Pressure
=473.46×36^2/33^2
PZ
=
Hourly Mean wind Speed
=28.08×36/33
VZ
=
B1163502 DN102 rev. 0
28.0 m
1.000 3.000 10.6 1.5 36
m m m m m/sec
31 m/sec
3 Calculation of Loads and its Summary from Flyover Structure Page 37
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
1.Transverse Wind Force FT Where,
A1
G CD
=
P Z * A 1 * G * CD
= = = = =
Solid area (Exposed area in transverse dirction) 28.00×3.000 84 m2 Gust factor 2
= =
Drag Coefficient 1.13
Transverse wind force
=563×84×2×1.13/1000
2.Longitudinal Wind Force FL
=
25% of Transverse wind force
3.Vertical Wind Load FV
=
Pz * A3 * G * CL
A3
= = =
CL
= =
Plan area 28.0×19.600 2 549 m Lift Coefficient 0.75 = 563×549×2×0.75/1000
Where,
Total vertical Wind load b
Wind force on Live Load FT A1
G CD
=
P Z * A 1 * G * CD
= = = = = = =
Exposed area 28.00×(3-1.00) 2 56 m Gust factor 2 Drag Coefficient 1.2 FT = 563×56×2×1.2/1000
Transverse wind force Longitudinal wind force
(c)
Wind force on Substructure 1. Pier Cap Depth of Pier Cap t/b H/b Exposed area Drag coefficent Transverse wind force on Pier cap
FL
= 25% of Transverse wind force
Longitudinal wind force on Piercap t/b =4.9/4.9 H/b =1.5/4.9 Exposed area ( From Autocad ) Drag coefficent Longitudinal wind force on Pier cap
=
107.3 kN
= =
25%×107.3 26.8 kN
=
464 kN
=
75.7 kN
= =
25%×75.7 18.9 kN
= = = = =
=4.9/4.9 =1.50/4.900 =1.50×4.900 = 563×7.35×2×0.80/1000
1.50 1.00 0.31 7.35 0.80 =
= = = = = 1.30×5.90×2×563/1000
B1163502 DN102 rev. 0
m m m m2 6.63 kN
1.00 0.31 5.90 1.30 =
8.64 kN
3 Calculation of Loads and its Summary from Flyover Structure Page 38
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
2. Pier Depth of Pier t/b H/b Exposed area Drag coefficent Transverse wind force on pier Longitudinal wind force on pier t/b H/b Exposed area Drag coefficent Longitudinal wind force on pier
= = = = =
=2/2 =5.58/2 =5.58×2 = 563×11.17×2×1.30/1000
=2/2 =5.585/2 =5.585*2
= = = =
= 1×11.17×2×563.46/1000
5.58 1.00 2.79 11.17 1.30 =
1.00 2.79 11.17 1.30 =
B1163502 DN102 rev. 0
m m m m2 16.36 kN
16.36 kN
Lever Arm Calculations: Superstructure from curtailment level Superstructure from Pilecap Top level Superstructure from footing bot. level
=(107.535-101.500)+3.000/2 =(107.535-99.500)+3.000/2 =(107.535-97.700)+3.000/2
= = =
7.535 m 9.535 m 11.335 m
CG of Pier cap from curtailment level C.G of Pier cap to Pilecap Top level C.G of Pier cap to Bottom level
=0.852+(105.585-101.500) =0.852+(105.585-99.500) =0.852+(105.585-97.700)
= = =
4.937 m 6.937 m 8.737 m
C.G of Pier from curtailment level C.G of Pier to Pilecap Top level C.G of Pier to Pilecap Bottom level
=(105.585-101.500)/2 =(105.585-99.500)/2 =(105.585-99.500)/2+1.8
= = =
2.043 m 3.043 m 4.843 m
C.G of vehicle from curtailment level C.G of vehicle to Pilecap Top level C.G of vehicle to Pilecap Bottom level
=(109.600-101.500)+1.5 =(109.600-99.500)+1.5 =(109.600-97.700)+1.5
= = =
9.600 m 11.600 m 13.400 m
The wind forces on superstructure in longitudinal direction are applied at the bearing level and the lever arm is calculated accordingly. The change in vertical reaction at bearing level due to these forces is not considered since the magnitude is negligible. Bearing top to curtailement section =107.535-101.500 = 6.035 m Bearing top to top of footing =107.535-99.500 = 8.035 m Bearing top to bottom of footing =107.535-97.700 = 9.835 m Summary of Wind Forces (Without Live Load) V
Velocity of Wind
Transverse Superstructure Pier Cap Substructure Pier Total Longitudinal Superstructure Pier Cap Substructure Pier Total
44 m/sec
Moment ( M ) at
H Rebar
Direction
=
Lever Arm Curtailment Lever Arm (m) section (m) (kN m)
Pilecap Top (kN m)
Lever Arm(m)
Pilecap Bottom (kN m)
kN
kN
693 693
160 10 24 195
7.54 4.94 2.04
1208 49 50 1306
9.54 6.94 3.04
1528 69 74 1671
11.34 8.74 4.84
1817 86 118 2021
0
40 13 24 77
6.04 4.94 2.04
242 64 50 355
8.04 6.94 3.04
322 90 74 486
9.83 8.74 4.84
394 113 118 625
3 Calculation of Loads and its Summary from Flyover Structure Page 39
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Summary of Wind Forces (With Live Load) V
Velocity of Wind
Transverse Superstructure Pier Cap Substructure Pier Live load Total Longitudinal Superstructure Pier Cap Substructure Pier Live load Total 3.2.6
36 m/sec
Moment ( M ) at
H Rebar
Direction
=
B1163502 DN102 rev. 0
Lever Arm Curtailment Lever Arm (m) section (m) (kN m)
Pilecap Top (kN m)
Lever Arm (m)
Pilecap Bottom (kN m)
kN
kN
464 464
107 7 16 76 206
7.54 4.94 2.04 9.60
808 33 33 727 1602
9.54 6.94 3.04 11.60
1023 46 50 878 1997
11.34 8.74 4.84 13.40
1216 58 79 1015 2368
0
27 9 16 19 71
6.04 4.94 2.04 9.60
162 43 33 182 420
8.04 6.94 3.04 11.60
216 60 50 220 545
9.83 8.74 4.84 13.40
264 76 79 254 672
Seismic force calculation (Feq) Load from Superstructure for longitudinal seismic (Total superstructure weight) Load from Superstructure for transverse seismic Size of each pier Average Response Acceleration Coefficient
As per section 219 of IRC:6-2014, Importance factor Zone factor for Zone III Response reduction Factor Seismic Coefficient
= = = =
(DL + SIDL)
=
8000 kN
(DL+SIDL+0.2*LL)
= =
8457 kN 2x2 m
= = =
Sa/g 2.5 1.00 / T
I Z R Ah
= = = =
( Soft Soil, Type - I ) 0 0.40
<= T <= <= T <=
0.4 4
1.5 0.1 3 (for ductile detailing) (z / 2) x (Sa / g) x (I / R)
Seismic Coefficient (Considering Fixed Pier base) Direction Transverse direction Longitudinal direction
Load 8457 8000
Time Period (T) (from eigen value 1.620 1.513
Sa/g 0.6 0.7
Ah 0.015 0.017
Lever Arm Calculations: C.G of vehicle from curtailment level C.G of vehicle to Pilecap Top level C.G of vehicle to bottom level
=110.800-101.500 =110.800-99.500 =110.800-97.700
= = =
9.3 m 11.3 m 13.1 m
Superstr CG from curtailment level Superstructure CG to Pilecap Top level Superstructure CG to Pilecap Bottom level
=108.915-101.500 =108.915-99.500 =108.915-97.700
= = =
7.415 m 9.415 m 11.215 m
SIDL from curtailment level SIDL to Pilecap Top level SIDL to Pilecap Bottom level
=(109.600+1.00/2)-101.500 =(109.600+1.00/2)-99.500 =(109.600+1.00/2)-97.700
= = =
8.600 m 10.600 m 12.400 m
SIDL Surfacing from curtailment level SIDL Surfacing to Pilecap Top level SIDL Surfacing to Pilecap Bottom level
=109.600-101.500 =109.600-99.500 =109.600-97.700
= = =
8.100 m 10.100 m 11.900 m
Pier cap from curtailment level Pier cap to Pilecap Top level Pier cap to Pilecap Top level
=106.437-101.500 =106.437-99.500 =106.437-97.700
= = =
4.937 m 6.937 m 8.737 m
3 Calculation of Loads and its Summary from Flyover Structure Page 40
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Pier to Curtailment level level Pier to Pilecap Top level Pier to Pilecap Bottom level
=(106.437-101.500)/2 =102.793-99.500 =102.793-97.700
= = =
B1163502 DN102 rev. 0
2.469 m 3.292 m 5.092 m
The seismic forces from superstructure in longitudinal direction are applied at the bearing level and the lever arm is Bearing top level to curtailment level =107.535-101.500 = 6.035 m Bearing top level to Pilecap Top level =107.535-99.500 = 8.035 m Bearing top level to bottom level =107.535-97.700 = 9.835 m Seismic Forces and Moment in Transverse Direction: Description
V (kN)
Calculation
HT (kN)
Superstructure SIDL SIDL With Surfacing
6600 800 600
= 6600×0.015 = 800×0.015 = 600×0.015 Total
102 12 9 123
Substructure Piercap Pier Pier( up to curtailment level)
743 558 408
= 743×0.015 = 558×0.015 =408×0.015 Total
11 9 6 20
Live Load Pmax(LL)
= 2284×0.2
457
= 457×0.015
7
Max MT(LL)
= 1142×0.2
228
= 228×0.015
4
Max ML(LL)
= 2284×0.2
457
= 457×0.015
7
Max MLT(LL)
= 1142×0.2
228
= 228×0.015
4
Description Superstructure SIDL SIDL With Surfacing
Rebar Curtailment MT Lever Arm (m) (kN m) 7.41 755 8.60 106 8.10 75 936
Pilecap Top MT Lever Arm (m) (kN m) 9.41 959 10.60 131 10.10 94 1183
Pilecap Bottom MT Lever Arm (m) (kN m) 11.22 1142 12.40 153 11.90 110 1406
Substructure Piercap Pier
4.94 2.47
57 16 72
6.94 3.29
80 28 108
8.74 5.09
100 44 144
Live Load Pmax(LL)
9.30
66
11.30
80
13.10
92
Max MT(LL)
9.30
33
11.30
40
13.10
46
Max ML(LL)
9.30
66
11.30
80
13.10
92
Max MLT(LL)
9.30
41
11.30
50
13.10
58
Seismic Forces and Moment in Longitudinal Direction: Description
V (kN)
Calculation (V Ah)
HL (kN)
Superstructure SIDL SIDL With Surfacing
6600 800 600
= 6600×0.017 = 800×0.017 = 600×0.017 Total
109 13 10 132
Substructure Piercap Pier Pier( up to curtailment level)
743 558 408
= 743×0.017 = 558×0.017 =408×0.015 Total
12 9 6 22
3 Calculation of Loads and its Summary from Flyover Structure Page 41
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Description Superstructure SIDL SIDL With Surfacing Substructure Piercap Pier
Rebar Curtailment ML Lever Arm (m) (kN m) 6.04 658 6.04 80 6.04 60 798
Pilecap Top ML Lever Arm (m) (kN m) 8.04 876 8.04 106 8.04 80 1062
B1163502 DN102 rev. 0
Pilecap Bottom ML Lever Arm (m) (kN m) 9.83 1073 9.83 130 9.83 98 1300
61 6.94 85 8.74 107 16 3.29 30 5.09 47 76 116 154 Note: Longitudinal and transverse moments at bottom of footing are increased by 35% as per Cl. 219.8 of IRC: 6 -2014. 3.2.7
4.94 2.47
Vehicle Colision load As per Table 11 of IRC:6-2014 Point of aplication above carriageway level Lever arm from the top of foundation Lever arm from the Bottom of foundation Main Load Component Normal to the Carriageway (HT)
(As per IRC 6-2014, clause 222)
=1.5+(100.000-99.500) =2.000+1.800 HT
Main Load Component load Parallel to the Carriageway (HL) Point of aplication above carriageway level Lever arm from the top of foundation Lever arm from the Bottom of foundation Residual Load Component Normal to the Carriageway
HL
=3+(100.000-99.500) =3.500+1.800 HT HL
Residual Load Component load Parallel to the Carriageway
= = = =
1.5 2.000 3.800 0
m m m Tonne
=
0
Tonne
= = = =
3 3.500 5.300 25
m m m Tonne
=
50
Tonne
Lever Arm (m)
Pilecap Bottom (kN m)
Summary of Longitudinal force due to Vechical Colision Longitudinal Moment ( ML ) at
HL Rebar Description
Main load component Residual Load component Total
kN
0 500 500
Lever Arm Curtailment Lever Arm section (m) (m) (kN m)
0.50 2.00
0 1000 1000
2.000 3.500
Pilecap Top (kN m)
0 1750 1750
3.800 5.300
0 2650 2650
Summary of Transverse force due to Vechical Colision Transverse Moment ( MT ) at
HT Rebar Description
Main load component Residual Load component Total
kN
0 250 250
Lever Arm Curtailment Lever Arm section (m) (m) (kN m)
0.50 2.00
0 500 500
2.000 3.500
Pilecap Top (kN m)
0 875 875
Lever Arm (m)
3.800 5.300
Pilecap Bottom (kN m)
0 1325 1325
3 Calculation of Loads and its Summary from Flyover Structure Page 42
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
3.3
Load Combinations
3.3.1
Summary of Forces at Pile cap Bottom
B1163502 DN102 rev. 0
P kN
HL kN
HT kN
ML kNm
MT kNm
G
6600 3752 10352
0 0 0
5 0 5
0 0 0
49 0 49
SIDL SIDL Surfacing Live Load
S Ss
800 600
0 0
0 1
0 0
0 10
Pmax(LL)
Q1
2284
0
0
0
0
Max MT(LL)
Q2
1142
0
0
0
1999
Max ML(LL)
Q3
2284
0
0
3997
0
Max MLT(LL)
Q4
1142
0
0
1999
1999
Centrifugal Force
F cf
Pmax(LL)
0
0
38
0
503
Max MT(LL)
0
0
19
0
251
Max ML(LL)
0
0
38
0
503
Max MLT(LL)
0
0
19
0
251
Braking + Frictional resistance Pmax(LL)
33
382
0
3758
0
27
329
0
3231
0
33
439
0
4320
0
27 0
357 0
0 0
3512 0
0 0
0
257
0
2529
0
0
229
0
2248
0
Load Case
Notation
Dead Load Super structure DL Substructure (Including Self weight of Soil above pile cap) Total
Max MT(LL)
Normal Load Case Max ML(LL)
Max MLT(LL) Nosing Frictional Resistance force
N Ff
Pmax(LL) Normal Max MT(LL) Load Case Max ML(LL) Max MLT(LL) Derailment Vehicle collision Rail Structure Interaction P max (LL)
D V LWR
0
200
0
1967
0
0 0 0
200 0 500
0 0 250
1967 0 2650
0 0 1325
0
0
0
0
0
Max M T (LL)
0
0
0
0
0
Max M L (LL)
0
0
0
0
0
0 0
0 0
0 0
0 0
0 0
693 464
77 71
195 206
625 672
2021 2368
132 22 0 0 154
123 20 0 0 144
1300 154 0 0 1454
1406 144 0 0 1550
Max M LT (LL) Rail fracture Wind Force Without Live Load With Live Load Seismic forces (lateral & longitudinal) Superstructure DL+SIDL+SIDL Surfacing Substructure Vertical seismic force - for lateral case Vertical seismic force - for longitudinal case
Rf W
F eq
96 102 Total
Live Load
Pmax(LL)
5
0
7
0
92
Max MT(LL)
2
0
4
0
46
Max ML(LL)
5
0
7
0
92
Max MLT(LL)
3
0
4
0
58
3 Calculation of Loads and its Summary from Flyover Structure Page 43
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
One Span Dislodged Condition
Notation
Permanent Loads Super structure Substructure Total
3.3.2
G
SIDL SIDL Surfacing Frictional resistance force Normal Case Wind Force Without Live Load
S Ss Ff
Seismic forces (lateral & longitudinal) Superstructure DL+SIDL Substructure Total Vertical seismic force - for lateral case Vertical seismic force - for longitudinal case
F eq
P kN
HL kN
HT kN
ML kNm
MT kNm
3300 1352 4652
0 0 0
5 0 5
5775 0 5775
49 0 49
400 300
0 0
0 1
700 525
0 10
0
200
0
1967
0
346
57
114
428
1113
132 22 154
62 20 82
1300 154 1454
703 144 847
W
55 102
Load Combination for the Design of Pile Foundation Load Combinations at Base of Foundation
Load Case
I
B1163502 DN102 rev. 0
Description
(IRS CBC:2014, Table 12) P kN
HL kN
HT kN
ML kNm
MT kNm
15140
0
8
0
81
6914
0
8
9144
81
19195 17185 19195 17185
669 575 769 625
75 42 75 42
6576 5655 14554 9644
961 4018 961 4018
16248 18964 17356 18964 17356
124 623 548 703 588
320 319 293 319 293
1000 6101 5364 12483 8555
3315 3745 6191 3745 6191
7469
92
191
9829
1862
Combination 1
A
Permanent Load
1.1.1
1.25 G + 1.25 S + 2 Ss
One Span Dislodged Condition 1.1.2
B
1.25 G + 1.25 S + 2 Ss
Live Load
1.2.1
1.25 G + 1.25 S + 2 Ss + 1.75 (Q1 + Fcf + Fb )
1.2.2
1.25 G + 1.25 S + 2 Ss + 1.75 (Q2 + Fcf + Fb )
1.2.3
1.25 G + 1.25 S + 2 Ss + 1.75 (Q3 + Fcf + Fb )
1.2.4
1.25 G + 1.25 S + 2 Ss + 1.75 (Q4 + Fcf + Fb )
II A
Combination 2 Wind Load
2.1.1
1.25 G + 1.25 S + 2 Ss + 1.6 W
2.1.2
1.25 G + 1.25 S + 2 Ss + 1.4 (Q1 + Fcf + Fb ) + 1.25 W
2.1.3
1.25 G + 1.25 S + 2 Ss + 1.4 (Q2 + Fcf + Fb ) + 1.25 W
2.1.4
1.25 G + 1.25 S + 2 Ss + 1.4 (Q3 + Fcf + Fb ) + 1.25 W
2.1.5
1.25 G + 1.25 S + 2 Ss + 1.4 (Q4 + Fcf + Fb ) + 1.25 W
2.1.6
1.25 G + 1.25 S + 2 Ss + 1.6 W
One Span Dislodged Condition
3 Calculation of Loads and its Summary from Flyover Structure Page 44
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
2.2.1
1.25 G + 1.25 S + 2 Ss + 1.6 *1.35* Feq
2.2.2
1.25G +1.25 S +2Ss + 0.5*1.4*(Q1 +Fcf +Fb ) + 1.25*1.35*(r1 +0.3r2 +0.3r3)
2.2.3
1.25G +1.25 S +2Ss + 0.5*1.4*(Q2 +Fcf +Fb ) + 1.25*1.35*(r1 +0.3r2 +0.3r3)
2.2.4
1.25G +1.25 S +2Ss + 0.5*1.4*(Q3 +Fcf +Fb ) + 1.25*1.35*(r1 +0.3r2 +0.3r3)
2.2.5
1.25G +1.25 S +2Ss + 0.5*1.4*(Q4 +Fcf +Fb ) + 1.25*1.35*(r1 +0.3r2 +0.3r3)
2.2.6
1.25 G + 1.25 S + 2 Ss + 1.6*1.35* Feq
2.3.1
1.25 G + 1.25 S + 2 Ss + 1.6*1.35*Feq
2.3.2
1.25G +1.25 S +2Ss + 0.5*1.4*(Q1 +Fcf +Fb ) + 1.25*1.35*(0.3r1 +r2 +0.3r3)
2.3.3
1.25G +1.25 S +2Ss + 0.5*1.4*(Q2 +Fcf +Fb ) + 1.25*1.35*(0.3r1 +r2 +0.3r3)
2.3.4
1.25G +1.25 S +2Ss + 0.5*1.4*(Q3 +Fcf +Fb ) + 1.25*1.35*(0.3r1 +r2 +0.3r3)
2.3.5
1.25G +1.25 S +2Ss + 0.5*1.4*(Q4 +Fcf +Fb ) + 1.25*1.35*(0.3r1 +r2 +0.3r3)
2.3.6
1.25 G + 1.25 S + 2 Ss + 1.6*1.35* Feq
B1163502 DN102 rev. 0
r3
r1
r2
r1
r2
0.30 15206 16816 16011 16816 16011
1.00 332 527 489 567 509
0.30 101 111 96 111 97
1.00 3141 5085 4716 8276 6312
0.30 1085 1264 2464 1264 2470
6981
332
61
12285
630
0.30 15202 16813 16008 16813 16008
0.30 100 345 308 385 328
1.00 318 289 270 289 271
0.30 942 3367 2998 6558 4594
1.00 3428 3204 4349 3204 4368
6950
100
185
10086
1910
18384 16776 18384 16776
843 734 855 740
62 35 62 35
8295 7221 14004 10075
785 3231 785 3231
6914
240
8
11504
81
15140
0
8
0
81
15140
875
446
4638
2400
One Span Dislodged Condition
0.3r1 + r2 + 0.3r3
Seismic Components
One Span Dislodged Condition
III
Combination 3 Temperature
3.1.1
1.25 G + 1.25 S + 2 Ss + 1.4 (Q1 + Fcf + Fb ) + 1.15 Ff
3.1.2
1.25 G + 1.25 S + 2 Ss + 1.4 (Q2 + Fcf + Fb ) + 1.15 Ff
3.1.3
1.25 G + 1.25 S + 2 Ss + 1.4 (Q3 + Fcf + Fb ) + 1.15 Ff
3.1.4
1.25 G + 1.25 S + 2 Ss + 1.4 (Q4 + Fcf + Fb ) + 1.15 Ff
3.1.5
1.25 G + 1.25 S + 2 Ss + 1.15 Ff
One Span Dislodged Condition
IV
Combination 5 Derailment
4.1.1
1.25 G + 1.25 Sf + 2 Sv + 1.75 D
4.2.1
1.25 G + 1.25 S + 2 Ss + 1.75 V
Vehicle Collision
Serviciability Limit State Load Case
I A 5.1.1
Description
(IRS CBC:2014, Table 12) P kN
HL kN
HT kN
ML kNm
MT kNm
11872
0
6
0
61
5412
0
6
7105
61
14421 13157 14421 13157
420 361 483 393
48 27 48 27
4134 3554 9148 6062
614 2536 614 2536
Combination 1 Permanent Load 1 G + 1 S + 1.2 Ss
One Span Dislodged Condition 5.1.2
B
1 G + 1 S + 1.2 Ss
Live Load
5.2.1
1 G + 1 S + 1.2 Ss + 1.1 (Q1 + Fcf + Fb )
5.2.2
1 G + 1 S + 1.2 Ss + 1.1 (Q2 + Fcf + Fb )
5.2.3
1 G + 1 S + 1.2 Ss + 1.1 (Q3 + Fcf + Fb )
5.2.4
1 G + 1 S + 1.2 Ss + 1.1 (Q4 + Fcf + Fb )
3 Calculation of Loads and its Summary from Flyover Structure Page 45
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
II A
B1163502 DN102 rev. 0
Combination 2 Wind Load
6.1.1
1 G + 1 S + 1.2 Ss + 1 W
6.1.2
1 G + 1 S + 1.2 Ss + 1 (Q1 + Fcf + Fb ) + 1 W
6.1.3
1 G + 1 S + 1.2 Ss + 1 (Q2 + Fcf + Fb ) + 1 W
6.1.4
1 G + 1 S + 1.2 Ss + 1 (Q3 + Fcf + Fb ) + 1 W
6.1.5
1 G + 1 S + 1.2 Ss + 1 (Q4 + Fcf + Fb ) + 1 W
6.1.6
1 G + 1 S +1.2 Ss + 1 W
12565 14653 13504 14653 13504
77 453 399 510 428
201 251 231 251 231
625 4430 3904 8989 6183
2082 2932 4679 2932 4679
5758
57
121
7533
1174
r3
r1
r2
r1
r2
0.30 11903 13063 12488 13063 12488
1.00 154 345 318 373 332
0.30 49 71 60 71 60
1.00 1454 3333 3070 5613 4210
0.30 526 805 1665 805 1668
5442
154
31
8559
315
0.30 11901 13061 12486 13061 12486
0.30 46 237 210 266 225
1.00 150 176 163 176 164
0.30 436 2315 2052 4595 3192
1.00 1611 1954 2782 1954 2793
5428
46
88
7541
908
14189 13041 14189 13041
588 511 599 517
45 25 45 25
5781 5030 9890 7084
564 2311 564 2311
5412
160
6
8679
61
14189 13041 14189 13041
588 511 599 517
45 25 45 25
5781 5030 9890 7084
564 2311 564 2311
11752
0
6
0
59
11752
550
281
2915
1517
14189 13041 14189 13041
382 329 439 357
45 25 45 25
3758 3231 8317 5511
564 2311 564 2311
One Span Dislodged Condition
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
6.2.1
1 G + 1 S + 1.2 Ss + 1*1.35* Feq
6.2.2
1G + 1S +1.2Ss + 0.5*1*(Q1 +Fcf +Fb ) + 1*(r1 +0.3r2 +0.3r3)
6.2.3
1G + 1S +1.2Ss + 0.5*1*(Q2 +Fcf +Fb ) + 1*(r1 +0.3r2 +0.3r3)
6.2.4
1G + 1S +1.2Ss + 0.5*1*(Q3 +Fcf +Fb ) + 1*(r1 +0.3r2 +0.3r3)
6.2.5
1G + 1S +1.2Ss + 0.5*1*(Q4 +Fcf +Fb ) + 1*(r1 +0.3r2 +0.3r3)
6.2.6
1 G + 1 S + 1.2 Ss + 1* Feq
6.3.1
1 G + 1 S + 1.2 Ss + 1* Feq
6.3.2
1G + 1S +1.2Ss + 0.5*1*(Q1 +Fcf +Fb ) + 1*(0.3r1 +r2 +0.3r3)
6.3.3
1G + 1S +1.2Ss + 0.5*1*(Q2 +Fcf +Fb ) + 1*(0.3r1 +r2 +0.3r3)
6.3.4
1G + 1S +1.2Ss + 0.5*1*(Q3 +Fcf +Fb ) + 1*(0.3r1 +r2 +0.3r3)
6.3.5
1G + 1S +1.2Ss + 0.5*1*(Q4 +Fcf +Fb ) + 1*(0.3r1 +r2 +0.3r3)
6.3.6
1 G + 1 S + 1.2 Ss + 1* Feq
One Span Dislodged Condition
0.3r1 + r2 + 0.3r3
Seismic Components
One Span Dislodged Condition
III
Combination 3 Temperature
7.1.1
1 G + 1 S + 1.2 Ss + 1 (Q1 + Fcf + Fb ) + 0.8 Ff
7.1.2
1 G + 1 S + 1.2 Ss + 1 (Q2 + Fcf + Fb ) + 0.8 Ff
7.1.3
1 G + 1 S + 1.2 Ss + 1 (Q3 + Fcf + Fb ) + 0.8 Ff
7.1.4
1 G + 1 S + 1.2 Ss + 1 (Q4 + Fcf + Fb ) + 0.8 Ff
7.1.5
1 G + 1 S + 1.2 Ss + 0.8 Ff
7.2.1
1 G + 1 S + 1.2 Ss + 1 (Q1 + Fcf + Fb ) + 0.8 Ff + 1 LWR
7.2.2
1 G + 1 S + 1.2 Ss + 1 (Q2 + Fcf + Fb ) + 0.8 Ff + 1 LWR
7.2.3
1 G + 1 S + 1.2 Ss + 1 (Q3 + Fcf + Fb ) + 0.8 Ff + 1 LWR
7.2.4
1 G + 1 S + 1.2 Ss + 1 (Q4 + Fcf + Fb ) + 0.8 Ff + 1 LWR
One Span Dislodged Condition
Long Welded Rail (LWR)
IV
Combination 5 Derailment
8.1.1
1 G + 1 Sf + 1 Sv + 1.1 D
8.2.1
1 G + 1 S + 1 Ss + 1.1 V
8.3.1
1 G + 1 S + 1.2 Ss + 1 (Q1 + Fcf + Fb ) + 1 RF
8.3.2
1 G + 1 S + 1.2 Ss + 1 (Q2 + Fcf + Fb ) + 1 RF
8.3.3
1 G + 1 S + 1.2 Ss + 1 (Q3 + Fcf + Fb ) + 1 RF
8.3.4
1 G + 1 S + 1.2 Ss + 1 (Q4 + Fcf + Fb ) + 1 RF
Vehicle Collision
Rail Fracture
3 Calculation of Loads and its Summary from Flyover Structure Page 46
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Unfactored Load Combination Load Case
I A 9.1.1
B1163502 DN102 rev. 0
(IRC 78:2014 Cl-706.1.1)
Description
P kN
HL kN
HT kN
ML kNm
MT kNm
11752
0
6
0
59
5352
0
6
7000
59
14069 12921 14069 12921
382 329 439 357
44 25 44 25
3758 3231 8317 5511
562 2309 562 2309
12445 14533 13384 14533 13384
77 453 399 510 428
201 250 231 250 231
625 4430 3904 8989 6183
2080 2930 4677 2930 4677
5698
57
120
7428
1172
r3
r1
r2
r1
r2
0.30 11783 12943 12368 12943 12368
1.00 154 345 318 373 332
0.30 49 70 60 70 60
1.00 1454 3333 3070 5613 4210
0.30 524 803 1663 803 1666
5368
0
6
7000
59
0.30 11781 12941 12366 12941 12366
0.30 46 237 210 266 225
1.00 157 176 163 176 164
0.30 436 2315 2052 4595 3192
1.00 1701 1952 2780 1952 2791
5368
46
88
7436
906
Combination 1 Permanent Load G + S + Ss
One Span Dislodged Condition 9.1.2
B
G + S + Ss
Live Load
10.1.1 G + S + Ss + (Q1 + Fcf + Fb ) 10.1.2 G + S + Ss + (Q2 + Fcf + Fb ) 10.1.3 G + S + Ss + (Q3 + Fcf + Fb ) 10.1.4 G + S + Ss + (Q4 + Fcf + Fb )
II
Combination 2
A
Wind Load
10.2.1 G + S + Ss + W 10.2.2 G + S + Ss + (Q1 + Fcf + Fb ) + W 10.2.3 G + S + Ss + (Q2 + Fcf + Fb ) + W 10.2.4 G + S + Ss + (Q3 + Fcf + Fb ) + W 10.2.5 G + S + Ss + (Q4 + Fcf + Fb ) + W
One Span Dislodged Condition 10.2.6 G + S +Ss + W
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
10.3.1 G + S + Ss + Feq 10.3.2 G + S +Ss + 0.5*(Q1 +Fcf +Fb ) + (r1 +0.3r2 +0.3r3) 10.3.3 G + S +Ss + 0.5*(Q2 +Fcf +Fb ) + (r1 +0.3r2 +0.3r3) 10.3.4 G + S +Ss + 0.5*(Q3 +Fcf +Fb ) + (r1 +0.3r2 +0.3r3) 10.3.5 G + S +Ss + 0.5*(Q4 +Fcf +Fb ) + (r1 +0.3r2 +0.3r3)
One Span Dislodged Condition 10.3.6 G + S + Ss + Feq
0.3r1 + r2 + 0.3r3
Seismic Components
10.4.1 G + S + Ss + Feq 10.4.2 G + S +Ss + 0.5*(Q1 +Fcf +Fb ) + (0.3r1 +r2 +0.3r3) 10.4.3 G + S +Ss + 0.5*(Q2 +Fcf +Fb ) + (0.3r1 +r2 +0.3r3) 10.4.4 G + S +Ss + 0.5*(Q3 +Fcf +Fb ) + (0.3r1 +r2 +0.3r3) 10.4.5 G + S +Ss + 0.5*(Q4 +Fcf +Fb ) + (0.3r1 +r2 +0.3r3)
One Span Dislodged Condition 10.4.6 G + S + Ss + Feq
3 Calculation of Loads and its Summary from Flyover Structure Page 47
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
III
B1163502 DN102 rev. 0
Combination 3 Temperature
11.1.1 G + S + Ss + (Q1 + Fcf + Fb ) + Ff 11.1.2 G + S + Ss + (Q2 + Fcf + Fb ) + Ff 11.1.3 G + S + Ss + (Q3 + Fcf + Fb ) + Ff 11.1.4 G + S + Ss + (Q4 + Fcf + Fb ) + Ff
14069 12921 14069 12921
639 557 639 557
44 25 44 25
6287 5479 10284 7478
562 2309 562 2309
5352
200
6
8967
59
14069 12921 14069 12921
639 557 639 557
44 25 44 25
6287 5479 10284 7478
562 2309 562 2309
11752
0
6
0
59
11752
500
256
2650
1384
14069 12921 14069 12921
382 329 439 357
44 25 44 25
3758 3231 8317 5511
562 2309 562 2309
One Span Dislodged Condition 11.1.5 G + S + Ss + Ff
Long Welded Rail (LWR) 11.2.1 G + S + Ss + (Q1 + Fcf + Fb ) + Ff + LWR 11.2.2 G + S + Ss + (Q2 + Fcf + Fb ) + Ff + LWR 11.2.3 G + S + Ss + (Q3 + Fcf + Fb ) + Ff + LWR 11.2.4 G + S + Ss + (Q4 + Fcf + Fb ) + Ff + LWR
IV
Combination 5 Derailment
12.1.1 G + Sf + Sv + D
Vehicle Collision 12.1.1 G + S + Ss + V
Rail Fracture 11.3.1 G + S + Ss + (Q1 + Fcf + Fb ) + RF 11.3.2 G + S + Ss + (Q2 + Fcf + Fb ) + RF 11.3.3 G + S + Ss + (Q3 + Fcf + Fb ) + RF 11.3.4 G + S + Ss + (Q4 + Fcf + Fb ) + RF
3 Calculation of Loads and its Summary from Flyover Structure Page 48
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
4
B1163502 DN102 rev. 0
Load Combination ( Metro + Flyover ) Load Combinations at Base of Foundation
Load Case
I A 1.1.1
Description
P kN
HL kN
HT kN
ML kNm
MT kNm
24846
0
17
0
261
12923
0
17
12841
261
31783 28330 31114 27997
1307 911 1407 961
305 248 294 243
21944 13703 30590 18024
6611 11765 6318 10959
25955 30975 28213 30441 27947
250 1193 876 1273 916
597 615 569 606 565
3073 19272 12680 26189 16137
9078 10789 14912 10555 14267
13478
191
363
15021
5129
r3
r1
r2
r1
r2
0.30 24965 27720 26336 27452 26203
1.00 595 988 829 1028 849
0.30 183 272 244 266 242
1.00 8678 15557 12261 19015 13989
0.30 2922 5089 7046 4933 6725
13042
595
116
19370
2467
0.30 24957 27714 26330 27446 26197
0.30 178 662 504 702 524
1.00 572 599 560 589 558
0.30 2603 10811 7515 14270 9244
1.00 9132 10427 12140 10180 11823
12989
178
347
14800
7614
30396 27633 29861 27367
1354 1003 1366 1009
248 202 239 197
20589 13660 26832 16780
5341 9464 5107 8820
12923
416
17
19049
261
Combination 1 Permanent Load 1.25 G + 1.25 Sf + 2 Sv
One Span Dislodged Condition 1.1.2
B
1.25 G + 1.25 Sf + 2 Sv
Live Load
1.2.1
1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q1 + Fcf + Fb + N)
1.2.2
1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q2 + Fcf + Fb + N)
1.2.3
1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q3 + Fcf + Fb + N)
1.2.4
1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q4 + Fcf + Fb + N)
II A
Combination 2 Wind Load
2.1.1
1.25 G + 1.25 Sf + 2 Sv + 1.6 W
2.1.2
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q1 + Fcf + Fb + N) + 1.25 W
2.1.3
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q2 + Fcf + Fb + N) + 1.25 W
2.1.4
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q3 + Fcf + Fb + N) + 1.25 W
2.1.5
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q4 + Fcf + Fb + N) + 1.25 W
2.1.6
1.25 G + 1.25 Sf + 2 Sv + 1.6 W
One Span Dislodged Condition
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
2.2.1
1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq
2.2.2
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q1 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)
2.2.3
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q2 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)
2.2.4
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q3 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)
2.2.5
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q4 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)
2.2.6
1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq
2.3.1
1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq
2.3.2
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q1 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)
2.3.3
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q2 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)
2.3.4
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q3 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)
2.3.5
1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q4 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)
2.3.6
1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq
One Span Dislodged Condition
0.3r1 + r2 + 0.3r3
Seismic Components
One Span Dislodged Condition
III
Combination 3 Temperature
3.1.1
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q1 + Fcf + Fb + N) + 1.15 Ff
3.1.2
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q2 + Fcf + Fb + N) + 1.15 Ff
3.1.3
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q3 + Fcf + Fb + N) + 1.15 Ff
3.1.4
1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q4 + Fcf + Fb + N) + 1.15 Ff
3.1.5
1.25 G + 1.25 Sf + 2 Sv + 1.15 Ff
One Span Dislodged Condition
4 Load Combination ( Metro + Flyover ) Page 49
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
IV
B1163502 DN102 rev. 0
Combination 5 Derailment
4.1.1
1.25 G + 1.25 Sf + 2 Sv + 1.75 D
4.2.1
1.25 G + 1.25 Sf + 2 Sv + 1.75 V
24846
0
17
0
261
24846
875
454
4638
2580
Vehicle Collision
Serviciability Limit State Load Case
I A 5.1.1
(IRS CBC:2014, Table 12)
Description
P kN
HL kN
HT kN
ML kNm
MT kNm
19373
0
12
0
196
10087
0
12
9931
196
23733 21563 23313 21354
822 573 884 604
194 158 187 155
13793 8613 19228 11330
4188 7427 4003 6921
20066 23801 21827 23419 21637
156 865 639 922 667
375 471 439 465 435
1920 13913 9204 18854 11674
5707 8183 11128 8016 10668
10433
120
229
11293
3238
r3
r1
r2
r1
r2
0.30 19428 21414 20425 21222 20330
1.00 275 649 536 677 550
0.30 90 178 159 174 157
1.00 4017 10287 7933 12757 9167
0.30 1428 3366 4777 3259 4548
10142
275
58
12953
1218
0.30 19425 21410 20422 21219 20327
0.30 83 456 343 485 357
1.00 270 371 346 365 344
0.30 1205 7475 5120 9945 6355
1.00 4303 6530 7795 6369 7569
10117
83
165
10838
3600
Combination 1 Permanent Load 1 G + 1 Sf + 1.2 Sv
One Span Dislodged Condition 5.1.2
B
1 G + 1 Sf + 1.2 Sv
Live Load
5.2.1
1 G + 1 Sf + 1.2 Sv + 1.1 (Q1 + Fcf + Fb + N)
5.2.2
1 G + 1 Sf + 1.2 Sv + 1.1 (Q2 + Fcf + Fb + N)
5.2.3
1 G + 1 Sf + 1.2 Sv + 1.1 (Q3 + Fcf + Fb + N)
5.2.4
1 G + 1 Sf + 1.2 Sv + 1.1 (Q4 + Fcf + Fb + N)
II A
Combination 2 Wind Load
6.1.1
1 G + 1 Sf + 1.2 Sv + 1 W
6.1.2
1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 1 W
6.1.3
1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 1 W
6.1.4
1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 1 W
6.1.5
1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 1 W
6.1.6
1 G + 1 Sf +1.2 Sv + 1 W
One Span Dislodged Condition
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
6.2.1
1 G + 1 Sf + 1.2 Sv + 1 Feq
6.2.2
1G + 1Sf +1.2Sv + 0.5*1*(Q1 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)
6.2.3
1G + 1Sf +1.2Sv + 0.5*1*(Q2 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)
6.2.4
1G + 1Sf +1.2Sv + 0.5*1*(Q3 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)
6.2.5
1G + 1Sf +1.2Sv + 0.5*1*(Q4 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)
6.2.6
1 G + 1 Sf + 1.2 Sv + 1 Feq
6.3.1
1 G + 1 Sf + 1.2 Sv + 1 Feq
6.3.2
1G + 1Sf +1.2Sv + 0.5*1*(Q1 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)
6.3.3
1G + 1Sf +1.2Sv + 0.5*1*(Q2 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)
6.3.4
1G + 1Sf +1.2Sv + 0.5*1*(Q3 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)
6.3.5
1G + 1Sf +1.2Sv + 0.5*1*(Q4 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)
6.3.6
1.25 G + 1.25 Sf + 2 Sv + 1.6 Feq
One Span Dislodged Condition
0.3r1 + r2 + 0.3r3
Seismic Components
One Span Dislodged Condition
4 Load Combination ( Metro + Flyover ) Page 50
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
III
B1163502 DN102 rev. 0
Combination 3 Temperature
7.1.1
1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 0.8 Ff
7.1.2
1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 0.8 Ff
7.1.3
1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 0.8 Ff
7.1.4
1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 0.8 Ff
7.1.5
1 G + 1 Sf + 1.2 Sv + 0.8 Ff
7.2.1
1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 0.8 LWR
7.2.2
1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 0.8 LWR
7.2.3
1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 0.8 LWR
7.2.4
1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 0.8 LWR
23337 21364 22955 21174
953 703 964 709
177 145 171 142
14562 9629 19053 11873
3825 6770 3657 6309
10087
278
12
14069
196
23337 21364 22955 21174
1311 883 1322 888
177 145 171 142
23271 13983 27762 16228
3825 6770 3657 6309
19121
0
12
0
190
19121
550
287
2915
1647
23337 21364 22955 21174
747 521 804 549
177 145 171 142
12539 7830 17480 10300
3825 6770 3657 6309
One Span Dislodged Condition
Long Welded Rail (LWR)
IV
Combination 5 Derailment
8.1.1
1 G + 1 Sf + 1 Sv + 1.1 D
8.2.1
1 G + 1 Sf + 1 Sv + 1.1 V
8.3.1
1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 1 RF
8.3.2
1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 1 RF
8.3.3
1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 1 RF
8.3.4
1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 1 RF
Vehicle Collision
Rail Fracture
Unfactored Load Combination Load Case
I A 9.1.1
Description
(IRC 78:2014 Cl-706.1.1) P kN
HL kN
HT kN
ML kNm
MT kNm
7369
0
6
0
131
4609
0
6
2760
131
21936 22260 21554 8001
693 631 722 192
158 164 151 116
12012 12916 14674 4789
5566 5016 5398 3994
21902 22400 22724 22018 8001
532 811 749 840 239
424 452 457 445 204
5725 13387 14290 16048 5491
6549 9924 9375 9756 5985
4609
62
108
3694
2060
Combination 1 Permanent Load G + Sf + Sv
One Span Dislodged Condition 9.1.2
G + Sf + Sv
B
Live Load
10.1.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) 10.1.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) 10.1.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) 10.1.4 G + Sf + Sv + (Q4 + Fcf + Fb + N)
II
Combination 2
A
Wind Load
10.2.1 G + Sf + Sv + W 10.2.2 G + Sf + Sv + (Q1 + Fcf + Fb + N) + W 10.2.3 G + Sf + Sv + (Q2 + Fcf + Fb + N) + W 10.2.4 G + Sf + Sv + (Q3 + Fcf + Fb + N) + W 10.2.5 G + Sf + Sv + (Q4 + Fcf + Fb + N) + W
One Span Dislodged Condition 10.2.6 G + Sf +Sv + W
4 Load Combination ( Metro + Flyover ) Page 51
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B
Seismic Load 1r1 + 0.3r2 + 0.3r3
Seismic Components
10.3.1 G + Sf + Sv + Feq 10.3.2 G + Sf +Sv + 0.5*(Q1 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.3 G + Sf +Sv + 0.5*(Q2 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.4 G + Sf +Sv + 0.5*(Q3 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.5 G + Sf +Sv + 0.5*(Q4 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3)
B1163502 DN102 rev. 0
r3
r1
r2
r1
r2
0.30 20336 20587 20748 20395 7711
1.00 467 622 591 636 218
0.30 110 167 169 163 97
1.00 5896 10024 10475 11354 4958
0.30 1701 4220 3911 4116 2875
4623
0
6
2760
131
0.30 20333 20583 20745 20392 7709
0.30 274 429 398 444 133
1.00 308 358 358 353 181
0.30 3084 7211 7663 8542 3163
1.00 4960 7351 6962 7202 4771
4623
37
77
3230
2688
21936 22260 21554 8001
922 831 922 192
158 164 151 116
14260 14883 16641 4789
5566 5016 5398 3994
4609
147
6
5966
131
21936 22260 21554 8001
1370 1055 1370 416
158 164 151 116
25147 20326 27527 10232
5566 5016 5398 3994
7369
0
6
0
131
7369
0
6
0
131
23085 21112 8634 8001
804 549 365 192
177 144 126 116
17098 10110 9163 4789
3819 6763 3089 3994
One Span Dislodged Condition 10.3.6 G + Sf + Sv + Feq
0.3r1 + r2 + 0.3r3
Seismic Components
10.4.1 G + Sf + Sv + Feq 10.4.2 G + Sf +Sv + 0.5*(Q1 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.3 G + Sf +Sv + 0.5*(Q2 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.4 G + Sf +Sv + 0.5*(Q3 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.5 G + Sf +Sv + 0.5*(Q4 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3)
One Span Dislodged Condition 10.4.6 G + Sf + Sv + Feq
III
Combination 3 Temperature
11.1.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + Ff 11.1.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + Ff 11.1.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + Ff 11.1.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + Ff
One Span Dislodged Condition 11.1.5 G + Sf + Sv + Ff
Long Welded Rail (LWR) 11.2.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + LWR 11.2.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + LWR 11.2.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + LWR 11.2.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + LWR
IV
Combination 5 Derailment
12.1.1 G + Sf + Sv + D
Vehicle Collision 12.2.1 G + Sf + Sv + V
Rail Fracture 12.3.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + RF 12.3.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + RF 12.3.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + RF 12.3.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + RF
4 Load Combination ( Metro + Flyover ) Page 52
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
5
Calculation of Reactions on Pile
5.1
Input Data No of piles Ecc in Longitudinal direction
n eL
= =
6 0m
Ecc in Transverse direction
eT
=
0m
Shift in Longitudinal/Transverse direction Diameter of the Pile Offset from face of pile Length of Pile Cap in Transverse Direction Length of Pile Cap in Longitudinal Direction Depth of Pile Cap
LF BF DF
= = = = = =
0.075 1.2 0.15 5.1 8.7 1.8
m m m m m m
Soil height above top of pile cap Unit weight of concrete Unit weight of Soil Weight of Pile Cap Weight of Soil over pile cap Total weight of pilecap and overburden soil Safe Compression capacity of pile (Normal Case) Safe Compression capacity of pile (Temperature) Safe Compression capacity of pile (Wind & seismic ) Tension Capacity of Pile (Normal Case) Tension Capacity of Pile (Temperature) Tension Capacity of Pile (Wind & Seismic) BC Pier dimension in Transverse Direction DC Pier dimension in Longitudinal Direction
= = = = = = = = = = = = = =
0.5 25 20 1997 404 2400 5650 6498 7063 -1000 -1150 -1250 2.00 2.00
m kN/m3 kN/m3 kN kN kN kN kN kN kN kN kN m m
Pile Coordinates Pile 1 2 x 3.60 0.00 z -1.80 -1.80 x2 12.96 0.00 z2 3.24 3.24
3 -3.60 -1.80 12.96 3.24
4 3.60 1.80 12.96 3.24
d
5 0.00 1.80 0.00 3.24
6 -3.60 1.80 12.96 3.24
B1163502 DN102 rev. 0
( IRC: 78-2014, 709.1.5.2) ( IRC: 78-2014, 709.5.1)
51.84 19.44
B 0.75 m
3.60 m
0.75 m
Longitudinal (width) 4
1
0.75 m
x
3.35 m 1.55 m
3.60 m
A
ML
A
Transverse (length) z
2.0 m
5
2
2.0 m 3.60 m
6
3
0.75 m
MT
B
5 Calculation of Reaction on Pile Page 53
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
5.2
B1163502 DN102 rev. 0
Reactions on Piles
Ultimate Limit State 1.1.1 1.1.2 1.2.1 1.2.2 1.2.3 1.2.4 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 4.1.1 4.2.1
P kN 24846 12923 31783 28330 31114 27997 25955 30975 28213 30441 27947 13478 24965 27720 26336 27452 26203 13042 24957 27714 26330 27446 26197 12989 30396 27633 29861 27367 12923 24846 24846
HL kN 0 0 1307 911 1407 961 250 1193 876 1273 916 191 595 988 829 1028 849 595 178 662 504 702 524 178 1354 1003 1366 1009 416 0 875
HT kN 17 17 305 248 294 243 597 615 569 606 565 363 183 272 244 266 242 116 572 599 560 589 558 347 248 202 239 197 17 17 454
ML kNm 0 12841 21944 13703 30590 18024 3073 19272 12680 26189 16137 15021 8678 15557 12261 19015 13989 19370 2603 10811 7515 14270 9244 14800 20589 13660 26832 16780 19049 0 4638
MT kNm 261 261 6611 11765 6318 10959 9078 10789 14912 10555 14267 5129 2922 5089 7046 4933 6725 2467 9132 10427 12140 10180 11823 7614 5341 9464 5107 8820 261 261 2580
P1 4074 2999 6154 4535 6671 4855 3654 5448 4153 5862 4409 2791 4450 5181 4543 5391 4670 3268 3451 4356 3740 4575 3868 2465 5948 4630 6315 4862 3430 4074 4181
Reactions on Pile in kN P2 P3 P4 P5 3944 3815 4467 4338 2040 1081 3227 2268 4464 2775 7819 6130 3436 2336 7107 6008 4385 2098 8273 5987 3457 2060 7273 5875 3305 2956 5695 5347 3948 2449 7876 6377 3125 2098 7306 6279 3885 1908 8239 6262 3143 1876 7439 6173 1678 564 3928 2815 3717 2984 5337 4605 3956 2732 6508 5284 3554 2565 6213 5225 3928 2464 6686 5223 3563 2455 6280 5172 1855 442 3906 2493 3141 2830 5489 5178 3461 2566 6672 5777 3081 2422 6354 5695 3441 2307 6841 5708 3089 2311 6421 5643 1370 274 4056 2960 4360 2772 7360 5772 3537 2445 6766 5674 4297 2278 7676 5657 3554 2247 6876 5568 2040 650 3658 2268 3944 3815 4467 4338 3730 3278 5004 4552
P6 4208 1309 4441 4909 3700 4478 4998 4877 5251 4285 4907 1701 3872 4059 4236 3759 4064 1080 4868 4882 5036 4574 4864 1865 4183 4581 3638 4260 878 4208 4101
5 Calculation of Reaction on Pile Page 54
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Serviceability Limit State
5.1.1 5.1.2 5.2.1 5.2.2 5.2.3 5.2.4 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2.1 7.2.2 7.2.3 7.2.4 8.1.1 8.2.1 8.3.1 8.3.2 8.3.3 8.3.4
P kN 19373 10087 23733 21563 23313 21354 20066 23801 21827 23419 21637 10433 19428 21414 20425 21222 20330 10142 19425 21410 20422 21219 20327 10117 23337 21364 22955 21174 10087 23337 21364 22955 21174 19121 19121 23337 21364 22955 21174
HL kN 0 0 822 573 884 604 156 865 639 922 667 120 275 649 536 677 550 275 83 456 343 485 357 83 953 703 964 709 278 1311 883 1322 888 0 550 747 521 804 549
HT kN 12 12 194 158 187 155 375 471 439 465 435 229 90 178 159 174 157 58 270 371 346 365 344 165 177 145 171 142 12 177 145 171 142 12 287 177 145 171 142
ML MT kNm kNm 0 196 9931 196 13793 4188 8613 7427 19228 4003 11330 6921 1920 5707 13913 8183 9204 11128 18854 8016 11674 10668 11293 3238 4017 1428 10287 3366 7933 4777 12757 3259 9167 4548 12953 1218 1205 4303 7475 6530 5120 7795 9945 6369 6355 7569 10838 3600 14562 3825 9629 6770 19053 3657 11873 6309 14069 196 23271 3825 13983 6770 27762 3657 16228 6309 0 190 2915 1647 12539 3825 7830 6770 17480 3657 10300 6309
P1 3177 2335 4484 3467 4810 3668 2914 4134 3209 4430 3392 2205 3351 3934 3477 4084 3569 2459 2889 3446 3002 3601 3093 2088 4506 3565 4770 3732 2622 5111 3868 5375 4035 3136 3204 4366 3440 4661 3623
Reactions on Pile in kN P2 P3 P4 P5 3076 2975 3482 3382 1593 851 2512 1769 3403 2321 5590 4508 2756 2046 5142 4431 3353 1896 5875 4418 2770 1872 5246 4348 2677 2439 4250 4012 3044 1954 5980 4890 2456 1703 5573 4820 2998 1567 6239 4808 2468 1545 5668 4744 1367 528 2950 2111 2971 2591 3885 3505 3109 2283 4855 4029 2820 2163 4646 3988 3088 2091 4983 3986 2826 2084 4693 3951 1507 555 2826 1873 2704 2519 3956 3771 2815 2184 4952 4322 2540 2078 4729 4267 2799 1998 5075 4274 2546 1999 4777 4230 1283 477 2895 2090 3373 2240 5539 4406 2785 2005 5116 4336 3328 1885 5767 4324 2798 1863 5195 4260 1593 563 2799 1769 3373 1636 6143 4406 2785 1703 5418 4336 3328 1280 6371 4324 2798 1560 5497 4260 3036 2937 3437 3337 2902 2599 3774 3472 3373 2381 5398 4406 2785 2130 4991 4336 3328 1994 5657 4324 2798 1972 5086 4260
B1163502 DN102 rev. 0
P6 3281 1027 3427 3721 2961 3450 3774 3800 4067 3377 3821 1273 3125 3203 3331 2990 3208 921 3586 3691 3805 3472 3683 1285 3273 3556 2881 3325 740 2668 3253 2276 3023 3238 3170 3413 3681 2990 3435
5 Calculation of Reaction on Pile Page 55
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
Unfactored Combination 9.1.1 9.1.2 10.1.1 10.1.2 10.1.3 10.1.4 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.4.6 11.1.1 11.1.2 11.1.3 11.1.4 11.1.5 11.2.1 11.2.2 11.2.3 11.2.4 12.1.1 12.2.1 12.3.1 12.3.2 12.3.3 12.3.4
P kN 7369 4609 21936 22260 21554 8001 21902 22400 22724 22018 8001 4609 20336 20587 20748 20395 7711 4623 20333 20583 20745 20392 7709 4623 21936 22260 21554 8001 4609 21936 22260 21554 8001 7369 7369 23085 21112 8634 8001
HL kN 0 0 693 631 722 192 532 811 749 840 239 62 467 622 591 636 218 0 274 429 398 444 133 37 922 831 922 192 147 1370 1055 1370 416 0 0 804 549 365 192
HT kN 6 6 158 164 151 116 424 452 457 445 204 108 110 167 169 163 97 6 308 358 358 353 181 77 158 164 151 116 6 158 164 151 116 6 6 177 144 126 116
ML MT kNm kNm 0 131 2760 131 12012 5566 12916 5016 14674 5398 4789 3994 5725 6549 13387 9924 14290 9375 16048 9756 5491 5985 3694 2060 5896 1701 10024 4220 10475 3911 11354 4116 4958 2875 2760 131 3084 4960 7211 7351 7663 6962 8542 7202 3163 4771 3230 2688 14260 5566 14883 5016 16641 5398 4789 3994 5966 131 25147 5566 20326 5016 27527 5398 10232 3994 0 131 0 131 17098 3819 10110 6763 9163 3089 4789 3994
Maximum Reaction normal Case Minimum Reaction normal Case Maximum Reaction Wind Case Minimum Reaction Wind Case Maximum Reaction Seismic/Accidental Case Minimum Reaction Seismic/Accidental Case Maximum Reaction Temperature Case Minimum Reaction Temperature Case
P1 1203 940 3937 4104 4074 1282 3404 3705 3872 3843 1147 826 3606 3701 3787 3771 1350 942 3108 3215 3309 3290 1049 738 4093 4240 4211 1282 1162 4849 4618 4967 1660 1203 1203 4641 3558 1774 1282
Reactions on Pile in kN P2 P3 P4 P5 1165 1127 1330 1291 724 508 1028 812 2988 2040 5272 4324 3091 2078 5342 4329 2943 1812 5373 4242 908 534 2133 1759 2892 2380 4921 4409 2659 1613 5854 4808 2762 1651 5924 4813 2613 1384 5955 4726 724 301 2366 1943 545 265 1271 991 3091 2575 4203 3688 2897 2094 4768 3965 2952 2116 4800 3964 2876 1982 4817 3922 965 581 1989 1605 726 511 1031 815 2788 2468 4309 3989 2607 1999 4862 4254 2669 2029 4886 4246 2590 1891 4906 4207 790 530 2040 1780 490 241 1300 1052 2988 1884 5428 4324 3091 1942 5479 4329 2943 1675 5510 4242 908 534 2133 1759 724 286 1251 812 2988 1128 6184 4324 3091 1564 5857 4329 2943 919 6266 4242 908 156 2511 1759 1165 1127 1330 1291 1165 1127 1330 1291 3334 2026 5669 4361 2746 1934 5103 4291 1093 412 2466 1785 908 534 2133 1759 = = = = = = = =
5373 508 5955 265 5669 241 6266 156
kN kN kN kN kN kN kN kN
B1163502 DN102 rev. 0
P6 1253 597 3375 3316 3111 1385 3897 3762 3702 3497 1520 710 3173 3162 3129 3027 1220 599 3669 3646 3606 3508 1520 803 3219 3180 2974 1385 374 2463 2802 2218 1007 1253 1253 3054 3479 1104 1385
Safe Safe Safe Safe Safe Safe Safe Safe
5 Calculation of Reaction on Pile Page 56
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
6
Design of Pile
6.1
Lateral Capacity of Piles
B1163502 DN102 rev. 0
The depth of fixity and lateral capacity of pile have been worked out as per IS 2911-2010 Part 1 / sec2 Appendix C (clause 6.5.2). The pile is considered to be in submerged soil of dense sand type as per the soil report. Fixed head condition of piles is assumed 6.1.1
6.1.2
Input Data Diameter of the pile Characteristic compressive strength of concrete
D fck
= =
Characteristic yield strength of steel
fy
=
500 Mpa
Partial factor for Reinforcement
Ym
=
1.15
Design Yield Strength of Reinforcement
fyd
=
435 MPa
Characteristic yield strength of stirrups
fyk
=
2 500 N/mm
Modulus of elasticity for steel
Es
=
2E+05 N/mm2
Modulus of elasticity for concrete Clear cover (IRS:CBC 2014,cl.no.15.9.2) Gross cross section area of concrete
Ecm
= = =
2 3.1E+04 MN/m 50 mm 2 1130973 mm
c AC
1200 m 40 MPa
(IRS:CBC 2014,cl.no.12.4.3)
Check for lateral capacity Moment of Inertia of the pile cross section
4 1.0E-01 m
I K1
=
T
=
3.6 m
L1
=
0.0 m
L1 / T
=
0.0
Lf / T For Fixed headed piles in normally loaded sand For Fixed headed piles in normally loaded sand Lf Length of fixity of pile from top Pile head deflection of equivalent cantilever for fixed head pile Y=
=
2.2 (IS:2911-2010, Fig. 4)
=
8.0 m
Modulus of subgrade reaction Stiffness factor
T=
( E * I / K1 ) 0.2
Free length of pile above G.L. / Scour level
3 5.00 MN/m ( for N = 35 )
=
Q * (L1 + Lf)3
12 * E * I Deflection at pile top is less than 1 % of pile diameter . where, Y= 0.012 m (IRC: 78-2000, Amendment Notification no. 54, cl.no. 709.3.5) Safe Lateral Load Capacity of pile
Q
Max horizontal force at top of pile (Unfactored Normal loads)
Note:
= = = =
88.75 T SQRT( HL2 + HT2 ) (SQRT(722^2+151^2))/6 12.29 T SAFE
Increase lateral capacity with 25% for load governing by Wind / Seismic
Increased Lateral Load Capacity of pile
Q
=
Max horizontal force at top of pile (Unfactored wind/seismic load)
= = =
Max horizontal force at top of pile ( Factored load for Design )
H
= = = =
110.93 T SQRT( HL2 + HT2 ) (SQRT(1370^2+158^2))/6 22.98 T SAFE SQRT( HL2 + HT2 ) (SQRT(1407^2+294^2))/6 23.96 T 239.6 kN
Design Moment for pile where,
m
=
m * Q * (L1 + Lf) / 2 M = Moment Reduction factor m = M
= =
0.82 (IS:2911-2010, Fig.5B) 78.6 T m 785.8 kN m
6 Design of Pile Page 57
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
6.1.3
Design of Pile Provide Diameter of londitudinal bar Number of longitudinal bars Clear spacing provided between vertical bars
= = =
16 25 117
Diameter of lateral ties Spacing of lateral ties provided
= =
10 150
+ > Safe mm mm
Effective cover Effective depth of Pile (0.75 D)
d' deff
= =
68 mm 900 mm
Area of reinforcement provided
Ast provd
=
2 5027 mm
Astmin
=
Minimum area of reinforcement required
Percentage of steel provided Effective cover to Depth Ratio
pt % d' / D
0 0 100
= =
mm no. mm
(IRC:78-2014,cl.no.709.4.4)
0.4% of AG 4524 mm2
[ IRC:112-2011, cl.no. 16.2.2 (4)]
6.1.4
B1163502 DN102 rev. 0
OK
0.44 0.0567
Check for Axial and Flexure Capacities The pile is checked for maximum axial load with corresponding BM case and maximum BM with corresponding maximum and minimum axial load. The maximum axial capacity of pile is calculated as per IRC112:2011, cl. No. 8.3.2 (4) and flexural capacities are calculated from the interaction diagram as per SP:16. Maximum Axial Load and corresponding BM Pmax
=
Corresponding horizontal force at top of pile
H
= =
Corresponding Bending Moment
M
=
786 kN m
Mu/fck.D^3
=
0.04
.`. Mu M / Mu
= =
2765 kN m 0.28
Maximum Axial Load on Pile
For,
p/fck P/fckD^2
= =
0.0111 0.1436
8273 kN ( Load Comb 1.2.3 ) (SQRT(1407^2+294^2))/6 239.57 kN
(From SP 16)
SAFE
Maximum BM and corresponding Minimum Axial Load Case Max horizontal force at top of pile (Factored load)
= = =
SQRT( HL2 + HT2 ) (SQRT(1407^2+294^2))/6 23.96 T
Hmax
=
239.6 kN ( Load Comb 1.2.3 )
Corresponding minimum Vertical load on Pile
Pmin
=
2098 kN
Maximum Bending Moment
Mmax
=
Mu/fck.D^3
=
.`. Mu M / Mu
= =
For,
p/fck P/fckD^2
= =
0.0111 0.0364
786 kN m 0.013
(From SP 16)
899 kN m 0.87
SAFE
6 Design of Pile Page 58
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
B1163502 DN102 rev. 0
Minimum Axial Load and corresponding BM Pmin
=
Corresponding horizontal force at top of pile
H
= =
Corresponding Bending Moment
M
=
Mu/fck.D^3
=
.`. Mu M / Mu
= =
Minimum axial load on pile
For,
6.1.5
p/fck P/fckD^2
= =
0.0111 0.0048
Check for Shear Capacity
274 kN ( Load Comb 2.3.6 ) (SQRT(178^2+347^2))/6 65.02 kN 213 kN m 0.012
(From SP 16)
829 kN m 0.26
SAFE
( IRS:CBC 2014, cl.no.15.4.3)
Calculation of Shear Stress Hmax Max horizontal force at top of pile Corresponding minimum Vertical load on Pile Pmin
=
239.6 kN
=
2098 kN
( Load Comb 1.2.3 )
Effective depth Equivalent Width
deff b
= =
Shear Area ( 0.75 Ac )
AV
=
Shear Stress on the section
v
=
Maximum capacity of section
vmax
= = =
0.75 fck1/2
= =
100 Ast / AV
=
(0.27 / Ym) * (100 Ast / bwd)1/3 * (fck)1/3
=
0.62 N/mm2 (500 / deff)1/4
900 mm SQRT(3.14/4×1200^2) 1063 mm 2 848230 mm
0.282 N/mm2
4.74 4.74 N/mm2
SAFE OR OR
4.75 4.75
Calculation of Shear Capacity of the Section Percentage of steel provided
pt %
vc
Ultimate shear stress in the concrete Depth factor
s
Axial load factor
s vc
Shear Reinforcement Calculation Provide
<=
= = =
0.86 0.86
s vc
=
OR OR
0.70 0.70
1 + (0.05 P / Ac)
= =
Shear stress capacity of section
v
0.59 %
1.09 2
0.59 N/mm Provide Minimum Shear Reinforcement
( IRS:CBC 2014, cl.no.15.4.3.2) 2L
10mm
dia stirrups
Asv
=
Asv
>=
sV
= =
2 157 mm
0.4 b sV / (0.87 fyv) Asv * 0.87 * fyv / (0.4 b) 161 mm
6 Design of Pile Page 59
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height
v
s vc
>
6.2
>=
sV
= =
sV
Spacing provided Hence provide
Asv
2L
b sV (v + 0.4 - svc) / (0.87 fyv) Asv * 0.87 * fyv / (0.4 b (v + 0.4 - svc)) --- mm
=
10mm dia at
B1163502 DN102 rev. 0
150 mm 150mm
SAFE
c/c
Check for stresses in Pile (SLS) Comb 1 to Comb V (IRS: CBC 2014, Table 11)
Calculation
Mpa
Perm flexural compressive stress in concrete Perm Axial compressive stress in concrete Perm Tensile stress in Steel
= 0.5×40 = 0.38×40 = 0.75×-500
20.0 15.2 -375.0
Summary of Forces for Stress check in Pile Comb I to Comb V Max Axial Load Min Axial Load Max √(HL2+ HT2)/n
Load Case 7.2.3 6.3.6 7.2.3
Pmax kN 6371 6371
Pmin kN 477 1280
HL kN 220 14 220
HT kN 28 28 28
√(HL2+ HT2)/n
ML
kN 222
(kN MT
(kN
m)
m)
723 45 723
93 90 93
Maximum Stresses in Pile ( Results from Software MIDAS GSD)
6.3
Load Case
Flexural Comp Stress in Concrete ( Mpa )
Section
Axial Comp Stress in Concrete ( Mpa )
Section
Tensile Stress in Steel ( Mpa )
Section
7.2.3 6.3.6 7.2.3
9.65 0.98 9.65
SAFE SAFE SAFE
5.50 0.41 5.50
SAFE SAFE SAFE
1.36 0.01 1.36
SAFE SAFE SAFE
Check for Stresses for Crack Width in Pile Comb 1 (IRS: CBC 2014, Table 11)
Calculation
Mpa
Perm flexural compressive stress in concrete Perm Axial compressive stress in concrete Perm Tensile stress in Steel
= 0.5×40 = 0.38×40 = 0.75×-500
20.0 15.2 -375.0
Summary of Forces for Stress check in Pile Comb I to Comb V Max Axial Load Min Axial Load Max √(HL2+ HT2)/n
Load Case 5.2.3 5.1.2
Pmax kN 5875 -
Pmin kN 851
HL kN 147 0
HT kN 31 2
√(HL2+ HT2)/n
kN -
m)
m)
483 0
102 7
5.2.3
5875
1896
147
31
151
483
102
ML
(kN MT
(kN
Maximum Stresses in Pile ( Results from Software MIDAS GSD) Load Case
Flexural Comp Stress in Concrete ( Mpa )
Section
Axial Comp Stress in Concrete ( Mpa )
Section
Tensile Stress in Steel ( Mpa )
Section
5.2.3 5.1.2 5.2.3
7.89 0.76 7.89
SAFE SAFE SAFE
5.06 0.74 5.06
SAFE SAFE SAFE
2.26 0.70 2.26
SAFE SAFE SAFE
NOTE :- Since no tension in concrete, the section is Uncracked , Check for crack width is not Required
6 Design of Pile Page 60
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height B1163502 DN102 rev. 0
7
Calculation of Vertical Capacity of Pile
7.1
Geotechnical Capacity of Piles in Hard Rock The safe load carrying capacity of pile is estimated in accordance with Section-9 of Appendix-5 of IRC78: 2014, Method 1 for piles socketted in hard rock. Ultimate capacity of pile in N
Qu
=
Re + Raf
=
Ksp qc df Ab + As Cus
Core recovery
CR
=
50 %
Rock Quality Designation
RQD
=
50 %
=
50 %
(CR + RQD) / 2
=(50+50)/2
Emperical co-efficient
Ksp
=
Average UCC of rock core
qc
=
2 15000 t/m
Ultimate shear strength of rock
Cus
=
2 27.56 t/m
Diameter of pile
D
=
1.2 m
Socket length provided
Ls
=
0.3 m
Area of pile base
Ab
=
2 1.13 m
0.56
2 0.00 m
As Surface area of socket = (Neglecting friction from top 300mm depth of socket) Depth factor
df = 1+0.4 Ls/D
=
1.2 (Limited to 1.2)
Re
=
11342.0 t
Raf
=
0.0 t
Factor of Safety for End Bearing (Re)
FSe
=
3
Factor of Safety for Friction (Raf)
FSaf
=
6
Qsafe
=
= (Re / FSe) + (Raf / FSaf)
3781 t
7 Calculation of Vertical Capacity of Pile Page 61
Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height B1163502 DN102 rev. 0
7.2
Geotechnical Capacity of Piles in Weathered Rock
The safe load carrying capacity of pile is estimated in accordance with Section-9 of Appendix-5 of IRC78: 2014, Method 2 for piles in weatherd rock or intermediate goe-material. Ultimate capacity of pile in N
Qu
= =
Nc
=
Re + Raf Cub Nc Ab + As Cus 9
Average SPT N value below pile base
=
150 <=300
Average SPT N value of socket portion
=
90 <=300
As per table in Section-9 of IRC: 78-2014 for Method 2, N value 60 100 200 300 Cub / Cus 0.4 0.7 1.9 3.3 in MPa Average Shear Strength below base Cub
=
2 130 t/m
Ultimate shear strength along socket
=
62.5 t/m2
Design shear strength along socket Cus
=
2 66.82 t/m
Concrete grade in piles
fck
=
Diameter of pile
D
=
1.2 m
Socket length provided
Ls
=
6m
Area of pile base
Ab
=
2 1.13 m
Surface area of socket
As
=
2 21.49 m
M40
(Neglecting friction from top 300mm depth of socket) Re
=
1323.2 t
Raf
=
1435.8 t
Factor of Safety for End Bearing (Re)
FSe
=
3
Factor of Safety for Friction (Raf)
FSaf
=
6
Qsafe
=
= (Re / FSe) + (Raf / FSaf)
680 t
7 Calculation of Vertical Capacity of Pile Page 62