Dn102-r0-gpj-design Of Substructure & Foundation 28m+28m Span, 19.6m Width, 22m Height.pdf

  • Uploaded by: ravichandra
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Dn102-r0-gpj-design Of Substructure & Foundation 28m+28m Span, 19.6m Width, 22m Height.pdf as PDF for free.

More details

  • Words: 26,385
  • Pages: 64
Client:

L&T Infrastructure Engineering Ltd. NCC Ltd. Mumbai

Project:

Project No.: Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road B1163502 in Nagpur Metro Reach I (North-South Corridor)

Title:

Design of Substructure & Foundation 28m + 28m Span, 19.6m Width, 22m Height

This document is the property of L&T Infrastructure Engineering Ltd. (formerly known as L&T-Rambøll Consulting Engineers Limited) and must not be passed on to any person or body not authorised by us to receive it nor be copied or otherwise made use of either in full or in part by such person or body without our prior permission in writing.

Document No.:

Rev.:

DN102

0

File path: k:\2016\b1163502 - dd nmrcl metro flyover\inputs\calculations\metro 28m span\22m height\pdf files\dn102-r0-gpj-design of substructure & foundation 28m+28m span, 19.6m width, 22m height.docx

Notes: 1.

Revision Details:

0

13/05/2016 First Submission

Rev. Date

Details

GPJ

TPM

BSK

Init. Sign. Init. Sign. Init. Sign. Prepared

Checked

Approved

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (NorthSouth Corridor) B1163502 Design of Substructure & Foundation 28m + 28m Span, 19.6m Width, 22m Height DN102 rev. 0

TABLE OF CONTENTS 1

Introduction .....................................................................................................................................1 1.1 General Arrangement ...............................................................................................................1

2

Calculation of Loads and its Summary from Metro Structure ...................................................2

3

Calculation of Loads and its Summary from Flyover Structure ............................................. 25

4

Load Combination (Metro + Flyover) ......................................................................................... 49

5

Calculation of Reactions on Pile ................................................................................................ 53

6

Design of Pile ............................................................................................................................... 57

7

Calculation of Vertical Capacity of Pile ..................................................................................... 61

LIST OF FIGURES NIL LIST OF TABLES NIL LIST OF ENCLOSURES NIL

Table of Contents Page i

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (NorthSouth Corridor) B1163502 Design of Substructure & Foundation 28m + 28m Span, 19.6m Width, 22m Height DN102 rev. 0

1 Introduction M/s NCC Limited was awarded the construction of the Nagpur Metro viaduct in the NorthSouth Corridor between the New Airport and Sitaburdi Station from Chainage 6790.000 to Chainage 14400.000 including viaduct in five elevated stations in this portion of the Nagpur Metro Rail Project. NHAI has planned to construct an elevated 4 lane corridor in the same alignment as the metro. It has since been decided that the NHAI elevated corridor and the Metro Viaduct will share a common set of foundations and substructure. It has also been decided that the construction of the elevated corridor will be carried out by the Metro viaduct contractor namely NCC ltd. itself. The metro viaduct runs parallel and above the proposed NHAI flyover from Chainage 10253.802 to Chainage 13663.802 in a double-decker arrangement with both viaducts being supported on common single piers. The design of the common substructure and foundations for the combined Metro and elevated corridor will be carried out by M/s L&T Infrastructure Engineering Ltd. (formerly known as L&T-RAMBOLL Consulting Engineers Ltd.)

1.1 General Arrangement This design note pertains to the design of pile foundation for Pier P62 to P67, P73 to P77, P82 to P94 and P101 to P115. The pile is designed for total height of 22m from Rail Top Level (RTL) to Existing Ground Level (EGL), which contains height of 12.4m (maximum amongst all above pier location) from Rail Top Level (RTL) to Finished Road Level (FRL) and height of 9.6m (maximum amongst all above pier location) from Finished Road Level (FRL) to Existing Ground Level (GL). The span c/c of expansion joints on either side of the pier is 28.0m. The span arrangement has been kept the same for both metro and flyover viaducts. The spans are simply supported with elastomeric bearings for the metro viaduct and spherical bearings for the flyover. The superstructure for the flyover consists of divided four-lane carriageway (2x7.5m) with a central median of 3.6m width. The total deck width is 19.6m. The central spine is 6.5m wide and each cantilever wings are 6.55m wide. The c/c distance of the bearings in the transverse direction has been kept as 3.5m. The flyover is supported on a single common pier of size 2.0m x 2.0m in the lower portion till the top of the flyover superstructure. The upper portion of the pier is 1.5mx1.5m, going up to the pier cap for the metro viaduct. Both metro and flyover superstructure are seated on rectangular pier caps at the respective levels. The double-decker viaducts are supported on pile foundation with 1.2m diameter bored castin-situ piles socketed in hard rock. The load derivation and design of pile foundation are furnished in the following pages.

1 Introduction Page 1

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

2

Calculation of Loads and its Summary from Metro Structure

2.1

Input Data

B1163502 DN102 rev. 0

General Arrangement of Structure (Metro) Total span of superstructure (left side) Total span of superstructure (right side) Effective span c/c of bearings (left side) Effective span c/c of bearings (right side) Radius of curvature used in design R Design speed V No of bearings Bearings c/c distance in transverse direction (Refer 877-N-117 of STRUCTCON) Bearings c/c distance in longitudinal direction (Refer 877-N-117 of STRUCTCON) Cross slope (Refer 877-N-117 of STRUCTCON) Total width of the superstructure (Refer 877-N-117 of STRUCTCON) Height of rail & plinth (Refer 877-N-117 of STRUCTCON) Depth of the box girder (Refer 877-N-117 of STRUCTCON) CG of the superstructure from top of box girder (Refer 877-N-117 of STRUCTCON) Bearing height (Refer 877-N-117 of STRUCTCON) Minimum pedestal height Height of crash barrier

= = = = = = = = = = = = =

28.0 28.0 26.0 26.0 3000 80 4 2.600 2.000 2.5 8.500 0.482 2.000 0.600 0.080 0.250 1.500

Levels (Metro) Rail top level Bearing top level Pier cap top level Pier cap bottom level Existing ground/road level Pile cap top level Pile cap bottom level

= = = = = = =

122.000 119.518 119.188 116.938 100.000 99.500 97.700

m m m m m m m

col_l long long

= 1.50 = 3.65 = 0.90 = =

x 1.50 x 3.10 x 0.72 2.250 0.750

m m m m m

foot_l foot_b

= = = = =

8.700 5.100 1.800 0.500 2.000

m m m m m

FRL

GL

Pier Dimensions (Metro) Effective Size of the pier Size of the pier cap top Size of the pedestal Depth of the Pier Cap at pier face Depth of the Pier cap at Edge

col_b trans trans

Foundation Dimensions Pile cap length in longitudinal direction Pile cap length in transverse direction Pile cap thickness Depth of the soil above pile cap top Height of Pier main steel curtailment from Pile Cap Top

= = =

m m m m m kmph Nos m m % m m m m m m m

Plan at Pier Top CL of pier / pier cap 0.525 m

1.30 m

1.30 m

0.525 m

B1

B2

B3

B4

Traffic Direction

0.550 m 1.00 m

1.00 m 0.550 m

3.65 m

Plan of Pier Cap (Metro)

2 Calculation of Loads and its Summary from Metro Structure Page 2

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Transverse Section (box girder section shown is schematic only) +ve 8.50 m 0.5 m

CG of Boggie = 123.830 RL = 122.000

2.50 %

2.50 %

1.5 m Super str. top = 121.518

1.95 m

1.95 m Super str. CG = 120.918

B1 & B3

B2 & B4

2.6 m

0.75 m

Pier Cap CG = 118.355

Pier Cap

1.08 m

Pier Cap

Pier

5.1 m

2 Calculation of Loads and its Summary from Metro Structure Page 3

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Longitudinal Section

Railway

Railway

B1 & B2

RL =

122.000 m

Rail Top Level

=

119.518 m

Bearing Top Level (Metro)

=

119.188 m

Pier Cap Top Level (Metro)

=

116.938 m

Pier Cap Bottom Level (Metro)

=

112.012 m

CG of Pier for Seismic Case (Metro)

FRL =

109.600 m

Road Top Level

2.81 m

B3 & B4

3.1 m 2.25 m

1.5 m 7.34 m 9.85 m

( at centre of C/W )

Road

Road

B1 and B2 B5 & B6

2.52 m

B3 and B4

=

107.535 m

Bearing Top Level (Flyover)

B7 & B8

=

107.085 m

Pier Cap Top Level (Flyover)

=

105.585 m

Pier Cap Bottom Level (Flyover)

=

102.793 m

CG of Pier for Seismic Case (Flyover)

=

101.500 m

Pier Rebar Curtailement level

=

100.000 m

Ground level

=

99.500 m

Pilecap Top Level

=

97.700 m

Pilecap Bottom Level

4.9 m 1.50 m

2.0 m 5.58 m 6.08 m

3.35 m

3.35 m 1.80 m

8.70 m

Material Properties Granular Backfill Unit weight of soil overburden above footing

γfill

=

20 kN /m3

Concrete Unit weight of Concrete for Design

γcon

=

25 kN /m3

2 Calculation of Loads and its Summary from Metro Structure Page 4

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

2.2

Calculation of Forces

2.2.1

Reactions from Superstructure (Refer 877-N-117 of STRUCTCON)

B1163502 DN102 rev. 0

V1

Bearing 1 (Inner) HL1

HT1

V2

Bearing 2 (Outer) HL2

HT2

kN

kN

kN

kN

kN

kN

920 295 165

0 0 0

0 0 0

920 295 165

0 0 0

5 0 1

i

Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)

602

0

0

602

0

0

ii

Max MT(LL)

-150

0

0

750

0

0

iii

Max ML(LL)

602

0

0

602

0

0

iv 5

Max MLT(LL)

-150 -150

0 0

0 0

750 750

0 0

0 0

V3

Bearing 3 (Inner) HL3

HT3

V4

Bearing 4 (Outer) HL4

HT4

kN

kN

kN

kN

kN

kN

920 295 165

0 0 0

0 0 0

920 295 165

0 0 0

0 0 0

i

Dead Load - Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)

191

0

0

191

0

0

ii

Max MT(LL)

-50

0

0

240

0

0

iii

Max ML(LL)

0

0

0

0

0

0

iv 5

Max MLT(LL)

0 -50

0 0

0 0

0 240

0 0

0 0

Sr. No. Load Case (Metro)

1 2 3 4

Derailment Load

Sr. No. Load Case (Metro)

1 2 3 4

Derailment Load Notation:

Pmax(LL)

-

Both track loaded in both span

Max MT(LL)

-

One track loaded in both span

Max ML(LL)

-

Both track loaded in one span

Max MLT(LL)

-

One track loaded in one span

Summary of Vertical Loads from Superstructure Sr. No. 1 2 3 4 i

Load Case (Metro)

Calculations

Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)

= 920+920+920+920 = 295+295+295+295 = 165+165+165+165

V (kN) 3680 1180 660

= 602+602+191+191

1586

ii

Max MT(LL)

= -150+750+-50+240

790

iii

Max ML(LL)

= 602+602+0+0

1204

Max MLT(LL)

= -150+750+0+0 = -150+750+-50+240

600 790

= MAX(920+920,920+920) = MAX(295+295,295+295) = MAX(165+165,165+165)

1840 590 330

iv 5 6

Derailment Load One Span Dislodged Condition Dead Load -Superstructure SIDL (Fixed) SIDL (Variable)

2 Calculation of Loads and its Summary from Metro Structure Page 5

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Summary of Longitudinal Moments from Superstructure

Sr. No. Load Case (Metro)

1 2 3 4 i

Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)

V1 + V2 ( kN )

1840 590 330

ii

Max MT(LL)

600

Max ML(LL)

1204

iv 5

Max MLT(LL)

600 600

6

One Span Dislodged Condition Dead Load -Superstructure SIDL Fixed SIDL Variable

Sr. No. Load Case (Metro)

1 2 3 4

0 190

1.00

1840 590 330

iii

Max ML(LL)

1204

iv 5

Max MLT(LL)

600 600

6

One Span Dislodged Condition

1.00

1840 590 330

1.00

382 0 0 190 Lever Arm ( m)

1840 590 330

1.00

1840 590 330

1.00

i ii

Max MT(LL)

600

iii

Max ML(LL)

1204

iv 5

Max MLT(LL)

600 600

6

One Span Dislodged Condition

0

1204

1840 590 330

1.00

382

20.02

0

21.82

0

190 1.00

0 0 0

0 190

0

Lever Arm ( m)

V3 + V4 ( kN )

Lever Arm ( m)

1840 590 330

1.00

1840 590 330

1.00

ML ( kN m )

1840 590 330

ML ( kN m )

0 0 0

1204 600 410

HL1 +HL2 or Lever Arm ( HL3 +HL4 m) ( kN )

0 0 0

1204

410 21.82

0 0

V1 + V2 ( kN )

0 0 0

822

0 1.00

ML ( kN m )

600 410

Longitudinal BM at Pile Cap Bottom level HL1 +HL2 V3 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HL3 +HL4 m) m) m) ( kN ) ( kN )

1.00

1840 590 330

410 20.02

HL1 +HL2 or Lever Arm ( HL3 +HL4 m) ( kN )

0 0 0

ML ( kN m )

822

0 0

V3 + V4 ( kN )

1840 590 330

20.02

0 1.00

Lever Arm ( m)

Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)

18.02

0

190 1.00

0 0 0

1204 600 410

HL1 +HL2 or Lever Arm ( HL3 +HL4 m) ( kN )

0 0 0

0 0 0

410 18.02

Longitudinal BM at Pile Cap Top level HL1 +HL2 V3 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HL3 +HL4 m) m) m) ( kN ) ( kN )

V1 + V2 ( kN )

V1 + V2 ( kN )

0

ML ( kN m )

822

0 0

1840 590 330

V1 + V2 ( kN )

18.02

0 1.00

1.00

600

Dead Load -Superstructure SIDL Fixed SIDL Variable

0

1840 590 330

Max MT(LL)

Derailment Load

190 1.00

0 0 0 0

Lever Arm ( m)

ii

1 2 3 4

382

V3 + V4 ( kN )

1204

Sr. No. Load Case (Metro)

1.00

Lever Arm ( m)

i

Dead Load -Superstructure SIDL Fixed SIDL Variable

1840 590 330

V1 + V2 ( kN )

Dead Load -Superstructure SIDL (Fixed) SIDL (Variable) Live load Reaction Without Impact Pmax(LL)

Derailment Load

1.00

1204

iii

Derailment Load

Longitudinal BM at Rebar Curtailment level HL1 +HL2 V3 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HL3 +HL4 m) m) m) ( kN ) ( kN )

21.82

ML ( kN m )

1840 590 330

2 Calculation of Loads and its Summary from Metro Structure Page 6

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Summary of Transverse Moment from Superstructure

Sr. No. Load Case (Metro)

1 2 3 4

V1 + V3 ( kN )

Transverse BM at Rebar Curtailment level HT1 +HT2 V2 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HT3 +HT4 m) m) m) ( kN ) ( kN )

1840 590 330

i

Dead Load -Superstructure SIDL Fixed SIDL Variable Live load Reaction Without Impact Pmax(LL)

793

793

0

0

ii

Max MT(LL)

-200

990

0

1547

iii

Max ML(LL)

602

iv 5

Max MLT(LL) Derailment Load

-150 -200

6

One Span Dislodged Condition Dead Load -Superstructure SIDL Fixed SIDL Variable

Sr. No. Load Case (Metro)

1 2 3 4

1.30

1.30

1840 590 330

602

1.30

1.30

750 990

0

18.02

18.02

0 0

V2 - V1 ( kN )

Lever Arm ( m)

V4 - V3 ( kN )

Lever Arm ( m)

0 0 0

1.30

0 0 0

1.30

V1 + V3 ( kN )

5 0 1

MT ( kN m )

18.02

Transverse BM at Pile Cap Top level HT1 +HT2 V2 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HT3 +HT4 m) m) m) ( kN ) ( kN )

90 0 18

MT ( kN m )

1840 590 330

i

793

793

0

0

ii

Max MT(LL)

-200

990

0

1547

iii

Max ML(LL)

602

iv 5

Max MLT(LL) Derailment Load

-150 -200

6

One Span Dislodged Condition Dead Load -Superstructure SIDL Fixed SIDL Variable

Sr. No. Load Case (Metro)

1 2 3 4

602

1.30

750 990 Lever Arm ( m)

V4 - V3 ( kN )

Lever Arm ( m)

0 0 0

1.30

0 0 0

1.30

V1 + V3 ( kN )

1840 590 330

i ii

Max MT(LL)

-200

iii

Max ML(LL)

602

Max MLT(LL) Derailment Load

-150 -200

6

One Span Dislodged Condition

20.02

HT1 +HT2 or Lever Arm ( HT3 +HT4 m) ( kN )

5 0 1

1.30

1840 590 330

1.30

793

20.02

602

21.82

0

990 1.30

5 0 1

750 990

0

Lever Arm ( m)

V4 - V3 ( kN )

Lever Arm ( m)

0 0 0

1.30

0 0 0

1.30

100 0 20

MT ( kN m )

109 0 22

0 1170 1547

HT1 +HT2 or Lever Arm ( HT3 +HT4 m) ( kN )

5 0 1

MT ( kN m )

1547 21.82

0 0

V2 - V1 ( kN )

0

0

0 1.30

100 0 20

1170 1547

Transverse BM at Pile Cap Bottom level HT1 +HT2 V2 + V4 Lever Arm ( Lever Arm ( Lever Arm ( +HT3 +HT4 m) m) m) ( kN ) ( kN )

793

iv 5

0

20.02

0 0

V2 - V1 ( kN )

Dead Load -Superstructure SIDL Fixed SIDL Variable Live load Reaction Without Impact Pmax(LL)

Dead Load -Superstructure SIDL Fixed SIDL Variable

1.30

1.30

5 0 1

MT ( kN m )

Dead Load -Superstructure SIDL Fixed SIDL Variable Live load Reaction Without Impact Pmax(LL)

1.30

1840 590 330

0 1170 1547

HT1 +HT2 or Lever Arm ( HT3 +HT4 m) ( kN )

5 0 1

90 0 18

21.82

MT ( kN m )

109 0 22

2 Calculation of Loads and its Summary from Metro Structure Page 7

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

2.2.2

B1163502 DN102 rev. 0

Loads from Substructure Summary of Vertical Loads due to Self Weight of Substructure Load Description

V (kN)

Calculations

Pier Bearing pedestals =(0.90×0.72×0.250×4×25) Pier cap =(16.500×3.100×25) Pier =(9.853×1.50×1.50×25) Pier for seismic (Railway) =(9.853×1.50×1.50×25) Pier upto curtailment (Railway) =(116.938-107.085×1.50×1.50×25) Total for pier bottom Total for curtailment level Footing & Soil above Pilecap portion Soil above Pilecap Total ( Footing + Soil above ) Total ( Pier + Footing + Soil above )

16 1279 554 554 554 1849 1849 0 0 0 1849

Summary of Moments due to Self Weight of Substructure Longitudinal Moment ML Load Description Pier Bearing pedestals (Railway) Pier cap (Railway) Pier (Railway) Pier for seismic (Railway) Pier upto curtailment (Railway) Total for pier bottom Total for curtailment level Footing & Soil above Pilecap portion Soil above Pilecap Total ( Footing + Soil above ) Total (Pier+Footing+Soil above) 2.2.3

0 0 -

Loads Due to Centrifugal Forces, Fcf Centrifugal Force where,

W= R= V=

=

MT

Lever Arm Lever Arm Lever Arm BM(kN m) BM(kN m) BM(kN m) (m) (m) (m) Pile Cap Top Pile Cap Bottom Rebar Curtailment 1.00 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -

0 0 0 0

(kN m) 0 0 0 0 0 0 0 0 0 0 0

(IRS: Bridge Rule, cl.no.2.5.3) W V2 127R

Total Live load Radius of curvature in meters Velocity of the vehicle in KMPH

Lever Arms CG of vehicle from Curtailment level CG of vehicle from Pilecap top CG of vehicle from Pilecap bottom

R V C.G of Vehicle above rail level

= = =

3000 m 80 kmph 1.83 m

=122.000-101.500+1.83 =122.000-99.500+1.83 =122.000-97.700+1.83

= = =

22.3 m 24.3 m 26.1 m

2 Calculation of Loads and its Summary from Metro Structure Page 8

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Summary of Transverse Force due to Centrifugal Force Load Case

V kN

HT kN

Calculation

Pmax(LL)

1586

=1586×80^2/(127×3000)

27

Max MT(LL)

790

=790×80^2/(127×3000)

13

Max ML(LL)

1204

=1204×80^2/(127×3000)

20

Max MLT(LL)

600

=600×80^2/(127×3000)

10

Summary of Transverse Moment due to Centrifugal Force

Load Case

Transverse Moment from Metro (MT) at Rebar Pilecap Lever Arm Lever Arm Lever Arm Curtailment Top (m) (m) (m) (kN m) (kN m)

Pmax(LL) Max MT(LL) Max ML(LL)

595 296

22.33

452

Max MLT(LL) 2.2.4

Pilecap Top (kN m)

648 24.33

225

696

323

347

26.13

492

528

245

263

Braking/Traction Force Note: Forces due to braking and traction are considered as 18% of unfactored vertical loads and 20% of unfactored vertical loads respectively. Load per axle Number of axles accomodated within the given span Total vertical load in the span(in one lane) Point of action of Braking force above RL Loads due to braking Live load Reaction Without Impact Pmax(LL)

Loads to Bearings under Braking B1+B2+B3+B4 kN 960

= =

160 6

kN Nos

= =

960 1.83

kN m

Loads to Bearings % of load % of load under Traction for for kN traction braking B5+B6+B7+B8

Total Loads (Braking + Traction) kN

18

960

20

364.8

Max MT(LL)

0

18

960

20

192.0

Max ML(LL)

960

18

960

20

364.8

Max MLT(LL)

0

18

960

20

192.0

Lever Arms Bearing top to Pier curtailement Bearing top to Pilecap Top Bearing top to Pilecap Bottom

=119.518-101.500 =119.518-99.500 =119.518-97.700

= = =

18.018 20.018 21.818

Moments due to braking & traction

Load Case

Vertical reaction VL kN

Longitudinal Braking Moment at Rebar Pilecap Lever Arm Curtailment Lever Arm Lever Arm Top (m) section (m) (m) (kN m) (kN m)

Pilecap Bottom (kN m)

Pmax(LL)

60.50

18.02

6573

20.02

7303

21.82

7959

Max MT(LL)

31.84

18.02

3459

20.02

3843

21.82

4189

Max ML(LL)

60.50

18.02

6573

20.02

7303

21.82

7959

Max MLT(LL)

31.84

18.02

3459

20.02

3843

21.82

4189

2 Calculation of Loads and its Summary from Metro Structure Page 9

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

2.2.5

Force due to Bearing Friction Calculation of shear rating of bearings

B1163502 DN102 rev. 0

Overall length (transverse Direction)

l0

( Refer IRC: 83, Part II, cl.no. 915.2.1 ) = 600 mm

Overall breadth (longitudinal Direction)

b0

=

420 mm

Thickness of each layer of elastomer

hi

=

12 mm

Thickness of outer elastomer layer

he

=

6 mm

Thickness of steel laminates Number of internal elastomer layer Side elastomer cover

hs

= = =

4 mm 4 Nos. 6 mm

n hc

Total elastomer thickness

h

= n * hi + 2 he

=

Overall thickness of Bearing

h0

= h + (n + 1) hs

=

80 mm

Effective length of brg (excluding cover)

leff

= l0 - 2 hc

=

588 mm

Effective width of brg (excluding cover)

beff

= b0 - 2 hc

=

A G Vr

= leff * beff

= = =

Effective plan area of bearing Shear Modulus of Elastomer Shear rating of elastomeric bearing 26.00

=G*A/h

60 mm

408 mm 2 239904 mm 1 Mpa 3998 kN/m

26.00

Expansion of Deck Note: Longitudinal Moment due to thermal expansion or contraction will get cancelled for same length of span.

Age of concrete at the time of stressing Residual Shrinkage strain Creep Strain in Concrete

= = =

Coeff of thermal expansion, a

=

Thermal Contraction

= Total Strain

28 days 1.90E-04 4.30E-05 per Mpa o 1.17E-05 per C 35

o

6.43E-04

=

L0

Total Translation in Longitudinal Direction

= =

Note: Substructure & foundation is also designed for 10% variation in movement L0

Total Translation in Longitudinal Direction Horizontal Force on the pier

= Vr x Lc x No of Bearings

For one span dislodged condition Translation in Longitudinal direction (one span dislodged) Total Translation in Longitudinal Direction Horizontal Force on the pier Lever Arms Bearing top to Pier curtailement Bearing top to Pilecap Top Bearing top to Pilecap Bottom

From IRS-CBC Table:3 (As per Cl:5.2.4.1 IRS-CBC)

Lo L0

=119.518-101.500 =119.518-99.500 =119.518-97.700

=

(6.43E-04×26)-(6.43E-04×26) 0.000 m (IRC: 6-2014, cl.no. 211.5.1.4) 0.000 m

= =

=0.000×3998×4 0 kN

= = = =

0.0167 m 0.0184 =0.0184×3998×4/2 146.9452

= = =

18.018 m 20.018 m 21.818 m

2 Calculation of Loads and its Summary from Metro Structure Page 10

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Summary of Longitudinal Forces due to Bearing Friction

Load

V

HL

kN

kN

Frictional resistance 0 One span dislodged condition Frictional resistance 0 2.2.6 I

Longitudinal Moment ( ML ) at Pier Pilecap Lever Arm Curtailme Lever Arm Lever Arm Top (m) nt (kN (m) (m) (kN m) m) 18.02 20.02 21.82 0 0

0

18.02

146.9

2647.66

20.02

2941.5

21.82

Pilecap Bottom (kN m) 0 3206.1

Wind Loads (W) Wind without Live Load Length of the superstructure for wind load calculation

=

28.0 m

28.0 28.0

28.0

Pier Cap A

Wind Load on Superstructre (Metro Level) Height of the Crash barrier Total depth of superstructure exposed to wind

= = = = =

1.500 m =2.000+1.500

Probability factor (For 100 Years) Terrain, height and structure size factor Topography Factor Design wind speed =1.07×0.9×(44)

K1 K2 K3 Vz

m 23.50 m 44 m/sec (IS:875 Part 3-1987 , Appendix A cl.5.2) = 1.07 = 0.92 = 1.0 = 43.31 m/s

Design Wind Pressure

Pz

=

Height of structure above ground (form Parapet top to GL) Actual wind speed at the location of the structure

1.Transverse Wind Force FT Where,

A1

a/b h/b Cf

Transverse wind force

=0.6×(43.31×43.31)

3.500

=

PZ * A1 Cf

= = = = = =

Solid area (Exposed area in transverse direction) =28.0×3.500

1125.64 N/m2 (IS:875 Part 3- 1987 ,Cl.5.4) (IS:875 Part 3- 1987 ,Cl.6.3.3.2)

2

98 m =8.500/28.0 =3.500/28.0 Force Coefficient

=1125.64×98×1.2/1000

= = =

0.30 0.13 1.2

(IS 875 Part 3-1987, Fig 4)

=

132.4 kN

2 Calculation of Loads and its Summary from Metro Structure Page 11

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

2. Longitudinal Wind Force FL 3. Vertical Wind Load FV Where,

A3

G CL

=

=

25%×132.4

= 33.1 kN (IS:875 Part 3- 1987 ,Cl.209.3.6) =

Pz * A3 * G * CL

=

Plan area

= = = =

28.0×8.500

= =

Total vertical Wind load B

25% of Transverse wind force

B1163502 DN102 rev. 0

2

238 m Gust factor 2 Lift Coefficient 0.75 =1125.64×238×2×0.75/1000

= 0 kN (IS:875 Part 3- 1987 ,Cl.209.3.5)

Wind Force on Substructure 1.Pier Cap Transverse wind force on piercap Height of the pier Cap a/b = h/b = Exposed area = Force coefficent Transverse wind force on Piercap

=3.65/3.1 =2.25/4.90 =2.25×4.90 Cf =1125.64×11.03×1.00/1000

Longitudinal wind force on piercap a/b = h/b =

=3.1/3.65 =2.25/3.65

Exposed area ( from Autocad ) Force coefficent Longitudinal wind force on Piercap

Cf =1.20×16.50×1125.64/1000

2. Pier Transverse wind force on pier Depth of Pier a/b = h/b = Exposed area Force coefficent Transverse wind force on pier

=1.5/1.5 =9.85/1.5 =9.85×1.5 Cf =1125.64×14.78×1.40/1000

Longitudinal wind force on pier a/b = h/b = Exposed area Force coefficent Longitudinal wind force on pier

=1.5/1.5 =9.85/1.5 =9.85×1.5 Cf =14.78×1.40×1125.64/1000

= = = = =

2.25 m 1.18 0.46 m 2 11.03 m 1.00 = 12.41 kN (IS 875 Part 3-1987, Fig 4)

= = = =

0.85 0.62 16.50 m2 1.20 =

22.29 kN

9.85 1.00 6.57 14.78 1.40 =

23.29 kN

= = = = =

= = = =

1.00 6.57 14.78 1.40 =

m m m m2

23.29 kN

2 Calculation of Loads and its Summary from Metro Structure Page 12

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

II

A

Wind with Live Load Total Length of the superstructure

=

Wind Load on Superstructure Height of the crash Barrier Total depth of superstructure exposed of wind Height of structure above bed level Point of action of wind force on Vehicle above RL Actual wind speed at the location of the structure

= = = = =

28.0 m

Height of vehicle considered Maximum allowable wind speed for operation

Vz

1.500 m 3.500 m 23.5 m 1.8 m 44 m/sec (IS:875 Part 3-1987 , Appendix A cl.5.2) = 4.02 m = 25.00 m/s

Design Wind Pressure

Pz

=

1.Transverse Wind Force FT Where,

A1

a/b h/b Cf

=0.6×(25.00×25.00)

PZ * A1 Cf

= = = = = =

Solid area (Exposed area in transverse direction) 28.00×3.500 98 m2 =8.500/28.0 = 0.30 =3.500/28.0 = 0.13 Force Coefficient 1.2

(IS:875 Part 3- 1987 ,Cl.6.3.3.2)

=375.00×98×1.2/1000

2.Longitudinal Wind Force FL

=

25% of Transverse wind force

3.Vertical Wind Load FV

=

Pz * A3 * G * CL

= = = = = = =

Plan area 28.0×8.500 2 238 m Gust Factor 2 Lift Coefficient 0.75 = =375.00×238×2×0.75/1000

Where,

A3

G CL Total vertical Wind load Wind force on Live Load FT A1

a/b h/b Cf

375.00 N/m2 (IS:875 Part 3- 1987 ,Cl.5.4)

=

Transverse wind force

B

B1163502 DN102 rev. 0

=

PZ * A1 Cf

= = = = = =

Exposed area =28.0×(4.0-1.500) 2 70.42 m =8.500/28.0 =(4.0-1.500)/28.0 Force Coefficient

= = =

(IS 875 Part 3-1987, Fig 4)

=

44.1 kN

= =

25%×44.1 11.0 kN

=

0 kN

0.30 0.09 1.2

Transverse wind force

FT

=375.00×70.42×1.2/1000

=

31.7 kN

Longitudinal wind force

FL

= 25% of Transverse wind force

= =

25%×31.7 7.9 kN

2 Calculation of Loads and its Summary from Metro Structure Page 13

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

C

Wind force on Substructure 1. Pier Cap Depth of Pier Cap a/b h/b Exposed area Force coefficent Transverse wind force on Pier cap

=3.65/3.1 =2.25/4.900 =2.25×4.900 Cf =375.00×11.03×1.00/1000

Longitudinal wind force on Piercap a/b h/b Exposed area ( From Autocad ) Force coefficent Longitudinal wind force on Pier cap

Cf =1.20×16.50×375.00/1000

2. Pier Depth of Pier a/b h/b Exposed area Force coefficent Transverse wind force on pier

=1.5/1.5 =9.85/1.5 =9.85×1.5 Cf =375.00×14.78×1.40/1000

=3.1/3.65 =2.25/3.65

= = = = =

= = = =

= = = = =

2.25 1.18 0.46 11.03 1.00 =

B1163502 DN102 rev. 0

m m m m2 4.13 kN

0.85 0.62 16.50 m2 1.20 =

7.43 kN

9.85 1.00 6.57 14.78 1.40 =

7.76 kN

m m m m2

Longitudinal wind force on pier a/b h/b Exposed area Drag coefficent Longitudinal wind force on pier

=1.40×14.78×1007/1000

1.00 6.57 14.78 1.40 =

Lever Arm Calculations: Superstructure from curtailment level Superstructure from Pilecap Top level Superstructure from footing bot. level

=(119.518-101.500)+3.500/2 =(119.518-99.500)+3.500/2 =(119.518-97.700)+3.500/2

= = =

19.768 m 21.768 m 23.568 m

CG of Pier cap from curtailment level C.G of Pier cap to Pilecap Top level C.G of Pier cap to Bottom level

=1.417+(116.938-101.500) =1.417+(116.938-99.500) =1.417+(116.938-97.700)

= = =

16.855 m 18.855 m 20.655 m

C.G of Pier from curtailment level C.G of Pier to Pilecap Top level C.G of Pier to Pilecap Bottom level

=(105.585-101.500)/2 =(105.585-99.500)/2 =(105.585-99.500)/2+1.8

= = =

10.512 m 3.043 m 4.843 m

C.G of vehicle from curtailment level C.G of vehicle to Pilecap Top level C.G of vehicle to Pilecap Bottom level

=(122.000-101.500)+1.8 =(122.000-99.500)+1.8 =(122.000-97.700)+1.8

= = =

22.330 m 24.330 m 26.130 m

=1.5/1.5 =9.853/1.5 =9.853*1.5

= = = =

20.84 kN

The wind forces on superstructure in longitudinal direction are applied at the bearing level and the lever arm is calculated accordingly. The change in vertical reaction at bearing level due to these forces is not considered since the magnitude is negligible. Bearing top to curtailement section =119.518-101.500 = 18.018 m Bearing top to top of footing =119.518-99.500 = 20.018 m Bearing top to bottom of footing =119.518-97.700 = 21.818 m

2 Calculation of Loads and its Summary from Metro Structure Page 14

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Summary of Wind Forces (Without Live Load) V

Velocity of Wind

Transverse Superstructure Pier Cap Substructure Pier Total Longitudinal Superstructure Pier Cap Substructure Pier Total

Lever Arm Curtailment Lever Arm (m) section (m) (kN m)

Pilecap Bottom (kN m)

0 0

132 12 23 168

19.77 16.85 10.51

2617 209 245 3071

21.77 18.85 3.04

2882 234 71 3186

23.57 20.65 4.84

3120 256 113 3489

0

33 22 23 79

18.02 16.85 10.51

596 376 245 1217

20.02 18.85 3.04

662 420 71 1154

21.82 20.65 4.84

722 460 113 1295

Velocity of Wind

=

44 m/sec

Moment ( M ) at

H Rebar

2.2.7

Lever Arm(m)

kN

V

Transverse Superstructure Pier Cap Substructure Pier Live load Total Longitudinal Superstructure Pier Cap Substructure Pier Live load Total

Pilecap Top (kN m)

kN

Summary of Wind Forces (With Live Load)

Direction

44 m/sec

Moment ( M ) at

H Rebar

Direction

=

B1163502 DN102 rev. 0

Lever Arm Curtailment Lever Arm (m) section (m) (kN m)

Pilecap Top (kN m)

Lever Arm (m)

Pilecap Bottom (kN m)

kN

kN

0 0

44 4 8 32 88

19.77 16.85 10.51 22.33

872 70 82 708 1731

21.77 18.85 3.04 24.33

960 78 24 771 1833

23.57 20.65 4.84 26.13

1039 85 38 828 1990

0

11 7 21 8 47

18.02 16.85 10.51 22.33

199 125 219 177 720

20.02 18.85 3.04 24.33

221 140 63 193 617

21.82 20.65 4.84 26.13

241 153 101 207 702

Seismic force calculation (Feq) Load from Superstructure for longitudinal seismic (Total superstructure weight) Load from Superstructure for transverse seismic Size of each pier Average Response Acceleration Coefficient

As per section 219 of IRC:6-2014, Importance factor Zone factor for Zone III Response reduction Factor Seismic Coefficient

= = = =

(DL + SIDL)

=

5520 kN

(DL+SIDL+0.5*LL)

= =

6313 kN 1.5 x 1.5 m

= = =

Sa/g 2.5 1.00 / T

I Z R Ah

= = = =

( Soft Soil, Type - I ) 0 0.40

<= T <= <= T <=

0.4 4

1.5 0.1 3 (for ductile detailing) (z / 2) x (Sa / g) x (I / R)

2 Calculation of Loads and its Summary from Metro Structure Page 15

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Seismic Coefficient (Considering Fixed Pier base) Direction Transverse direction Longitudinal direction

Load 6313 5520

Time Period (T) (from eigen value 1.620 1.513

Sa/g 0.6 0.7

Ah 0.015 0.017

Lever Arm Calculations: C.G of vehicle from curtailment level C.G of vehicle to Pilecap Top level C.G of vehicle to bottom level

=123.83-101.500 =123.83-99.500 =123.83-97.700

= = =

22.33 m 24.33 m 26.13 m

Superstr CG from curtailment level Superstructure CG to Pilecap Top level Superstructure CG to Pilecap Bottom level

=120.918-101.500 =120.918-99.500 =120.918-97.700

= = =

19.418 m 21.418 m 23.218 m

SIDL from curtailment level SIDL to Pilecap Top level SIDL to Pilecap Bottom level

=(122.000+1.500/2)-101.500 =(122.000+1.500/2)-99.500 =(122.000+1.500/2)-97.700

= = =

21.250 m 23.250 m 25.050 m

SIDL Surfacing from curtailment level SIDL Surfacing to Pilecap Top level SIDL Surfacing to Pilecap Bottom level

=122.000-101.500 =122.000-99.500 =122.000-97.700

= = =

20.500 m 22.500 m 24.300 m

Pier cap from curtailment level Pier cap to Pilecap Top level Pier cap to Pilecap Top level

=118.3549947-101.500 =118.3549947-99.500 =118.3549947-97.700

= = =

16.855 m 18.855 m 20.655 m

Pier to Curtailment level Pier to Pilecap Top level Pier to Pilecap Bottom level

=(105.585-101.500)/2 =102.793-99.500 =102.793-97.700

= = =

10.512 m 12.512 m 14.312 m

The seismic forces from superstructure in longitudinal direction are applied at the bearing level and the lever arm is Bearing top level to curtailment level =119.518-101.500 = 18.018 m Bearing top level to Pilecap Top level =119.518-99.500 = 20.018 m Bearing top level to bottom level =119.518-97.700 = 21.818 m Seismic Forces and Moment in Transverse Direction: Description

V (kN)

Calculation

HT (kN)

Superstructure SIDL SIDL With Surfacing

3680 1180 660

= 3680×0.015 = 1180×0.015 = 660×0.015 Total

57 18 10 85

Substructure Piercap Pier Pier (curtailment Level)

1295 554 554

= 1295×0.015 = 554×0.015 = 554×0.015 Total

20 9 9 29

Live Load Pmax(LL)

= 1586×0.5

793

= 793×0.015

12

Max MT(LL)

= 790×0.5

395

= 395×0.015

6

Max ML(LL)

= 1204×0.5

602

= 602×0.015

9

Max MLT(LL)

= 600×0.5

300

= 300×0.015

6

2 Calculation of Loads and its Summary from Metro Structure Page 16

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Description Superstructure SIDL SIDL With Surfacing

Rebar Curtailment MT Lever Arm (m) (kN m) 19.42 1103 21.25 387 20.50 209 1699

Pilecap Top MT Lever Arm (m) (kN m) 21.42 1216 23.25 423 22.50 229 1869

B1163502 DN102 rev. 0

Pilecap Bottom MT Lever Arm (m) (kN m) 23.22 1319 25.05 456 24.30 248 2022

Substructure Piercap Pier

16.85 10.51

337 90 427

18.85 12.51

377 107 484

20.65 14.31

413 122 535

Live Load Pmax(LL)

22.33

273

24.33

298

26.13

320

Max MT(LL)

22.33

136

24.33

148

26.13

159

Max ML(LL)

22.33

207

24.33

226

26.13

243

Max MLT(LL)

22.33

129

24.33

141

26.13

151

Seismic Forces and Moment in Longitudinal Direction: Description

V (kN)

Calculation (V Ah)

HL (kN)

Superstructure SIDL SIDL With Surfacing

3680 1180 660

= 3680×0.017 = 1180×0.017 = 660×0.017 Total

61 19 11 91

Substructure Piercap Pier Pier (curtailment Level)

1295 554 554

= 1295×0.017 = 554×0.017 = 554×0.017 Total

21 9 9 31

Description Superstructure SIDL SIDL With Surfacing Substructure Piercap Pier

Rebar Curtailment ML Lever Arm (m) (kN m) 18.02 1096 18.02 351 18.02 196 1643

Pilecap Top ML Lever Arm (m) (kN m) 20.02 1217 20.02 390 20.02 218 1826

Pilecap Bottom ML Lever Arm (m) (kN m) 21.82 1327 21.82 425 21.82 238 1990

16.85 10.51

361 18.85 403 20.65 442 96 12.51 115 14.31 131 457 518 573 Note: Longitudinal and transverse moments at bottom of footing are increased by 35% as per RDSO Seismic Design

2 Calculation of Loads and its Summary from Metro Structure Page 17

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

2.2.8

B1163502 DN102 rev. 0

LWR LWR per m for 2 track

=

Live load Case Pmax(LL)

16 kN/m

(Refer 877-N-105 of STRUCTCON)

Total Loads 448

Max MT(LL)

224

Max ML(LL)

448

Max MLT(LL)

224

Lever Arms Rail top to Pier curtailement Rail top to Pilecap Top Rail top to Pilecap Bottom

=122.000-101.500 =122.000-100.000 =122.000-97.700

= = =

20.500 22.000 24.300

Moments due to LWR

Load Case

2.2.9

Vertical reaction VL kN

Pmax(LL)

0.00

Max MT(LL)

0.00

Max ML(LL)

0.00

Max MLT(LL)

0.00

Longitudinal Moment at Rebar Pilecap Lever Arm Curtailment Lever Arm Top (m) section (m) (kN m) (kN m) 9184 20.50

4592 9184

Lever Arm (m)

9856 22.00

4592

4928 9856

Pilecap Bottom (kN m) 10886

24.30

4928

5443 10886 5443

Nosing Nosing force at Rail level

=

Lever Arms Rail top to Pier curtailement Rail top to Pilecap Top Rail top to Pilecap Bottom

=122.000-101.500 =122.000-100.000 =122.000-97.700

100 kN

(Refer NMRCL DBR, cl. no. 7.17)

= = =

20.500 22.000 24.300

Moments due to Nosing

Load Case

Transverse Force

Vertical reaction VL kN 0.00

Transverse Moment at Rebar Pilecap Lever Arm Curtailment Lever Arm Top (m) section (m) (kN m) (kN m) 20.50 2050 22.00 2200

Lever Arm (m)

Pilecap Bottom (kN m)

24.30

2430

2 Calculation of Loads and its Summary from Metro Structure Page 18

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

2.3

Load Combination's

2.3.1

Summary of Forces at Base of Pile cap Load Case

P kN

HL kN

HT kN

ML kNm

MT kNm

G

3680 1849 5529

0 0 0

5 0 5

0 0 0

109 0 109 0 22

Notation

Dead Load Super structure DL Substructure Total

B1163502 DN102 rev. 0

SIDL Fixed SIDL Variable Live Load P max (LL)

Sf Sv

1180 660

0 0

0 1

0 0

Q1

1586

0

0

822

0

Max M T (LL)

Q2

790

0

0

410

1547

Max M L (LL)

Q3

1204

0

0

1204

0

Max M LT (LL)

Q4

600

0

0

600

1170

Centrifugal Force

F cf

P max (LL)

0

0

27

0

696

Max M T (LL)

0

0

13

0

347

Max M L (LL)

0

0

20

0

528

0

0

10

0

263

Max M LT (LL)

Fb

Braking + Traction P max (LL)

61

365

0

7959

0

Max M T (LL)

32

192

0

4189

0

Max M L (LL)

61

365

0

7959

0

32 0 0 0 0

192 0 0 0 0

0 100 0 0 0

4189 0 0 0 0

0 2430 0 0 0

0

448

0

10886

0

Max M T (LL)

0

224

0

5443

0

Max M L (LL)

0

448

0

10886

0

Max M LT (LL)

0 0

224 0

0 0

5443 0

0 0

0 0

79 47

168 88

1295 702

3489 1990

91 31 0 0 122

85 29 0 0 114

1990 573 0

2022 535

2563

0 2557

Max M LT (LL) Nosing Frictional Resistance force Derailment Vehicle Collision Rail Structure Interaction P max (LL)

N Ff D V LWR

Rail fracture Wind Force Without Live Load With Live Load Seismic forces (lateral & longitudinal) Superstructure DL+SIDL+SIDL Surfacing Substructure Vertical seismic force - for lateral case Vertical seismic force - for longitudinal case

Rf W

F eq

76 81 Total

Live Load

P max (LL)

8

0

12

0

320

Max M T (LL)

4

0

6

0

159

Max M L (LL)

6

0

9

0

243

Max M LT (LL)

4

0

6

0

151

2 Calculation of Loads and its Summary from Metro Structure Page 19

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

One Span Dislodged Condition

Notation

Permanent Loads Super structure Substructure Total

2.3.2

G

SIDL Fixed SIDL Variable Frictional resistance force Wind Force Without Live Load

Sf Sv Ff W

Seismic forces (lateral & longitudinal) Superstructure DL+SIDL Substructure Total Vertical seismic force - for lateral case Vertical seismic force - for longitudinal case

F eq

P kN

HL kN

HT kN

ML kNm

MT kNm

1840 1849 3689

0 0 0

5 0 5

1840 0 1840

109 0 109

590 330 0

0 0 147

0 1 0

590 330 3206

0 22 0

0

62

102

934

1929

91 31 122

43 29 71

995 573 1568

2022 535 2557

47 81

Load Combination for the Design of Pile Foundation Load Combinations at Base of Foundation

Load Case

I A 1.1.1

B1163502 DN102 rev. 0

Description

(IRS CBC:2014, Table 12) P kN

HL kN

HT kN

ML kNm

MT kNm

9707

0

8

0

180

6009

0

8

3698

180

12588 11145 11919 10812

638 336 638 336

230 206 219 201

15367 8048 16036 8381

5651 7747 5357 6941

9707 12012 10857 11477 10591

126 570 328 570 328

277 295 276 286 272

2072 13171 7316 13706 7582

5762 7045 8721 6810 8077

6009

99

171

5192

3266

Combination 1 Permanent Load 1.25 G + 1.25 Sf + 2 Sv

One Span Dislodged Condition 1.1.2

B

1.25 G + 1.25 Sf + 2 Sv

Live Load

1.2.1

1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q1 + Fcf + Fb + N)

1.2.2

1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q2 + Fcf + Fb + N)

1.2.3

1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q3 + Fcf + Fb + N)

1.2.4

1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q4 + Fcf + Fb + N)

II A

Combination 2 Wind Load

2.1.1

1.25 G + 1.25 Sf + 2 Sv + 1.6 W

2.1.2

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q1 + Fcf + Fb + N) + 1.25 W

2.1.3

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q2 + Fcf + Fb + N) + 1.25 W

2.1.4

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q3 + Fcf + Fb + N) + 1.25 W

2.1.5

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q4 + Fcf + Fb + N) + 1.25 W

2.1.6

1.25 G + 1.25 Sf + 2 Sv + 1.6 W

One Span Dislodged Condition

2 Calculation of Loads and its Summary from Metro Structure Page 20

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

2.2.1

1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq

2.2.2

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q1 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)

2.2.3

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q2 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)

2.2.4

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q3 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)

2.2.5

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q4 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)

2.2.6

1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq

2.3.1

1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq

2.3.2

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q1 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)

2.3.3

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q2 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)

2.3.4

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q3 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)

2.3.5

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q4 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)

2.3.6

1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq

B1163502 DN102 rev. 0

r3

r1

r2

r1

r2

0.30 9759 10904 10325 10636 10192

1.00 263 461 340 461 340

0.30 82 161 148 155 146

1.00 5536 10472 7544 10739 7677

0.30 1837 3825 4582 3668 4256

6062

263

54

7084

1837

0.30 9756 10902 10322 10633 10189

0.30 79 317 196 317 196

1.00 254 309 290 300 287

0.30 1661 7444 4517 7712 4650

1.00 5704 7224 7791 6976 7455

6040

79

162

4714

5704

12012 10857 11477 10591

511 269 511 269

186 167 177 162

12294 6439 12828 6705

4557 6233 4322 5589

6009

176

8

7545

180

9707

0

8

0

180

9707

0

8

0

180

One Span Dislodged Condition

0.3r1 + r2 + 0.3r3

Seismic Components

One Span Dislodged Condition

III

Combination 3 Temperature

3.1.1

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q1 + Fcf + Fb + N) + 1.15 Ff

3.1.2

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q2 + Fcf + Fb + N) + 1.15 Ff

3.1.3

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q3 + Fcf + Fb + N) + 1.15 Ff

3.1.4

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q4 + Fcf + Fb + N) + 1.15 Ff

3.1.5

1.25 G + 1.25 Sf + 2 Sv + 1.15 Ff

One Span Dislodged Condition

IV

Combination 5 Derailment

4.1.1

1.25 G + 1.25 Sf + 2 Sv + 1.75 D

4.2.1

1.25 G + 1.25 Sf + 2 Sv + 1.75 V

Vehicle Collision

Serviciability Limit State Load Case

I A 5.1.1

Description

(IRS CBC:2014, Table 12) P kN

HL kN

HT kN

ML kNm

MT kNm

7501

0

6

0

135

4675

0

6

2826

135

9312 8405 8892 8196

401 211 401 211

146 131 138 127

9659 5059 10080 5268

3574 4891 3390 4385

Combination 1 Permanent Load 1 G + 1 Sf + 1.2 Sv

One Span Dislodged Condition 5.1.2

B

1 G + 1 Sf + 1.2 Sv

Live Load

5.2.1

1 G + 1 Sf + 1.2 Sv + 1.1 (Q1 + Fcf + Fb + N)

5.2.2

1 G + 1 Sf + 1.2 Sv + 1.1 (Q2 + Fcf + Fb + N)

5.2.3

1 G + 1 Sf + 1.2 Sv + 1.1 (Q3 + Fcf + Fb + N)

5.2.4

1 G + 1 Sf + 1.2 Sv + 1.1 (Q4 + Fcf + Fb + N)

2 Calculation of Loads and its Summary from Metro Structure Page 21

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

II A

B1163502 DN102 rev. 0

Combination 2 Wind Load

6.1.1

1 G + 1 Sf + 1.2 Sv + 1 W

6.1.2

1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 1 W

6.1.3

1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 1 W

6.1.4

1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 1 W

6.1.5

1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 1 W

6.1.6

1 G + 1 Sf +1.2 Sv + 1 W

7501 9148 8323 8766 8133

79 412 239 412 239

174 221 207 214 204

1295 9483 5301 9865 5491

3624 5252 6449 5084 5989

4675

62

108

3760

2064

r3

r1

r2

r1

r2

0.30 7526 8351 7938 8160 7843

1.00 122 304 218 304 218

0.30 40 107 99 103 97

1.00 2563 6954 4863 7145 4958

0.30 902 2561 3112 2455 2880

4700

122

28

4394

902

0.30 7524 8350 7936 8158 7841

0.30 37 219 133 219 133

1.00 120 195 183 189 181

0.30 769 5160 3068 5351 3163

1.00 2693 4575 5014 4415 4776

4689

37

77

3296

2693

9148 8323 8766 8133

365 192 365 192

133 119 126 116

8781 4599 9163 4789

3261 4459 3094 3999

4675

118

6

5391

135

9148 8323 8766 8133

723 371 723 371

133 119 126 116

17490 8954 17872 9144

3261 4459 3094 3999

7369

0

6

0

131

7369

0

6

0

131

9148 8323 8766 8133

365 192 365 192

133 119 126 116

8781 4599 9163 4789

3261 4459 3094 3999

One Span Dislodged Condition

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

6.2.1

1 G + 1 Sf + 1.2 Sv + 1 Feq

6.2.2

1G + 1Sf +1.2Sv + 0.5*1*(Q1 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)

6.2.3

1G + 1Sf +1.2Sv + 0.5*1*(Q2 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)

6.2.4

1G + 1Sf +1.2Sv + 0.5*1*(Q3 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)

6.2.5

1G + 1Sf +1.2Sv + 0.5*1*(Q4 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)

6.2.6

1 G + 1 Sf + 1.2 Sv + 1 Feq

6.3.1

1 G + 1 Sf + 1.2 Sv + 1 Feq

6.3.2

1G + 1Sf +1.2Sv + 0.5*1*(Q1 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)

6.3.3

1G + 1Sf +1.2Sv + 0.5*1*(Q2 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)

6.3.4

1G + 1Sf +1.2Sv + 0.5*1*(Q3 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)

6.3.5

1G + 1Sf +1.2Sv + 0.5*1*(Q4 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)

6.3.6

1.25 G + 1.25 Sf + 2 Sv + 1.6 Feq

One Span Dislodged Condition

0.3r1 + r2 + 0.3r3

Seismic Components

One Span Dislodged Condition

III

Combination 3 Temperature

7.1.1

1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 0.8 Ff

7.1.2

1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 0.8 Ff

7.1.3

1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 0.8 Ff

7.1.4

1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 0.8 Ff

7.1.5

1 G + 1 Sf + 1.2 Sv + 0.8 Ff

7.2.1

1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 0.8 LWR

7.2.2

1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 0.8 LWR

7.2.3

1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 0.8 LWR

7.2.4

1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 0.8 LWR

One Span Dislodged Condition

Long Welded Rail (LWR)

IV

Combination 5 Derailment

8.1.1

1 G + 1 Sf + 1 Sv + 1.1 D

8.2.1

1 G + 1 Sf + 1 Sv + 1.1 V

8.3.1

1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 1 RF

8.3.2

1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 1 RF

8.3.3

1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 1 RF

8.3.4

1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 1 RF

Vehicle Collision

Rail Fracture

2 Calculation of Loads and its Summary from Metro Structure Page 22

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Unfactored Load Combination Load Case

I A 9.1.1

B1163502 DN102 rev. 0

(IRC 78:2014 Cl-706.1.1)

Description

P kN

HL kN

HT kN

ML kNm

MT kNm

7369

0

6

0

131

4609

0

6

2760

131

9016 8191 8634 8001

365 192 365 192

133 119 126 116

8781 4599 9163 4789

3257 4455 3089 3994

7369 9016 8191 8634 8001

79 412 239 412 239

174 220 207 214 204

1295 9483 5301 9865 5491

3620 5247 6445 5080 5985

4609

62

108

3694

2060

r3

r1

r2

r1

r2

0.30 7394 8219 7806 8028 7711

1.00 122 304 218 304 218

0.30 40 107 99 103 97

1.00 2563 6954 4863 7145 4958

0.30 898 2557 3108 2450 2875

4623

0

6

2760

131

0.30 7392 8218 7804 8026 7709

0.30 37 219 133 219 133

1.00 132 195 182 189 181

0.30 769 5160 3068 5351 3163

1.00 3008 4571 5009 4410 4771

4623

37

77

3230

2688

Combination 1 Permanent Load G + Sf + Sv

One Span Dislodged Condition 9.1.2

G + Sf + Sv

B

Live Load

10.1.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) 10.1.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) 10.1.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) 10.1.4 G + Sf + Sv + (Q4 + Fcf + Fb + N)

II

Combination 2

A

Wind Load

10.2.1 G + Sf + Sv + W 10.2.2 G + Sf + Sv + (Q1 + Fcf + Fb + N) + W 10.2.3 G + Sf + Sv + (Q2 + Fcf + Fb + N) + W 10.2.4 G + Sf + Sv + (Q3 + Fcf + Fb + N) + W 10.2.5 G + Sf + Sv + (Q4 + Fcf + Fb + N) + W

One Span Dislodged Condition 10.2.6 G + Sf +Sv + W

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

10.3.1 G + Sf + Sv + Feq 10.3.2 G + Sf +Sv + 0.5*(Q1 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.3 G + Sf +Sv + 0.5*(Q2 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.4 G + Sf +Sv + 0.5*(Q3 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.5 G + Sf +Sv + 0.5*(Q4 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3)

One Span Dislodged Condition 10.3.6 G + Sf + Sv + Feq

0.3r1 + r2 + 0.3r3

Seismic Components

10.4.1 G + Sf + Sv + Feq 10.4.2 G + Sf +Sv + 0.5*(Q1 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.3 G + Sf +Sv + 0.5*(Q2 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.4 G + Sf +Sv + 0.5*(Q3 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.5 G + Sf +Sv + 0.5*(Q4 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3)

One Span Dislodged Condition 10.4.6 G + Sf + Sv + Feq

2 Calculation of Loads and its Summary from Metro Structure Page 23

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

III

B1163502 DN102 rev. 0

Combination 3 Temperature

11.1.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + Ff 11.1.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + Ff 11.1.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + Ff 11.1.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + Ff

9016 8191 8634 8001

365 192 365 192

133 119 126 116

8781 4599 9163 4789

3257 4455 3089 3994

4609

147

6

5966

131

9016 8191 8634 8001

813 416 813 416

133 119 126 116

19668 10042 20050 10232

3257 4455 3089 3994

7369

0

6

0

131

7369

0

6

0

131

9016 8191 8634 8001

365 192 365 192

133 119 126 116

8781 4599 9163 4789

3257 4455 3089 3994

One Span Dislodged Condition 11.1.5 G + Sf + Sv + Ff

Long Welded Rail (LWR) 11.2.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + LWR 11.2.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + LWR 11.2.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + LWR 11.2.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + LWR

IV

Combination 5 Derailment

12.1.1 G + Sf + Sv + D

Vehicle Collision 12.2.1 G + Sf + Sv + V

Rail Fracture 12.3.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + RF 12.3.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + RF 12.3.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + RF 12.3.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + RF

2 Calculation of Loads and its Summary from Metro Structure Page 24

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

3

Calculation of Loads and its Summary from Flyover Structure

3.1

Input Data General Arrangement of Structure (Flyover) Total span of superstructure (left side) Total span of superstructure (right side) Effective span c/c of bearings (left side) Effective span c/c of bearings (right side) Radius of curvature used in design Design speed No of bearings Bearings c/c distance in transverse direction Bearings c/c distance in longitudinal direction Cross slope Total width of the superstructure Thickness of wearing coat Depth of the box girder CG of the superstructure from top of box girder Bearing height Minimum pedestal height Height of crash barrier

= = =

Levels (Flyover) Finished road level at centreline of carriageway edge Bearing top level Pier cap top level Pier cap bottom level Existing ground/road level Pile cap top level Pile cap bottom level Pier Dimensions (Flyover) Effective Size of the pier Size of the pier cap top Size of the pedestal Depth of the Pier Cap at pier face Depth of the Pier cap at Edge

R V

= = = = = = = = = = = = =

28.0 28.0 24.5 24.5 3000 80 4 3.500 3.500 2.5 19.600 0.065 2.000 0.620 0.200 0.250 1.000

FRL

= = = = = = =

109.600 107.535 107.085 105.585 100.000 99.500 97.700

m m m m m m m

col_l long long

= 2.0 = 4.9 = 0.9 = =

x 2.00 x 4.90 x 0.90 1.500 0.500

m m m m m

foot_l foot_b

= = = =

8.700 5.100 1.800 0.500

m m m m

GL

col_b trans trans

Foundation Dimensions Pile cap length in longitudinal direction Pile cap length in transverse direction Pile cap thickness Depth of the soil above pile cap top

B1163502 DN102 rev. 0

m m m m m kmph Nos m m % m m m m m m m

Plan at Pier Top CL of pier / pier cap 0.70 m

1.75 m

1.75 m

0.70 m

B6 Fixed

Free

Free

Free

Traffic Direction

B5 0.70 m 1.75 m

1.75 m 0.70 m

B7

B8 4.9 m

Plan of Pier Cap (Flyover)

3 Calculation of Loads and its Summary from Flyover Structure Page 25

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Transverse Section (box girder section shown is schematic only)

Pier Cap

+ve 0.5 m

7.50 m

3.60 m

7.50 m CG of Vehicle = 110.800

2.50 %

2.50 %

1.0 m

FRL = 109.600

Super str. CG = 108.915

B5 & B7

B6 & B8

3.5 m

0.50 m

Pier Cap CG = 106.437

Pier Cap

1.45 m Pier

2.0 m

5.1 m

3 Calculation of Loads and its Summary from Flyover Structure Page 26

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Longitudinal Section

Railway

Railway

B1 & B2

RL =

122.000 m

Rail Top Level

=

119.518 m

Bearing Top Level (Metro)

=

119.188 m

Pier Cap Top Level (Metro)

=

116.938 m

Pier Cap Bottom Level (Metro)

=

112.012 m

CG of Pier for Seismic Case (Metro)

FRL =

109.600 m

Road Top Level

2.81 m

B3 & B4

3.1 m 2.25 m

1.5 m 7.34 m 9.85 m

( at centre of C/W )

Road

Road

B1 and B2 B5 & B6

2.52 m

B3 and B4

=

107.535 m

Bearing Top Level (Flyover)

B7 & B8

=

107.085 m

Pier Cap Top Level (Flyover)

=

105.585 m

Pier Cap Bottom Level (Flyover)

=

102.793 m

CG of Pier for Seismic Case (Flyover)

=

101.500 m

Pier Rebar Curtailement level

=

100.000 m

Ground level

=

99.500 m

Pilecap Top Level

=

97.700 m

Pilecap Bottom Level

4.9 m 1.50 m

2.0 m 5.58 m 6.08 m

3.35 m

3.35 m 1.80 m

8.70 m

Material Properties Granular Backfill Unit weight of soil overburden above footing

γfill

=

20 kN /m3

Concrete Unit weight of Concrete for Design

γcon

=

25 kN /m3

3 Calculation of Loads and its Summary from Flyover Structure Page 27

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

3.2

Calculation of Forces

3.2.1

Reactions from Superstructure

Sr. No. Load Case (Flyover)

1 2 3 4 5 6 7 i

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL) ( 2 70R )

B1163502 DN102 rev. 0

V5 kN

Bearing 5 (Inner) HL5 kN

HT5 kN

V6 kN

Bearing 6 (Outer) HL6 kN

HT6 kN

1650 200 150 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1650 200 150 0 0 0

0 0 0 0 0 0

5 0 1 0 0 0

571

0

0

571

0

0

ii

Max MT(LL)

( 1 70R )

0

0

0

571

0

0

iii

Max ML(LL)

( 2 70R )

1142

0

0

1142

0

0

iv

Max MLT(LL)

( 1 70R )

0

0

0

1142

0

0

V7

Bearing 7 (Inner) HL7

HT7

V8

Bearing 8 (Outer) HL8

HT8

kN

kN

kN

kN

kN

kN

1650 200 150 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1650 200 150 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Sr. No. Load Case (Flyover)

1 2 3 4 5 6 7 i

Dead Load - Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL) ( 2 70R )

571

0

0

571

0

0

ii

Max MT(LL)

( 1 70R )

0

0

0

571

0

0

iii

Max ML(LL)

( 2 70R )

0

0

0

0

0

0

iv

Max MLT(LL)

( 1 70R )

0

0

0

0

0

0

Note:The above value for live loads of flyover are including the reduction factor of 20% as per cl 205 IRC6:2014 Pmax(LL) Notation: Maximum Vertical load case Pmin(LL)

-

Minimum Vertical load case

Max MT(LL)

-

Maximum Transverse moment case

Max ML(LL)

-

Maximum Longitudinal moment case

3 Calculation of Loads and its Summary from Flyover Structure Page 28

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Summary of Vertical Loads from Superstructure Sr. No. 1 2 3 4 5 6 7

Load Case (Flyover)

Calculations = 1650+1650+1650+1650 = 200+200+200+200 = 150+150+150+150 = 0+0+0+0 = 0+0+0+0 = 0+0+0+0

i

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)

V (kN) 6600 800 600 0 0 0

= 571+571+571+571

2284

ii

Max MT(LL)

= 0+571+0+571

1142

iii

Max ML(LL)

= 1142+1142+0+0

2284

iv 8

Max MLT(LL)

= 0+1142+0+0

1142

One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient

= MAX(1650+1650,1650+1650) = MAX(200+200,200+200) = MAX(150+150,150+150) = MAX(0+0,0+0) = MAX(0+0,0+0) = MAX(0+0,0+0)

3300 400 300 0 0 0

Summary of Longitudinal Moments from Superstructure

Sr. No. Load Case (Flyover)

1 2 3 4 5 6 7 i

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)

V5 + V6 ( kN )

3300 400 300 0 0 0

ii

Max MT(LL)

571

Max ML(LL)

2284

iv

Max MLT(LL)

1142

One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient

1.75

1142

iii

8

Longitudinal BM at Rebar Curtailment level HL5 +HL6 V7 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HL7 +HL8 m) m) m) ( kN ) ( kN )

V5 + V6 ( kN )

3300 400 300 0 0 0

3300 400 300 0 0 0

1.75

1142 1.75

571 0

0 0 0 0 0 0

6.04

0 1.75

0 0

ML ( kN m )

0 0 0 0 0 0 0

6.04

0 3997

0

0

1999

Lever Arm ( m)

V7 + V8 ( kN )

HL5 +HL6 or Lever Arm ( Lever Arm ( HL7 +HL8 m) m) ( kN )

ML ( kN m )

1.75

3300 400 300 0 0 0

0 0 0 0 0 0

5775 700 525 0 0 0

1.75

6.04

3 Calculation of Loads and its Summary from Flyover Structure Page 29

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Sr. No. Load Case (Flyover)

1 2 3 4 5 6 7

V5 + V6 ( kN )

i

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)

1142

1142

0

ii

Max MT(LL)

571

571

0

iii

Max ML(LL)

2284

iv

Max MLT(LL)

1142

8

One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient

Sr. No. Load Case (Flyover)

1 2 3 4 5 6 7

3300 400 300 0 0 0

Longitudinal BM at Pile Cap Top level HL5 +HL6 V7 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HL7 +HL8 m) m) m) ( kN ) ( kN )

V5 + V6 ( kN )

3300 400 300 0 0 0

V5 + V6 ( kN )

i

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)

1142

ii

Max MT(LL)

571

iii

Max ML(LL)

2284

iv

Max MLT(LL)

1142

8

One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient

3300 400 300 0 0 0

V5 + V6 ( kN )

3300 400 300 0 0 0

1.75

1.75

3300 400 300 0 0 0

0

1.75

1.75

0 0 0 0 0 0

0

8.04

B1163502 DN102 rev. 0 ML ( kN m )

0 0 0 0 0 0 0

8.04

0 3997

0

0

1999

Lever Arm ( m)

V7 + V8 ( kN )

HL5 +HL6 or Lever Arm ( Lever Arm ( HL7 +HL8 m) m) ( kN )

ML ( kN m )

1.75

3300 400 300 0 0 0

0 0 0 0 0 0

5775 700 525 0 0 0

1.75

8.04

Longitudinal BM at Pile Cap Bottom level HL5 +HL6 V7 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HL7 +HL8 m) m) m) ( kN ) ( kN )

1.75

3300 400 300 0 0 0

1.75

1142 1.75

571 0

V7 + V8 ( kN )

1.75

3300 400 300 0 0 0

9.83

0 1.75

0 Lever Arm ( m)

0 0 0 0 0 0

0 0

9.72

1.75

0 3997 1999

HL5 +HL6 or Lever Arm ( HL7 +HL8 m) ( kN )

0 0 0 0 0 0

0 0 0 0 0 0 0

0 Lever Arm ( m)

ML ( kN m )

9.83

ML ( kN m )

5775 700 525 0 0 0

3 Calculation of Loads and its Summary from Flyover Structure Page 30

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Summary of Transverse Moment from Superstructure

Sr. No. Load Case (Flyover)

V5 + V7 ( kN )

1 2 3 4 5 6 7 i

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)

ii

Max MT(LL)

0

iii

Max ML(LL)

1142

iv

Max MLT(LL)

0

8

One Span Dislodged Condition Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient

Sr. No. Load Case (Flyover)

3300 400 300 0 0 0

1.75

1142

V6 - V5 ( kN )

0 0 0 0 0 0

V5 + V7 ( kN )

1 2 3 4 5 6 7 i

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)

ii

Max MT(LL)

0

3300 400 300 0 0 0

iii

Max ML(LL)

1142

Max MLT(LL)

0

8

One Span Dislodged Condition

V6 - V5 ( kN )

0 0 0 0 0 0

3300 400 300 0 0 0

1.75

1142 1.75

1142 1142

Lever Arm ( m)

V8 - V7 ( kN )

1.75

0 0 0 0 0 0

5 0 1 0 0 0

6.04

0 1.75

1142

0 0

6.04

0 Lever Arm ( m)

1.75

1.75

3300 400 300 0 0 0

1.75

1142 1.75

1142 1142

6.04

V8 - V7 ( kN )

1.75

0 0 0 0 0 0

8.04

0 1.75

1142 Lever Arm ( m)

5 0 1 0 0 0

0 0

8.04

1.75

0

MT ( kN m )

30 0 6 0 0 0

MT ( kN m )

40 0 8 0 0 0

1999 0 1999

HT5 +HT6 or Lever Arm ( HT7 +HT8 m) ( kN )

5 0 1 0 0 0

1999

0

0 Lever Arm ( m)

30 0 6 0 0 0

1999

HT5 +HT6 or Lever Arm ( HT7 +HT8 m) ( kN )

5 0 1 0 0 0

MT ( kN m )

0

Transverse BM at Pile Cap Top level HT5 +HT6 V6 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HT7 +HT8 m) m) m) ( kN ) ( kN )

1142

iv

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient

Transverse BM at Rebar Curtailment level HT5 +HT6 V6 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HT7 +HT8 m) m) m) ( kN ) ( kN )

8.04

MT ( kN m )

40 0 8 0 0 0

3 Calculation of Loads and its Summary from Flyover Structure Page 31

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Sr. No. Load Case (Flyover)

V5 + V7 ( kN )

1 2 3 4 5 6 7 i

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient Live load Reaction Without Impact Pmax(LL)

3300 400 300 0 0 0

ii

Max MT(LL)

0

iii

Max ML(LL)

1142

Max MLT(LL)

0

8

One Span Dislodged Condition

3.2.2

1.75

1142

iv

Dead Load -Superstructure SIDL SIDL Surfacing Prestress Settlement Temperature Gradient

Transverse BM at Pile Cap Bottom level HT5 +HT6 V6 + V8 Lever Arm ( Lever Arm ( Lever Arm ( +HT7 +HT8 m) m) m) ( kN ) ( kN )

V6 - V5 ( kN )

0 0 0 0 0 0

3300 400 300 0 0 0

1.75

1142 1.75

1142 1142

V8 - V7 ( kN )

1.75

0 0 0 0 0 0

9.83

0 1.75

1142 Lever Arm ( m)

5 0 1 0 0 0

0 0

9.72

1.75

49 0 10 0 0 0

1999 0 1999

HT5 +HT6 or Lever Arm ( HT7 +HT8 m) ( kN )

5 0 1 0 0 0

MT ( kN m )

0

0 Lever Arm ( m)

B1163502 DN102 rev. 0

9.83

MT ( kN m )

49 0 10 0 0 0

Loads from Substructure Summary of Vertical Loads due to Self Weight of Substructure Load Description

Calculations

Pier Bearing pedestals =0.9×0.9×0.250×4×25 Bearing pedestals(Curtailment) =(0.90×0.90×0.250×4×25) Pier cap =(5.900×4.9×25) Pier cap (Curtailment) =(5.900×4.900×25) Pier =(6.085×2.00×2.00×25) Pier for seismic =(5.585×2.00×2.00×25) Pier upto curtailment =(105.585-101.500)×2.00×2×25 Total for pier bottom Total for curtailment level Footing & Soil above Pilecap portion =(8.700×5.100)×1.800×25 Soil above Pilecap =(8.700×5.100-2×2.000)×0.500×20 Total ( Footing + Soil above ) Total ( Pier + Footing + Soil above )

V (kN) 20 20 723 723 608 558 408 1352 1152 1997 404 2400 3752

3 Calculation of Loads and its Summary from Flyover Structure Page 32

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Summary of Moments due to Self Weight of Substructure Longitudinal Moment ML Load Description Pier Bearing pedestals (Road) Pier cap (Road) Pier (Road) Pier for seismic (Road) Pier upto curtailment (Road) Total for pier bottom Total for curtailment level Footing & Soil above Pilecap portion Soil above Pilecap Total ( Footing + Soil above ) Total (Pier+Footing+Soil above) 3.2.3

0 0 -

Loads Due to Centrifugal Forces, Fcf (Metro) Centrifugal Force where,

W= R= V=

=

MT

Lever Arm Lever Arm Lever Arm BM(kN m) BM(kN m) BM(kN m) (m) (m) (m) Pile Cap Top Pile Cap Bottom Rebar Curtailment 1.75 0 1.75 0 1.75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 -

0 0 0 0

(kN m) 0 0 0 0 0 0 0 0 0 0 0

(IRC: 6, cl.no. 212.1)

W V2 127R

Total Live load Radius of curvature in meters Velocity of the vehicle in KMPH R V Point of action of Fcf above FRL

= = =

3000 m 80 kmph 1.2 m

=109.600-101.500+1.2 =109.600-99.500+1.2 =109.600-97.700+1.2

= = =

9.3 m 11.3 m 13.1 m

Lever Arms CG of vehicle from Curtailment level CG of vehicle from Pilecap top CG of vehicle from Pilecap bottom

Summary of Transverse Force due to Centrifugal Force Load Case

V kN

HT kN

Calculation

Pmax(LL)

2284

=2284×80^2/(127×3000)

38

Max MT(LL)

1142

=1142×80^2/(127×3000)

19

Max ML(LL)

2284

=2284×80^2/(127×3000)

38

Max MLT(LL)

1142

=1142×80^2/(127×3000)

19

Summary of Transverse Moment due to Centrifugal Force

Load Case

Transverse Moment from Flyover (MT) at Rebar Pilecap Lever Arm Lever Arm Lever Arm Curtailment Top (m) (m) (m) (kN m) (kN m)

Pmax(LL)

357

434

Max MT(LL)

178

217

Max ML(LL) Max MLT(LL)

9.30

357 178

11.30

434 217

Pilecap Bottom (kN m)

503 13.10

251 503 251

3 Calculation of Loads and its Summary from Flyover Structure Page 33

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

3.2.4

Braking/Traction Force The Horizontal forces on the bearing are calculated as per clause 211.5 of IRC:6-2014. Following formulae are used to Successive Trains Class A = 70R =

Train 1 554 1000

Train 2 0 0

kN kN

% of Load to be taken Sl.No 1 2 3 4 5 6 7

B1163502 DN102 rev. 0

Load Case 1 Lane Class A Class A - 2 lanes 70R Eccentric 70R - 2-lane 4 Class A Class A+1 70 R 2 Class A+1 70 R

Sr. no.

st

1 Lane 20.0% 20.0% 20.0% 20.0% 20.0% 20.0% 20.0%

2

nd

Lane

Load of Vehicle in

3rd & 4th Lane

1 Lane

2nd Lane

3rd Lane

4th Lane

Braking Force

5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0%

554 554 1000 1000 554 1000 1000

0 554 0 0 554 0 0

0 0 0 1000 554 554 554

0 0 0 0 554 0 554

111 111 200 250 166 228 255

0% 0% 0% 0% 0% 0% 0%

st

Braking Force (Fh)

Loads

Load Case

i

Pmax(LL)

( 2 70R )

250

ii

Max MT(LL)

( 1 70R )

200

iii

Max ML(LL)

( 2 70R )

250

iv

Max MLT(LL)

( 1 70R )

200

Fh

=

Applied horizontal force

Rg

=

Reaction at the free end due to Dead load

Rq R m

= = = =

Reaction at the free end due to live load Total Reaction Coefficient of friction between teflon and stainless steel 0.03 or 0.05 whichever is governing

Vertical force on Bearing ( from fixed bearing span ) Sr. no.

Loads

Rg

Rq

R

1142

5142

i

Pmax(LL)

4000

ii

Max MT(LL)

4000

571

4571

iii

Max ML(LL)

4000

2284

6284

iv

Max MLT(LL)

4000

1142

5142

Normal Load Case i

Pmax (LL) Fh

ii

<

4µR

=

1028 kN

Fh / 2 + µR

=

382 kN

4µR

=

914 kN

Fh / 2 + µR

=

329 kN

4µR

Max MT (LL) Fh

<

4µR

3 Calculation of Loads and its Summary from Flyover Structure Page 34

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

iii

Max ML (LL) Fh

iv

B1163502 DN102 rev. 0

<

4µR

=

1257 kN

Fh / 2 + µR

=

439 kN

4µR

=

1028 kN

Fh / 2 + µR

=

357 kN

Rg Rq R

= = =

4000 kN 0 kN 4000 kN

4µR

Max MLT (LL) Fh

<

4µR

Vertical force on Bearing ( from free bearing span ) Sr. no.

Loads

Rg

Rq

R

i

Pmax(LL)

4000

1142

5142

ii

Max MT(LL)

4000

571

4571

iii

Max ML(LL)

4000

0

4000

iv

Max MLT(LL)

4000

0

4000

Vertical force on bearing (one span dislodged condition) Reaction due to DL+SIDL+ SURFACING ( Opposite in Direction ) Reaction due to LIVE LOAD

Lever Arms Bearing top to Pier curtailement Bearing top to Pilecap Top Bearing top to Pilecap Bottom

=107.535-101.500 =107.535-99.500 =107.535-97.700

= = =

6.04 m 8.04 m 9.83 m

Summary of Longitudinal Forces due to Braking force and Frictional resistance

Sr. no. A

Load

V

HL

kN

kN

Longitudinal Moment ( ML ) at Rebar Pilecap Lever Arm Curtailment Lever Arm Lever Arm Top (m) section (m) (m) (kN m) (kN m)

Pilecap Bottom (kN m)

i

Braking + Frictional Resistance Normal Load Case Pmax(LL) 33.3

382

6.04

2306

8.04

3070

9.83

3758

ii

Max MT(LL)

26.7

329

6.04

1983

8.04

2640

9.83

3231

iii

Max ML(LL)

33.3

439

6.04

2651

8.04

3529

9.83

4320

iv B

Max MLT(LL)

26.7

357

6.04

2155

8.04

2869

9.83

3512

i

Frictional Resistance Normal Load Case ( µ * R ) Pmax(LL) 0

257

6.04

1552

8.04

2066

9.83

2529

ii

Max MT(LL)

0

229

6.04

1379

8.04

1836

9.83

2248

iii

Max ML(LL)

0

200

6.04

1207

8.04

1607

9.83

1967

iv C

Max MLT(LL) 0 200 6.04 Frictional Resistance (one span dislodged condition) Normal Load Case 0 200 6.04 µ∗R

1207

8.04

1607

9.83

1967

1207

8.04

1607

9.83

1967

i

3 Calculation of Loads and its Summary from Flyover Structure Page 35

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

3.2.5 I

B1163502 DN102 rev. 0

Wind Loads (W) Wind without Live Load Length of the superstructure for wind load calculation

=

28.0 m

28.0 28.0

28.0

Pier Cap a

Wind Load on Superstructre Height of the Crash barrier Total depth of superstructure exposed to wind Height of structure above ground (form Parapet top to GL) Actual wind speed at the location of the structure

= = = = =

From Table 5 of IRC:6-2014 Hourly Mean Wind Speed ( Plain terrain ) Hourly Mean Wind Pressure Basic Wind Speed Considered

= = =

28.08 m/sec 473.46 N/mm2 33 m/sec 842 N/m2

for 10.6 m height

Hourly Mean wind Pressure

=473×44^2/33^2

PZ

=

Hourly Mean wind Speed

=28.08×44/33

VZ

=

1.Transverse Wind Force FT Where,

=

P Z * A 1 * G * CD

A1

= = =

G

= = = = =

Solid area (Exposed area in transverse dirction) 28.0×3.000 2 84 m Gust factor 2 (IRC:6,CL:209.3.3) Drag Coefficient 28.00/3.00 = 9.33 1.13 For Bridge with single Girder

CD width/ depth

b/d

CD

=

Transverse wind force

=

842×84×2×1.13/1000

=

25% of Transverse wind force

3. Vertical Wind Load FV

=

Pz * A3 * G * CL

A3

= = =

CL

= =

Plan area 28.0×19.600 2 549 m Lift Coefficient 0.75 = 842×549×2×0.75/1000

Total vertical Wind load

3.000 m 10.60 m 44 m/sec (IRC:6-2014)

37 m/sec (IRC:6,CL:209.2)

1.13

2. Longitudinal Wind Force FL

Where,

1.000 m 2+1

=

160.3 kN

= =

25%×160.3 40.1 kN

=

693 kN

3 Calculation of Loads and its Summary from Flyover Structure Page 36

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

b

Wind Force on Substructure 1.Pier Cap Transverse wind force on piercap Height of the pier Cap t/b H/b Exposed area Drag coefficent Transverse wind force on Piercap

=842×7.35×2×0.80/1000

Longitudinal wind force on piercap =4.9/4.9 t/b =1.5/4.9 H/b Exposed area ( from Autocad ) Drag coefficent Longitudinal wind force on Piercap 2. Pier Transverse wind force on pier Depth of Pier t/b H/b Exposed area Drag coefficent Transverse wind force on pier Longitudinal wind force on pier t/b H/b Exposed area Drag coefficent Longitudinal wind force on pier II

a

= = = = =

=4.9/4.9 =1.50/4.90 =1.50×4.90

1.50 1.00 0.31 7.35 0.80 =

= = = = =1.30×5.90×2×842/1000

=842×11.17×2×1.30/1000

=2/2 =5.58/2 =5.58×2

m m m m2 (Table 6, IRC:6-2014) 9.90 kN

1.00 0.31 5.90 m2 1.30 =

= = = = =

=2/2 =5.58/2 =5.58×2

= = = =

=11.17×1.30×2×842/1000

12.91 kN

5.58 1.00 2.79 11.17 1.30 =

m m m m2 24.44 kN

1.00 2.79 11.17 1.30 =

24.44 kN

Wind with Live Load Total Length of the superstructure

=

Wind Load on Superstructure Height of the crash Barrier Total depth of superstructure exposed of wind Height of structure above bed level Point of action of wind force on Vehicle above FRL Actual wind speed at the location of the structure

= = = = =

From Table 5 of IRC6:2014 Hourly Mean wind Speed Hourly Mean wind Pressure Basic Wind Speed Considered

= = =

28.08 m/sec 473.46 N/mm2 33 m/sec 563 N/m2

Hourly Mean wind Pressure

=473.46×36^2/33^2

PZ

=

Hourly Mean wind Speed

=28.08×36/33

VZ

=

B1163502 DN102 rev. 0

28.0 m

1.000 3.000 10.6 1.5 36

m m m m m/sec

31 m/sec

3 Calculation of Loads and its Summary from Flyover Structure Page 37

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

1.Transverse Wind Force FT Where,

A1

G CD

=

P Z * A 1 * G * CD

= = = = =

Solid area (Exposed area in transverse dirction) 28.00×3.000 84 m2 Gust factor 2

= =

Drag Coefficient 1.13

Transverse wind force

=563×84×2×1.13/1000

2.Longitudinal Wind Force FL

=

25% of Transverse wind force

3.Vertical Wind Load FV

=

Pz * A3 * G * CL

A3

= = =

CL

= =

Plan area 28.0×19.600 2 549 m Lift Coefficient 0.75 = 563×549×2×0.75/1000

Where,

Total vertical Wind load b

Wind force on Live Load FT A1

G CD

=

P Z * A 1 * G * CD

= = = = = = =

Exposed area 28.00×(3-1.00) 2 56 m Gust factor 2 Drag Coefficient 1.2 FT = 563×56×2×1.2/1000

Transverse wind force Longitudinal wind force

(c)

Wind force on Substructure 1. Pier Cap Depth of Pier Cap t/b H/b Exposed area Drag coefficent Transverse wind force on Pier cap

FL

= 25% of Transverse wind force

Longitudinal wind force on Piercap t/b =4.9/4.9 H/b =1.5/4.9 Exposed area ( From Autocad ) Drag coefficent Longitudinal wind force on Pier cap

=

107.3 kN

= =

25%×107.3 26.8 kN

=

464 kN

=

75.7 kN

= =

25%×75.7 18.9 kN

= = = = =

=4.9/4.9 =1.50/4.900 =1.50×4.900 = 563×7.35×2×0.80/1000

1.50 1.00 0.31 7.35 0.80 =

= = = = = 1.30×5.90×2×563/1000

B1163502 DN102 rev. 0

m m m m2 6.63 kN

1.00 0.31 5.90 1.30 =

8.64 kN

3 Calculation of Loads and its Summary from Flyover Structure Page 38

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

2. Pier Depth of Pier t/b H/b Exposed area Drag coefficent Transverse wind force on pier Longitudinal wind force on pier t/b H/b Exposed area Drag coefficent Longitudinal wind force on pier

= = = = =

=2/2 =5.58/2 =5.58×2 = 563×11.17×2×1.30/1000

=2/2 =5.585/2 =5.585*2

= = = =

= 1×11.17×2×563.46/1000

5.58 1.00 2.79 11.17 1.30 =

1.00 2.79 11.17 1.30 =

B1163502 DN102 rev. 0

m m m m2 16.36 kN

16.36 kN

Lever Arm Calculations: Superstructure from curtailment level Superstructure from Pilecap Top level Superstructure from footing bot. level

=(107.535-101.500)+3.000/2 =(107.535-99.500)+3.000/2 =(107.535-97.700)+3.000/2

= = =

7.535 m 9.535 m 11.335 m

CG of Pier cap from curtailment level C.G of Pier cap to Pilecap Top level C.G of Pier cap to Bottom level

=0.852+(105.585-101.500) =0.852+(105.585-99.500) =0.852+(105.585-97.700)

= = =

4.937 m 6.937 m 8.737 m

C.G of Pier from curtailment level C.G of Pier to Pilecap Top level C.G of Pier to Pilecap Bottom level

=(105.585-101.500)/2 =(105.585-99.500)/2 =(105.585-99.500)/2+1.8

= = =

2.043 m 3.043 m 4.843 m

C.G of vehicle from curtailment level C.G of vehicle to Pilecap Top level C.G of vehicle to Pilecap Bottom level

=(109.600-101.500)+1.5 =(109.600-99.500)+1.5 =(109.600-97.700)+1.5

= = =

9.600 m 11.600 m 13.400 m

The wind forces on superstructure in longitudinal direction are applied at the bearing level and the lever arm is calculated accordingly. The change in vertical reaction at bearing level due to these forces is not considered since the magnitude is negligible. Bearing top to curtailement section =107.535-101.500 = 6.035 m Bearing top to top of footing =107.535-99.500 = 8.035 m Bearing top to bottom of footing =107.535-97.700 = 9.835 m Summary of Wind Forces (Without Live Load) V

Velocity of Wind

Transverse Superstructure Pier Cap Substructure Pier Total Longitudinal Superstructure Pier Cap Substructure Pier Total

44 m/sec

Moment ( M ) at

H Rebar

Direction

=

Lever Arm Curtailment Lever Arm (m) section (m) (kN m)

Pilecap Top (kN m)

Lever Arm(m)

Pilecap Bottom (kN m)

kN

kN

693 693

160 10 24 195

7.54 4.94 2.04

1208 49 50 1306

9.54 6.94 3.04

1528 69 74 1671

11.34 8.74 4.84

1817 86 118 2021

0

40 13 24 77

6.04 4.94 2.04

242 64 50 355

8.04 6.94 3.04

322 90 74 486

9.83 8.74 4.84

394 113 118 625

3 Calculation of Loads and its Summary from Flyover Structure Page 39

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Summary of Wind Forces (With Live Load) V

Velocity of Wind

Transverse Superstructure Pier Cap Substructure Pier Live load Total Longitudinal Superstructure Pier Cap Substructure Pier Live load Total 3.2.6

36 m/sec

Moment ( M ) at

H Rebar

Direction

=

B1163502 DN102 rev. 0

Lever Arm Curtailment Lever Arm (m) section (m) (kN m)

Pilecap Top (kN m)

Lever Arm (m)

Pilecap Bottom (kN m)

kN

kN

464 464

107 7 16 76 206

7.54 4.94 2.04 9.60

808 33 33 727 1602

9.54 6.94 3.04 11.60

1023 46 50 878 1997

11.34 8.74 4.84 13.40

1216 58 79 1015 2368

0

27 9 16 19 71

6.04 4.94 2.04 9.60

162 43 33 182 420

8.04 6.94 3.04 11.60

216 60 50 220 545

9.83 8.74 4.84 13.40

264 76 79 254 672

Seismic force calculation (Feq) Load from Superstructure for longitudinal seismic (Total superstructure weight) Load from Superstructure for transverse seismic Size of each pier Average Response Acceleration Coefficient

As per section 219 of IRC:6-2014, Importance factor Zone factor for Zone III Response reduction Factor Seismic Coefficient

= = = =

(DL + SIDL)

=

8000 kN

(DL+SIDL+0.2*LL)

= =

8457 kN 2x2 m

= = =

Sa/g 2.5 1.00 / T

I Z R Ah

= = = =

( Soft Soil, Type - I ) 0 0.40

<= T <= <= T <=

0.4 4

1.5 0.1 3 (for ductile detailing) (z / 2) x (Sa / g) x (I / R)

Seismic Coefficient (Considering Fixed Pier base) Direction Transverse direction Longitudinal direction

Load 8457 8000

Time Period (T) (from eigen value 1.620 1.513

Sa/g 0.6 0.7

Ah 0.015 0.017

Lever Arm Calculations: C.G of vehicle from curtailment level C.G of vehicle to Pilecap Top level C.G of vehicle to bottom level

=110.800-101.500 =110.800-99.500 =110.800-97.700

= = =

9.3 m 11.3 m 13.1 m

Superstr CG from curtailment level Superstructure CG to Pilecap Top level Superstructure CG to Pilecap Bottom level

=108.915-101.500 =108.915-99.500 =108.915-97.700

= = =

7.415 m 9.415 m 11.215 m

SIDL from curtailment level SIDL to Pilecap Top level SIDL to Pilecap Bottom level

=(109.600+1.00/2)-101.500 =(109.600+1.00/2)-99.500 =(109.600+1.00/2)-97.700

= = =

8.600 m 10.600 m 12.400 m

SIDL Surfacing from curtailment level SIDL Surfacing to Pilecap Top level SIDL Surfacing to Pilecap Bottom level

=109.600-101.500 =109.600-99.500 =109.600-97.700

= = =

8.100 m 10.100 m 11.900 m

Pier cap from curtailment level Pier cap to Pilecap Top level Pier cap to Pilecap Top level

=106.437-101.500 =106.437-99.500 =106.437-97.700

= = =

4.937 m 6.937 m 8.737 m

3 Calculation of Loads and its Summary from Flyover Structure Page 40

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Pier to Curtailment level level Pier to Pilecap Top level Pier to Pilecap Bottom level

=(106.437-101.500)/2 =102.793-99.500 =102.793-97.700

= = =

B1163502 DN102 rev. 0

2.469 m 3.292 m 5.092 m

The seismic forces from superstructure in longitudinal direction are applied at the bearing level and the lever arm is Bearing top level to curtailment level =107.535-101.500 = 6.035 m Bearing top level to Pilecap Top level =107.535-99.500 = 8.035 m Bearing top level to bottom level =107.535-97.700 = 9.835 m Seismic Forces and Moment in Transverse Direction: Description

V (kN)

Calculation

HT (kN)

Superstructure SIDL SIDL With Surfacing

6600 800 600

= 6600×0.015 = 800×0.015 = 600×0.015 Total

102 12 9 123

Substructure Piercap Pier Pier( up to curtailment level)

743 558 408

= 743×0.015 = 558×0.015 =408×0.015 Total

11 9 6 20

Live Load Pmax(LL)

= 2284×0.2

457

= 457×0.015

7

Max MT(LL)

= 1142×0.2

228

= 228×0.015

4

Max ML(LL)

= 2284×0.2

457

= 457×0.015

7

Max MLT(LL)

= 1142×0.2

228

= 228×0.015

4

Description Superstructure SIDL SIDL With Surfacing

Rebar Curtailment MT Lever Arm (m) (kN m) 7.41 755 8.60 106 8.10 75 936

Pilecap Top MT Lever Arm (m) (kN m) 9.41 959 10.60 131 10.10 94 1183

Pilecap Bottom MT Lever Arm (m) (kN m) 11.22 1142 12.40 153 11.90 110 1406

Substructure Piercap Pier

4.94 2.47

57 16 72

6.94 3.29

80 28 108

8.74 5.09

100 44 144

Live Load Pmax(LL)

9.30

66

11.30

80

13.10

92

Max MT(LL)

9.30

33

11.30

40

13.10

46

Max ML(LL)

9.30

66

11.30

80

13.10

92

Max MLT(LL)

9.30

41

11.30

50

13.10

58

Seismic Forces and Moment in Longitudinal Direction: Description

V (kN)

Calculation (V Ah)

HL (kN)

Superstructure SIDL SIDL With Surfacing

6600 800 600

= 6600×0.017 = 800×0.017 = 600×0.017 Total

109 13 10 132

Substructure Piercap Pier Pier( up to curtailment level)

743 558 408

= 743×0.017 = 558×0.017 =408×0.015 Total

12 9 6 22

3 Calculation of Loads and its Summary from Flyover Structure Page 41

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Description Superstructure SIDL SIDL With Surfacing Substructure Piercap Pier

Rebar Curtailment ML Lever Arm (m) (kN m) 6.04 658 6.04 80 6.04 60 798

Pilecap Top ML Lever Arm (m) (kN m) 8.04 876 8.04 106 8.04 80 1062

B1163502 DN102 rev. 0

Pilecap Bottom ML Lever Arm (m) (kN m) 9.83 1073 9.83 130 9.83 98 1300

61 6.94 85 8.74 107 16 3.29 30 5.09 47 76 116 154 Note: Longitudinal and transverse moments at bottom of footing are increased by 35% as per Cl. 219.8 of IRC: 6 -2014. 3.2.7

4.94 2.47

Vehicle Colision load As per Table 11 of IRC:6-2014 Point of aplication above carriageway level Lever arm from the top of foundation Lever arm from the Bottom of foundation Main Load Component Normal to the Carriageway (HT)

(As per IRC 6-2014, clause 222)

=1.5+(100.000-99.500) =2.000+1.800 HT

Main Load Component load Parallel to the Carriageway (HL) Point of aplication above carriageway level Lever arm from the top of foundation Lever arm from the Bottom of foundation Residual Load Component Normal to the Carriageway

HL

=3+(100.000-99.500) =3.500+1.800 HT HL

Residual Load Component load Parallel to the Carriageway

= = = =

1.5 2.000 3.800 0

m m m Tonne

=

0

Tonne

= = = =

3 3.500 5.300 25

m m m Tonne

=

50

Tonne

Lever Arm (m)

Pilecap Bottom (kN m)

Summary of Longitudinal force due to Vechical Colision Longitudinal Moment ( ML ) at

HL Rebar Description

Main load component Residual Load component Total

kN

0 500 500

Lever Arm Curtailment Lever Arm section (m) (m) (kN m)

0.50 2.00

0 1000 1000

2.000 3.500

Pilecap Top (kN m)

0 1750 1750

3.800 5.300

0 2650 2650

Summary of Transverse force due to Vechical Colision Transverse Moment ( MT ) at

HT Rebar Description

Main load component Residual Load component Total

kN

0 250 250

Lever Arm Curtailment Lever Arm section (m) (m) (kN m)

0.50 2.00

0 500 500

2.000 3.500

Pilecap Top (kN m)

0 875 875

Lever Arm (m)

3.800 5.300

Pilecap Bottom (kN m)

0 1325 1325

3 Calculation of Loads and its Summary from Flyover Structure Page 42

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

3.3

Load Combinations

3.3.1

Summary of Forces at Pile cap Bottom

B1163502 DN102 rev. 0

P kN

HL kN

HT kN

ML kNm

MT kNm

G

6600 3752 10352

0 0 0

5 0 5

0 0 0

49 0 49

SIDL SIDL Surfacing Live Load

S Ss

800 600

0 0

0 1

0 0

0 10

Pmax(LL)

Q1

2284

0

0

0

0

Max MT(LL)

Q2

1142

0

0

0

1999

Max ML(LL)

Q3

2284

0

0

3997

0

Max MLT(LL)

Q4

1142

0

0

1999

1999

Centrifugal Force

F cf

Pmax(LL)

0

0

38

0

503

Max MT(LL)

0

0

19

0

251

Max ML(LL)

0

0

38

0

503

Max MLT(LL)

0

0

19

0

251

Braking + Frictional resistance Pmax(LL)

33

382

0

3758

0

27

329

0

3231

0

33

439

0

4320

0

27 0

357 0

0 0

3512 0

0 0

0

257

0

2529

0

0

229

0

2248

0

Load Case

Notation

Dead Load Super structure DL Substructure (Including Self weight of Soil above pile cap) Total

Max MT(LL)

Normal Load Case Max ML(LL)

Max MLT(LL) Nosing Frictional Resistance force

N Ff

Pmax(LL) Normal Max MT(LL) Load Case Max ML(LL) Max MLT(LL) Derailment Vehicle collision Rail Structure Interaction P max (LL)

D V LWR

0

200

0

1967

0

0 0 0

200 0 500

0 0 250

1967 0 2650

0 0 1325

0

0

0

0

0

Max M T (LL)

0

0

0

0

0

Max M L (LL)

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

693 464

77 71

195 206

625 672

2021 2368

132 22 0 0 154

123 20 0 0 144

1300 154 0 0 1454

1406 144 0 0 1550

Max M LT (LL) Rail fracture Wind Force Without Live Load With Live Load Seismic forces (lateral & longitudinal) Superstructure DL+SIDL+SIDL Surfacing Substructure Vertical seismic force - for lateral case Vertical seismic force - for longitudinal case

Rf W

F eq

96 102 Total

Live Load

Pmax(LL)

5

0

7

0

92

Max MT(LL)

2

0

4

0

46

Max ML(LL)

5

0

7

0

92

Max MLT(LL)

3

0

4

0

58

3 Calculation of Loads and its Summary from Flyover Structure Page 43

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

One Span Dislodged Condition

Notation

Permanent Loads Super structure Substructure Total

3.3.2

G

SIDL SIDL Surfacing Frictional resistance force Normal Case Wind Force Without Live Load

S Ss Ff

Seismic forces (lateral & longitudinal) Superstructure DL+SIDL Substructure Total Vertical seismic force - for lateral case Vertical seismic force - for longitudinal case

F eq

P kN

HL kN

HT kN

ML kNm

MT kNm

3300 1352 4652

0 0 0

5 0 5

5775 0 5775

49 0 49

400 300

0 0

0 1

700 525

0 10

0

200

0

1967

0

346

57

114

428

1113

132 22 154

62 20 82

1300 154 1454

703 144 847

W

55 102

Load Combination for the Design of Pile Foundation Load Combinations at Base of Foundation

Load Case

I

B1163502 DN102 rev. 0

Description

(IRS CBC:2014, Table 12) P kN

HL kN

HT kN

ML kNm

MT kNm

15140

0

8

0

81

6914

0

8

9144

81

19195 17185 19195 17185

669 575 769 625

75 42 75 42

6576 5655 14554 9644

961 4018 961 4018

16248 18964 17356 18964 17356

124 623 548 703 588

320 319 293 319 293

1000 6101 5364 12483 8555

3315 3745 6191 3745 6191

7469

92

191

9829

1862

Combination 1

A

Permanent Load

1.1.1

1.25 G + 1.25 S + 2 Ss

One Span Dislodged Condition 1.1.2

B

1.25 G + 1.25 S + 2 Ss

Live Load

1.2.1

1.25 G + 1.25 S + 2 Ss + 1.75 (Q1 + Fcf + Fb )

1.2.2

1.25 G + 1.25 S + 2 Ss + 1.75 (Q2 + Fcf + Fb )

1.2.3

1.25 G + 1.25 S + 2 Ss + 1.75 (Q3 + Fcf + Fb )

1.2.4

1.25 G + 1.25 S + 2 Ss + 1.75 (Q4 + Fcf + Fb )

II A

Combination 2 Wind Load

2.1.1

1.25 G + 1.25 S + 2 Ss + 1.6 W

2.1.2

1.25 G + 1.25 S + 2 Ss + 1.4 (Q1 + Fcf + Fb ) + 1.25 W

2.1.3

1.25 G + 1.25 S + 2 Ss + 1.4 (Q2 + Fcf + Fb ) + 1.25 W

2.1.4

1.25 G + 1.25 S + 2 Ss + 1.4 (Q3 + Fcf + Fb ) + 1.25 W

2.1.5

1.25 G + 1.25 S + 2 Ss + 1.4 (Q4 + Fcf + Fb ) + 1.25 W

2.1.6

1.25 G + 1.25 S + 2 Ss + 1.6 W

One Span Dislodged Condition

3 Calculation of Loads and its Summary from Flyover Structure Page 44

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

2.2.1

1.25 G + 1.25 S + 2 Ss + 1.6 *1.35* Feq

2.2.2

1.25G +1.25 S +2Ss + 0.5*1.4*(Q1 +Fcf +Fb ) + 1.25*1.35*(r1 +0.3r2 +0.3r3)

2.2.3

1.25G +1.25 S +2Ss + 0.5*1.4*(Q2 +Fcf +Fb ) + 1.25*1.35*(r1 +0.3r2 +0.3r3)

2.2.4

1.25G +1.25 S +2Ss + 0.5*1.4*(Q3 +Fcf +Fb ) + 1.25*1.35*(r1 +0.3r2 +0.3r3)

2.2.5

1.25G +1.25 S +2Ss + 0.5*1.4*(Q4 +Fcf +Fb ) + 1.25*1.35*(r1 +0.3r2 +0.3r3)

2.2.6

1.25 G + 1.25 S + 2 Ss + 1.6*1.35* Feq

2.3.1

1.25 G + 1.25 S + 2 Ss + 1.6*1.35*Feq

2.3.2

1.25G +1.25 S +2Ss + 0.5*1.4*(Q1 +Fcf +Fb ) + 1.25*1.35*(0.3r1 +r2 +0.3r3)

2.3.3

1.25G +1.25 S +2Ss + 0.5*1.4*(Q2 +Fcf +Fb ) + 1.25*1.35*(0.3r1 +r2 +0.3r3)

2.3.4

1.25G +1.25 S +2Ss + 0.5*1.4*(Q3 +Fcf +Fb ) + 1.25*1.35*(0.3r1 +r2 +0.3r3)

2.3.5

1.25G +1.25 S +2Ss + 0.5*1.4*(Q4 +Fcf +Fb ) + 1.25*1.35*(0.3r1 +r2 +0.3r3)

2.3.6

1.25 G + 1.25 S + 2 Ss + 1.6*1.35* Feq

B1163502 DN102 rev. 0

r3

r1

r2

r1

r2

0.30 15206 16816 16011 16816 16011

1.00 332 527 489 567 509

0.30 101 111 96 111 97

1.00 3141 5085 4716 8276 6312

0.30 1085 1264 2464 1264 2470

6981

332

61

12285

630

0.30 15202 16813 16008 16813 16008

0.30 100 345 308 385 328

1.00 318 289 270 289 271

0.30 942 3367 2998 6558 4594

1.00 3428 3204 4349 3204 4368

6950

100

185

10086

1910

18384 16776 18384 16776

843 734 855 740

62 35 62 35

8295 7221 14004 10075

785 3231 785 3231

6914

240

8

11504

81

15140

0

8

0

81

15140

875

446

4638

2400

One Span Dislodged Condition

0.3r1 + r2 + 0.3r3

Seismic Components

One Span Dislodged Condition

III

Combination 3 Temperature

3.1.1

1.25 G + 1.25 S + 2 Ss + 1.4 (Q1 + Fcf + Fb ) + 1.15 Ff

3.1.2

1.25 G + 1.25 S + 2 Ss + 1.4 (Q2 + Fcf + Fb ) + 1.15 Ff

3.1.3

1.25 G + 1.25 S + 2 Ss + 1.4 (Q3 + Fcf + Fb ) + 1.15 Ff

3.1.4

1.25 G + 1.25 S + 2 Ss + 1.4 (Q4 + Fcf + Fb ) + 1.15 Ff

3.1.5

1.25 G + 1.25 S + 2 Ss + 1.15 Ff

One Span Dislodged Condition

IV

Combination 5 Derailment

4.1.1

1.25 G + 1.25 Sf + 2 Sv + 1.75 D

4.2.1

1.25 G + 1.25 S + 2 Ss + 1.75 V

Vehicle Collision

Serviciability Limit State Load Case

I A 5.1.1

Description

(IRS CBC:2014, Table 12) P kN

HL kN

HT kN

ML kNm

MT kNm

11872

0

6

0

61

5412

0

6

7105

61

14421 13157 14421 13157

420 361 483 393

48 27 48 27

4134 3554 9148 6062

614 2536 614 2536

Combination 1 Permanent Load 1 G + 1 S + 1.2 Ss

One Span Dislodged Condition 5.1.2

B

1 G + 1 S + 1.2 Ss

Live Load

5.2.1

1 G + 1 S + 1.2 Ss + 1.1 (Q1 + Fcf + Fb )

5.2.2

1 G + 1 S + 1.2 Ss + 1.1 (Q2 + Fcf + Fb )

5.2.3

1 G + 1 S + 1.2 Ss + 1.1 (Q3 + Fcf + Fb )

5.2.4

1 G + 1 S + 1.2 Ss + 1.1 (Q4 + Fcf + Fb )

3 Calculation of Loads and its Summary from Flyover Structure Page 45

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

II A

B1163502 DN102 rev. 0

Combination 2 Wind Load

6.1.1

1 G + 1 S + 1.2 Ss + 1 W

6.1.2

1 G + 1 S + 1.2 Ss + 1 (Q1 + Fcf + Fb ) + 1 W

6.1.3

1 G + 1 S + 1.2 Ss + 1 (Q2 + Fcf + Fb ) + 1 W

6.1.4

1 G + 1 S + 1.2 Ss + 1 (Q3 + Fcf + Fb ) + 1 W

6.1.5

1 G + 1 S + 1.2 Ss + 1 (Q4 + Fcf + Fb ) + 1 W

6.1.6

1 G + 1 S +1.2 Ss + 1 W

12565 14653 13504 14653 13504

77 453 399 510 428

201 251 231 251 231

625 4430 3904 8989 6183

2082 2932 4679 2932 4679

5758

57

121

7533

1174

r3

r1

r2

r1

r2

0.30 11903 13063 12488 13063 12488

1.00 154 345 318 373 332

0.30 49 71 60 71 60

1.00 1454 3333 3070 5613 4210

0.30 526 805 1665 805 1668

5442

154

31

8559

315

0.30 11901 13061 12486 13061 12486

0.30 46 237 210 266 225

1.00 150 176 163 176 164

0.30 436 2315 2052 4595 3192

1.00 1611 1954 2782 1954 2793

5428

46

88

7541

908

14189 13041 14189 13041

588 511 599 517

45 25 45 25

5781 5030 9890 7084

564 2311 564 2311

5412

160

6

8679

61

14189 13041 14189 13041

588 511 599 517

45 25 45 25

5781 5030 9890 7084

564 2311 564 2311

11752

0

6

0

59

11752

550

281

2915

1517

14189 13041 14189 13041

382 329 439 357

45 25 45 25

3758 3231 8317 5511

564 2311 564 2311

One Span Dislodged Condition

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

6.2.1

1 G + 1 S + 1.2 Ss + 1*1.35* Feq

6.2.2

1G + 1S +1.2Ss + 0.5*1*(Q1 +Fcf +Fb ) + 1*(r1 +0.3r2 +0.3r3)

6.2.3

1G + 1S +1.2Ss + 0.5*1*(Q2 +Fcf +Fb ) + 1*(r1 +0.3r2 +0.3r3)

6.2.4

1G + 1S +1.2Ss + 0.5*1*(Q3 +Fcf +Fb ) + 1*(r1 +0.3r2 +0.3r3)

6.2.5

1G + 1S +1.2Ss + 0.5*1*(Q4 +Fcf +Fb ) + 1*(r1 +0.3r2 +0.3r3)

6.2.6

1 G + 1 S + 1.2 Ss + 1* Feq

6.3.1

1 G + 1 S + 1.2 Ss + 1* Feq

6.3.2

1G + 1S +1.2Ss + 0.5*1*(Q1 +Fcf +Fb ) + 1*(0.3r1 +r2 +0.3r3)

6.3.3

1G + 1S +1.2Ss + 0.5*1*(Q2 +Fcf +Fb ) + 1*(0.3r1 +r2 +0.3r3)

6.3.4

1G + 1S +1.2Ss + 0.5*1*(Q3 +Fcf +Fb ) + 1*(0.3r1 +r2 +0.3r3)

6.3.5

1G + 1S +1.2Ss + 0.5*1*(Q4 +Fcf +Fb ) + 1*(0.3r1 +r2 +0.3r3)

6.3.6

1 G + 1 S + 1.2 Ss + 1* Feq

One Span Dislodged Condition

0.3r1 + r2 + 0.3r3

Seismic Components

One Span Dislodged Condition

III

Combination 3 Temperature

7.1.1

1 G + 1 S + 1.2 Ss + 1 (Q1 + Fcf + Fb ) + 0.8 Ff

7.1.2

1 G + 1 S + 1.2 Ss + 1 (Q2 + Fcf + Fb ) + 0.8 Ff

7.1.3

1 G + 1 S + 1.2 Ss + 1 (Q3 + Fcf + Fb ) + 0.8 Ff

7.1.4

1 G + 1 S + 1.2 Ss + 1 (Q4 + Fcf + Fb ) + 0.8 Ff

7.1.5

1 G + 1 S + 1.2 Ss + 0.8 Ff

7.2.1

1 G + 1 S + 1.2 Ss + 1 (Q1 + Fcf + Fb ) + 0.8 Ff + 1 LWR

7.2.2

1 G + 1 S + 1.2 Ss + 1 (Q2 + Fcf + Fb ) + 0.8 Ff + 1 LWR

7.2.3

1 G + 1 S + 1.2 Ss + 1 (Q3 + Fcf + Fb ) + 0.8 Ff + 1 LWR

7.2.4

1 G + 1 S + 1.2 Ss + 1 (Q4 + Fcf + Fb ) + 0.8 Ff + 1 LWR

One Span Dislodged Condition

Long Welded Rail (LWR)

IV

Combination 5 Derailment

8.1.1

1 G + 1 Sf + 1 Sv + 1.1 D

8.2.1

1 G + 1 S + 1 Ss + 1.1 V

8.3.1

1 G + 1 S + 1.2 Ss + 1 (Q1 + Fcf + Fb ) + 1 RF

8.3.2

1 G + 1 S + 1.2 Ss + 1 (Q2 + Fcf + Fb ) + 1 RF

8.3.3

1 G + 1 S + 1.2 Ss + 1 (Q3 + Fcf + Fb ) + 1 RF

8.3.4

1 G + 1 S + 1.2 Ss + 1 (Q4 + Fcf + Fb ) + 1 RF

Vehicle Collision

Rail Fracture

3 Calculation of Loads and its Summary from Flyover Structure Page 46

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Unfactored Load Combination Load Case

I A 9.1.1

B1163502 DN102 rev. 0

(IRC 78:2014 Cl-706.1.1)

Description

P kN

HL kN

HT kN

ML kNm

MT kNm

11752

0

6

0

59

5352

0

6

7000

59

14069 12921 14069 12921

382 329 439 357

44 25 44 25

3758 3231 8317 5511

562 2309 562 2309

12445 14533 13384 14533 13384

77 453 399 510 428

201 250 231 250 231

625 4430 3904 8989 6183

2080 2930 4677 2930 4677

5698

57

120

7428

1172

r3

r1

r2

r1

r2

0.30 11783 12943 12368 12943 12368

1.00 154 345 318 373 332

0.30 49 70 60 70 60

1.00 1454 3333 3070 5613 4210

0.30 524 803 1663 803 1666

5368

0

6

7000

59

0.30 11781 12941 12366 12941 12366

0.30 46 237 210 266 225

1.00 157 176 163 176 164

0.30 436 2315 2052 4595 3192

1.00 1701 1952 2780 1952 2791

5368

46

88

7436

906

Combination 1 Permanent Load G + S + Ss

One Span Dislodged Condition 9.1.2

B

G + S + Ss

Live Load

10.1.1 G + S + Ss + (Q1 + Fcf + Fb ) 10.1.2 G + S + Ss + (Q2 + Fcf + Fb ) 10.1.3 G + S + Ss + (Q3 + Fcf + Fb ) 10.1.4 G + S + Ss + (Q4 + Fcf + Fb )

II

Combination 2

A

Wind Load

10.2.1 G + S + Ss + W 10.2.2 G + S + Ss + (Q1 + Fcf + Fb ) + W 10.2.3 G + S + Ss + (Q2 + Fcf + Fb ) + W 10.2.4 G + S + Ss + (Q3 + Fcf + Fb ) + W 10.2.5 G + S + Ss + (Q4 + Fcf + Fb ) + W

One Span Dislodged Condition 10.2.6 G + S +Ss + W

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

10.3.1 G + S + Ss + Feq 10.3.2 G + S +Ss + 0.5*(Q1 +Fcf +Fb ) + (r1 +0.3r2 +0.3r3) 10.3.3 G + S +Ss + 0.5*(Q2 +Fcf +Fb ) + (r1 +0.3r2 +0.3r3) 10.3.4 G + S +Ss + 0.5*(Q3 +Fcf +Fb ) + (r1 +0.3r2 +0.3r3) 10.3.5 G + S +Ss + 0.5*(Q4 +Fcf +Fb ) + (r1 +0.3r2 +0.3r3)

One Span Dislodged Condition 10.3.6 G + S + Ss + Feq

0.3r1 + r2 + 0.3r3

Seismic Components

10.4.1 G + S + Ss + Feq 10.4.2 G + S +Ss + 0.5*(Q1 +Fcf +Fb ) + (0.3r1 +r2 +0.3r3) 10.4.3 G + S +Ss + 0.5*(Q2 +Fcf +Fb ) + (0.3r1 +r2 +0.3r3) 10.4.4 G + S +Ss + 0.5*(Q3 +Fcf +Fb ) + (0.3r1 +r2 +0.3r3) 10.4.5 G + S +Ss + 0.5*(Q4 +Fcf +Fb ) + (0.3r1 +r2 +0.3r3)

One Span Dislodged Condition 10.4.6 G + S + Ss + Feq

3 Calculation of Loads and its Summary from Flyover Structure Page 47

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

III

B1163502 DN102 rev. 0

Combination 3 Temperature

11.1.1 G + S + Ss + (Q1 + Fcf + Fb ) + Ff 11.1.2 G + S + Ss + (Q2 + Fcf + Fb ) + Ff 11.1.3 G + S + Ss + (Q3 + Fcf + Fb ) + Ff 11.1.4 G + S + Ss + (Q4 + Fcf + Fb ) + Ff

14069 12921 14069 12921

639 557 639 557

44 25 44 25

6287 5479 10284 7478

562 2309 562 2309

5352

200

6

8967

59

14069 12921 14069 12921

639 557 639 557

44 25 44 25

6287 5479 10284 7478

562 2309 562 2309

11752

0

6

0

59

11752

500

256

2650

1384

14069 12921 14069 12921

382 329 439 357

44 25 44 25

3758 3231 8317 5511

562 2309 562 2309

One Span Dislodged Condition 11.1.5 G + S + Ss + Ff

Long Welded Rail (LWR) 11.2.1 G + S + Ss + (Q1 + Fcf + Fb ) + Ff + LWR 11.2.2 G + S + Ss + (Q2 + Fcf + Fb ) + Ff + LWR 11.2.3 G + S + Ss + (Q3 + Fcf + Fb ) + Ff + LWR 11.2.4 G + S + Ss + (Q4 + Fcf + Fb ) + Ff + LWR

IV

Combination 5 Derailment

12.1.1 G + Sf + Sv + D

Vehicle Collision 12.1.1 G + S + Ss + V

Rail Fracture 11.3.1 G + S + Ss + (Q1 + Fcf + Fb ) + RF 11.3.2 G + S + Ss + (Q2 + Fcf + Fb ) + RF 11.3.3 G + S + Ss + (Q3 + Fcf + Fb ) + RF 11.3.4 G + S + Ss + (Q4 + Fcf + Fb ) + RF

3 Calculation of Loads and its Summary from Flyover Structure Page 48

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

4

B1163502 DN102 rev. 0

Load Combination ( Metro + Flyover ) Load Combinations at Base of Foundation

Load Case

I A 1.1.1

Description

P kN

HL kN

HT kN

ML kNm

MT kNm

24846

0

17

0

261

12923

0

17

12841

261

31783 28330 31114 27997

1307 911 1407 961

305 248 294 243

21944 13703 30590 18024

6611 11765 6318 10959

25955 30975 28213 30441 27947

250 1193 876 1273 916

597 615 569 606 565

3073 19272 12680 26189 16137

9078 10789 14912 10555 14267

13478

191

363

15021

5129

r3

r1

r2

r1

r2

0.30 24965 27720 26336 27452 26203

1.00 595 988 829 1028 849

0.30 183 272 244 266 242

1.00 8678 15557 12261 19015 13989

0.30 2922 5089 7046 4933 6725

13042

595

116

19370

2467

0.30 24957 27714 26330 27446 26197

0.30 178 662 504 702 524

1.00 572 599 560 589 558

0.30 2603 10811 7515 14270 9244

1.00 9132 10427 12140 10180 11823

12989

178

347

14800

7614

30396 27633 29861 27367

1354 1003 1366 1009

248 202 239 197

20589 13660 26832 16780

5341 9464 5107 8820

12923

416

17

19049

261

Combination 1 Permanent Load 1.25 G + 1.25 Sf + 2 Sv

One Span Dislodged Condition 1.1.2

B

1.25 G + 1.25 Sf + 2 Sv

Live Load

1.2.1

1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q1 + Fcf + Fb + N)

1.2.2

1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q2 + Fcf + Fb + N)

1.2.3

1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q3 + Fcf + Fb + N)

1.2.4

1.25 G + 1.25 Sf + 2 Sv + 1.75 (Q4 + Fcf + Fb + N)

II A

Combination 2 Wind Load

2.1.1

1.25 G + 1.25 Sf + 2 Sv + 1.6 W

2.1.2

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q1 + Fcf + Fb + N) + 1.25 W

2.1.3

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q2 + Fcf + Fb + N) + 1.25 W

2.1.4

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q3 + Fcf + Fb + N) + 1.25 W

2.1.5

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q4 + Fcf + Fb + N) + 1.25 W

2.1.6

1.25 G + 1.25 Sf + 2 Sv + 1.6 W

One Span Dislodged Condition

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

2.2.1

1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq

2.2.2

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q1 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)

2.2.3

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q2 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)

2.2.4

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q3 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)

2.2.5

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q4 +Fcf +Fb +N) + 1.25*1.35(r1 +0.3r2 +0.3r3)

2.2.6

1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq

2.3.1

1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq

2.3.2

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q1 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)

2.3.3

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q2 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)

2.3.4

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q3 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)

2.3.5

1.25G +1.25 Sf +2Sv + 0.5*1.4*(Q4 +Fcf +Fb +N) + 1.25*1.35(0.3r1 +r2 +0.3r3)

2.3.6

1.25 G + 1.25 Sf + 2 Sv + 1.6*1.35 Feq

One Span Dislodged Condition

0.3r1 + r2 + 0.3r3

Seismic Components

One Span Dislodged Condition

III

Combination 3 Temperature

3.1.1

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q1 + Fcf + Fb + N) + 1.15 Ff

3.1.2

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q2 + Fcf + Fb + N) + 1.15 Ff

3.1.3

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q3 + Fcf + Fb + N) + 1.15 Ff

3.1.4

1.25 G + 1.25 Sf + 2 Sv + 1.4 (Q4 + Fcf + Fb + N) + 1.15 Ff

3.1.5

1.25 G + 1.25 Sf + 2 Sv + 1.15 Ff

One Span Dislodged Condition

4 Load Combination ( Metro + Flyover ) Page 49

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

IV

B1163502 DN102 rev. 0

Combination 5 Derailment

4.1.1

1.25 G + 1.25 Sf + 2 Sv + 1.75 D

4.2.1

1.25 G + 1.25 Sf + 2 Sv + 1.75 V

24846

0

17

0

261

24846

875

454

4638

2580

Vehicle Collision

Serviciability Limit State Load Case

I A 5.1.1

(IRS CBC:2014, Table 12)

Description

P kN

HL kN

HT kN

ML kNm

MT kNm

19373

0

12

0

196

10087

0

12

9931

196

23733 21563 23313 21354

822 573 884 604

194 158 187 155

13793 8613 19228 11330

4188 7427 4003 6921

20066 23801 21827 23419 21637

156 865 639 922 667

375 471 439 465 435

1920 13913 9204 18854 11674

5707 8183 11128 8016 10668

10433

120

229

11293

3238

r3

r1

r2

r1

r2

0.30 19428 21414 20425 21222 20330

1.00 275 649 536 677 550

0.30 90 178 159 174 157

1.00 4017 10287 7933 12757 9167

0.30 1428 3366 4777 3259 4548

10142

275

58

12953

1218

0.30 19425 21410 20422 21219 20327

0.30 83 456 343 485 357

1.00 270 371 346 365 344

0.30 1205 7475 5120 9945 6355

1.00 4303 6530 7795 6369 7569

10117

83

165

10838

3600

Combination 1 Permanent Load 1 G + 1 Sf + 1.2 Sv

One Span Dislodged Condition 5.1.2

B

1 G + 1 Sf + 1.2 Sv

Live Load

5.2.1

1 G + 1 Sf + 1.2 Sv + 1.1 (Q1 + Fcf + Fb + N)

5.2.2

1 G + 1 Sf + 1.2 Sv + 1.1 (Q2 + Fcf + Fb + N)

5.2.3

1 G + 1 Sf + 1.2 Sv + 1.1 (Q3 + Fcf + Fb + N)

5.2.4

1 G + 1 Sf + 1.2 Sv + 1.1 (Q4 + Fcf + Fb + N)

II A

Combination 2 Wind Load

6.1.1

1 G + 1 Sf + 1.2 Sv + 1 W

6.1.2

1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 1 W

6.1.3

1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 1 W

6.1.4

1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 1 W

6.1.5

1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 1 W

6.1.6

1 G + 1 Sf +1.2 Sv + 1 W

One Span Dislodged Condition

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

6.2.1

1 G + 1 Sf + 1.2 Sv + 1 Feq

6.2.2

1G + 1Sf +1.2Sv + 0.5*1*(Q1 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)

6.2.3

1G + 1Sf +1.2Sv + 0.5*1*(Q2 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)

6.2.4

1G + 1Sf +1.2Sv + 0.5*1*(Q3 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)

6.2.5

1G + 1Sf +1.2Sv + 0.5*1*(Q4 +Fcf +Fb +N) + 1(r1 +0.3r2 +0.3r3)

6.2.6

1 G + 1 Sf + 1.2 Sv + 1 Feq

6.3.1

1 G + 1 Sf + 1.2 Sv + 1 Feq

6.3.2

1G + 1Sf +1.2Sv + 0.5*1*(Q1 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)

6.3.3

1G + 1Sf +1.2Sv + 0.5*1*(Q2 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)

6.3.4

1G + 1Sf +1.2Sv + 0.5*1*(Q3 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)

6.3.5

1G + 1Sf +1.2Sv + 0.5*1*(Q4 +Fcf +Fb +N) + 1(0.3r1 +r2 +0.3r3)

6.3.6

1.25 G + 1.25 Sf + 2 Sv + 1.6 Feq

One Span Dislodged Condition

0.3r1 + r2 + 0.3r3

Seismic Components

One Span Dislodged Condition

4 Load Combination ( Metro + Flyover ) Page 50

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

III

B1163502 DN102 rev. 0

Combination 3 Temperature

7.1.1

1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 0.8 Ff

7.1.2

1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 0.8 Ff

7.1.3

1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 0.8 Ff

7.1.4

1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 0.8 Ff

7.1.5

1 G + 1 Sf + 1.2 Sv + 0.8 Ff

7.2.1

1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 0.8 LWR

7.2.2

1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 0.8 LWR

7.2.3

1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 0.8 LWR

7.2.4

1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 0.8 LWR

23337 21364 22955 21174

953 703 964 709

177 145 171 142

14562 9629 19053 11873

3825 6770 3657 6309

10087

278

12

14069

196

23337 21364 22955 21174

1311 883 1322 888

177 145 171 142

23271 13983 27762 16228

3825 6770 3657 6309

19121

0

12

0

190

19121

550

287

2915

1647

23337 21364 22955 21174

747 521 804 549

177 145 171 142

12539 7830 17480 10300

3825 6770 3657 6309

One Span Dislodged Condition

Long Welded Rail (LWR)

IV

Combination 5 Derailment

8.1.1

1 G + 1 Sf + 1 Sv + 1.1 D

8.2.1

1 G + 1 Sf + 1 Sv + 1.1 V

8.3.1

1 G + 1 Sf + 1.2 Sv + 1 (Q1 + Fcf + Fb + N) + 1 RF

8.3.2

1 G + 1 Sf + 1.2 Sv + 1 (Q2 + Fcf + Fb + N) + 1 RF

8.3.3

1 G + 1 Sf + 1.2 Sv + 1 (Q3 + Fcf + Fb + N) + 1 RF

8.3.4

1 G + 1 Sf + 1.2 Sv + 1 (Q4 + Fcf + Fb + N) + 1 RF

Vehicle Collision

Rail Fracture

Unfactored Load Combination Load Case

I A 9.1.1

Description

(IRC 78:2014 Cl-706.1.1) P kN

HL kN

HT kN

ML kNm

MT kNm

7369

0

6

0

131

4609

0

6

2760

131

21936 22260 21554 8001

693 631 722 192

158 164 151 116

12012 12916 14674 4789

5566 5016 5398 3994

21902 22400 22724 22018 8001

532 811 749 840 239

424 452 457 445 204

5725 13387 14290 16048 5491

6549 9924 9375 9756 5985

4609

62

108

3694

2060

Combination 1 Permanent Load G + Sf + Sv

One Span Dislodged Condition 9.1.2

G + Sf + Sv

B

Live Load

10.1.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) 10.1.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) 10.1.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) 10.1.4 G + Sf + Sv + (Q4 + Fcf + Fb + N)

II

Combination 2

A

Wind Load

10.2.1 G + Sf + Sv + W 10.2.2 G + Sf + Sv + (Q1 + Fcf + Fb + N) + W 10.2.3 G + Sf + Sv + (Q2 + Fcf + Fb + N) + W 10.2.4 G + Sf + Sv + (Q3 + Fcf + Fb + N) + W 10.2.5 G + Sf + Sv + (Q4 + Fcf + Fb + N) + W

One Span Dislodged Condition 10.2.6 G + Sf +Sv + W

4 Load Combination ( Metro + Flyover ) Page 51

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B

Seismic Load 1r1 + 0.3r2 + 0.3r3

Seismic Components

10.3.1 G + Sf + Sv + Feq 10.3.2 G + Sf +Sv + 0.5*(Q1 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.3 G + Sf +Sv + 0.5*(Q2 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.4 G + Sf +Sv + 0.5*(Q3 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3) 10.3.5 G + Sf +Sv + 0.5*(Q4 +Fcf +Fb +N) + (r1 +0.3r2 +0.3r3)

B1163502 DN102 rev. 0

r3

r1

r2

r1

r2

0.30 20336 20587 20748 20395 7711

1.00 467 622 591 636 218

0.30 110 167 169 163 97

1.00 5896 10024 10475 11354 4958

0.30 1701 4220 3911 4116 2875

4623

0

6

2760

131

0.30 20333 20583 20745 20392 7709

0.30 274 429 398 444 133

1.00 308 358 358 353 181

0.30 3084 7211 7663 8542 3163

1.00 4960 7351 6962 7202 4771

4623

37

77

3230

2688

21936 22260 21554 8001

922 831 922 192

158 164 151 116

14260 14883 16641 4789

5566 5016 5398 3994

4609

147

6

5966

131

21936 22260 21554 8001

1370 1055 1370 416

158 164 151 116

25147 20326 27527 10232

5566 5016 5398 3994

7369

0

6

0

131

7369

0

6

0

131

23085 21112 8634 8001

804 549 365 192

177 144 126 116

17098 10110 9163 4789

3819 6763 3089 3994

One Span Dislodged Condition 10.3.6 G + Sf + Sv + Feq

0.3r1 + r2 + 0.3r3

Seismic Components

10.4.1 G + Sf + Sv + Feq 10.4.2 G + Sf +Sv + 0.5*(Q1 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.3 G + Sf +Sv + 0.5*(Q2 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.4 G + Sf +Sv + 0.5*(Q3 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3) 10.4.5 G + Sf +Sv + 0.5*(Q4 +Fcf +Fb +N) + (0.3r1 +r2 +0.3r3)

One Span Dislodged Condition 10.4.6 G + Sf + Sv + Feq

III

Combination 3 Temperature

11.1.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + Ff 11.1.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + Ff 11.1.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + Ff 11.1.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + Ff

One Span Dislodged Condition 11.1.5 G + Sf + Sv + Ff

Long Welded Rail (LWR) 11.2.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + LWR 11.2.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + LWR 11.2.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + LWR 11.2.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + LWR

IV

Combination 5 Derailment

12.1.1 G + Sf + Sv + D

Vehicle Collision 12.2.1 G + Sf + Sv + V

Rail Fracture 12.3.1 G + Sf + Sv + (Q1 + Fcf + Fb + N) + RF 12.3.2 G + Sf + Sv + (Q2 + Fcf + Fb + N) + RF 12.3.3 G + Sf + Sv + (Q3 + Fcf + Fb + N) + RF 12.3.4 G + Sf + Sv + (Q4 + Fcf + Fb + N) + RF

4 Load Combination ( Metro + Flyover ) Page 52

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

5

Calculation of Reactions on Pile

5.1

Input Data No of piles Ecc in Longitudinal direction

n eL

= =

6 0m

Ecc in Transverse direction

eT

=

0m

Shift in Longitudinal/Transverse direction Diameter of the Pile Offset from face of pile Length of Pile Cap in Transverse Direction Length of Pile Cap in Longitudinal Direction Depth of Pile Cap

LF BF DF

= = = = = =

0.075 1.2 0.15 5.1 8.7 1.8

m m m m m m

Soil height above top of pile cap Unit weight of concrete Unit weight of Soil Weight of Pile Cap Weight of Soil over pile cap Total weight of pilecap and overburden soil Safe Compression capacity of pile (Normal Case) Safe Compression capacity of pile (Temperature) Safe Compression capacity of pile (Wind & seismic ) Tension Capacity of Pile (Normal Case) Tension Capacity of Pile (Temperature) Tension Capacity of Pile (Wind & Seismic) BC Pier dimension in Transverse Direction DC Pier dimension in Longitudinal Direction

= = = = = = = = = = = = = =

0.5 25 20 1997 404 2400 5650 6498 7063 -1000 -1150 -1250 2.00 2.00

m kN/m3 kN/m3 kN kN kN kN kN kN kN kN kN m m

Pile Coordinates Pile 1 2 x 3.60 0.00 z -1.80 -1.80 x2 12.96 0.00 z2 3.24 3.24

3 -3.60 -1.80 12.96 3.24

4 3.60 1.80 12.96 3.24

d

5 0.00 1.80 0.00 3.24

6 -3.60 1.80 12.96 3.24

B1163502 DN102 rev. 0

( IRC: 78-2014, 709.1.5.2) ( IRC: 78-2014, 709.5.1)

51.84 19.44

B 0.75 m

3.60 m

0.75 m

Longitudinal (width) 4

1

0.75 m

x

3.35 m 1.55 m

3.60 m

A

ML

A

Transverse (length) z

2.0 m

5

2

2.0 m 3.60 m

6

3

0.75 m

MT

B

5 Calculation of Reaction on Pile Page 53

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

5.2

B1163502 DN102 rev. 0

Reactions on Piles

Ultimate Limit State 1.1.1 1.1.2 1.2.1 1.2.2 1.2.3 1.2.4 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 4.1.1 4.2.1

P kN 24846 12923 31783 28330 31114 27997 25955 30975 28213 30441 27947 13478 24965 27720 26336 27452 26203 13042 24957 27714 26330 27446 26197 12989 30396 27633 29861 27367 12923 24846 24846

HL kN 0 0 1307 911 1407 961 250 1193 876 1273 916 191 595 988 829 1028 849 595 178 662 504 702 524 178 1354 1003 1366 1009 416 0 875

HT kN 17 17 305 248 294 243 597 615 569 606 565 363 183 272 244 266 242 116 572 599 560 589 558 347 248 202 239 197 17 17 454

ML kNm 0 12841 21944 13703 30590 18024 3073 19272 12680 26189 16137 15021 8678 15557 12261 19015 13989 19370 2603 10811 7515 14270 9244 14800 20589 13660 26832 16780 19049 0 4638

MT kNm 261 261 6611 11765 6318 10959 9078 10789 14912 10555 14267 5129 2922 5089 7046 4933 6725 2467 9132 10427 12140 10180 11823 7614 5341 9464 5107 8820 261 261 2580

P1 4074 2999 6154 4535 6671 4855 3654 5448 4153 5862 4409 2791 4450 5181 4543 5391 4670 3268 3451 4356 3740 4575 3868 2465 5948 4630 6315 4862 3430 4074 4181

Reactions on Pile in kN P2 P3 P4 P5 3944 3815 4467 4338 2040 1081 3227 2268 4464 2775 7819 6130 3436 2336 7107 6008 4385 2098 8273 5987 3457 2060 7273 5875 3305 2956 5695 5347 3948 2449 7876 6377 3125 2098 7306 6279 3885 1908 8239 6262 3143 1876 7439 6173 1678 564 3928 2815 3717 2984 5337 4605 3956 2732 6508 5284 3554 2565 6213 5225 3928 2464 6686 5223 3563 2455 6280 5172 1855 442 3906 2493 3141 2830 5489 5178 3461 2566 6672 5777 3081 2422 6354 5695 3441 2307 6841 5708 3089 2311 6421 5643 1370 274 4056 2960 4360 2772 7360 5772 3537 2445 6766 5674 4297 2278 7676 5657 3554 2247 6876 5568 2040 650 3658 2268 3944 3815 4467 4338 3730 3278 5004 4552

P6 4208 1309 4441 4909 3700 4478 4998 4877 5251 4285 4907 1701 3872 4059 4236 3759 4064 1080 4868 4882 5036 4574 4864 1865 4183 4581 3638 4260 878 4208 4101

5 Calculation of Reaction on Pile Page 54

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Serviceability Limit State

5.1.1 5.1.2 5.2.1 5.2.2 5.2.3 5.2.4 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.2.1 7.2.2 7.2.3 7.2.4 8.1.1 8.2.1 8.3.1 8.3.2 8.3.3 8.3.4

P kN 19373 10087 23733 21563 23313 21354 20066 23801 21827 23419 21637 10433 19428 21414 20425 21222 20330 10142 19425 21410 20422 21219 20327 10117 23337 21364 22955 21174 10087 23337 21364 22955 21174 19121 19121 23337 21364 22955 21174

HL kN 0 0 822 573 884 604 156 865 639 922 667 120 275 649 536 677 550 275 83 456 343 485 357 83 953 703 964 709 278 1311 883 1322 888 0 550 747 521 804 549

HT kN 12 12 194 158 187 155 375 471 439 465 435 229 90 178 159 174 157 58 270 371 346 365 344 165 177 145 171 142 12 177 145 171 142 12 287 177 145 171 142

ML MT kNm kNm 0 196 9931 196 13793 4188 8613 7427 19228 4003 11330 6921 1920 5707 13913 8183 9204 11128 18854 8016 11674 10668 11293 3238 4017 1428 10287 3366 7933 4777 12757 3259 9167 4548 12953 1218 1205 4303 7475 6530 5120 7795 9945 6369 6355 7569 10838 3600 14562 3825 9629 6770 19053 3657 11873 6309 14069 196 23271 3825 13983 6770 27762 3657 16228 6309 0 190 2915 1647 12539 3825 7830 6770 17480 3657 10300 6309

P1 3177 2335 4484 3467 4810 3668 2914 4134 3209 4430 3392 2205 3351 3934 3477 4084 3569 2459 2889 3446 3002 3601 3093 2088 4506 3565 4770 3732 2622 5111 3868 5375 4035 3136 3204 4366 3440 4661 3623

Reactions on Pile in kN P2 P3 P4 P5 3076 2975 3482 3382 1593 851 2512 1769 3403 2321 5590 4508 2756 2046 5142 4431 3353 1896 5875 4418 2770 1872 5246 4348 2677 2439 4250 4012 3044 1954 5980 4890 2456 1703 5573 4820 2998 1567 6239 4808 2468 1545 5668 4744 1367 528 2950 2111 2971 2591 3885 3505 3109 2283 4855 4029 2820 2163 4646 3988 3088 2091 4983 3986 2826 2084 4693 3951 1507 555 2826 1873 2704 2519 3956 3771 2815 2184 4952 4322 2540 2078 4729 4267 2799 1998 5075 4274 2546 1999 4777 4230 1283 477 2895 2090 3373 2240 5539 4406 2785 2005 5116 4336 3328 1885 5767 4324 2798 1863 5195 4260 1593 563 2799 1769 3373 1636 6143 4406 2785 1703 5418 4336 3328 1280 6371 4324 2798 1560 5497 4260 3036 2937 3437 3337 2902 2599 3774 3472 3373 2381 5398 4406 2785 2130 4991 4336 3328 1994 5657 4324 2798 1972 5086 4260

B1163502 DN102 rev. 0

P6 3281 1027 3427 3721 2961 3450 3774 3800 4067 3377 3821 1273 3125 3203 3331 2990 3208 921 3586 3691 3805 3472 3683 1285 3273 3556 2881 3325 740 2668 3253 2276 3023 3238 3170 3413 3681 2990 3435

5 Calculation of Reaction on Pile Page 55

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

Unfactored Combination 9.1.1 9.1.2 10.1.1 10.1.2 10.1.3 10.1.4 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.4.6 11.1.1 11.1.2 11.1.3 11.1.4 11.1.5 11.2.1 11.2.2 11.2.3 11.2.4 12.1.1 12.2.1 12.3.1 12.3.2 12.3.3 12.3.4

P kN 7369 4609 21936 22260 21554 8001 21902 22400 22724 22018 8001 4609 20336 20587 20748 20395 7711 4623 20333 20583 20745 20392 7709 4623 21936 22260 21554 8001 4609 21936 22260 21554 8001 7369 7369 23085 21112 8634 8001

HL kN 0 0 693 631 722 192 532 811 749 840 239 62 467 622 591 636 218 0 274 429 398 444 133 37 922 831 922 192 147 1370 1055 1370 416 0 0 804 549 365 192

HT kN 6 6 158 164 151 116 424 452 457 445 204 108 110 167 169 163 97 6 308 358 358 353 181 77 158 164 151 116 6 158 164 151 116 6 6 177 144 126 116

ML MT kNm kNm 0 131 2760 131 12012 5566 12916 5016 14674 5398 4789 3994 5725 6549 13387 9924 14290 9375 16048 9756 5491 5985 3694 2060 5896 1701 10024 4220 10475 3911 11354 4116 4958 2875 2760 131 3084 4960 7211 7351 7663 6962 8542 7202 3163 4771 3230 2688 14260 5566 14883 5016 16641 5398 4789 3994 5966 131 25147 5566 20326 5016 27527 5398 10232 3994 0 131 0 131 17098 3819 10110 6763 9163 3089 4789 3994

Maximum Reaction normal Case Minimum Reaction normal Case Maximum Reaction Wind Case Minimum Reaction Wind Case Maximum Reaction Seismic/Accidental Case Minimum Reaction Seismic/Accidental Case Maximum Reaction Temperature Case Minimum Reaction Temperature Case

P1 1203 940 3937 4104 4074 1282 3404 3705 3872 3843 1147 826 3606 3701 3787 3771 1350 942 3108 3215 3309 3290 1049 738 4093 4240 4211 1282 1162 4849 4618 4967 1660 1203 1203 4641 3558 1774 1282

Reactions on Pile in kN P2 P3 P4 P5 1165 1127 1330 1291 724 508 1028 812 2988 2040 5272 4324 3091 2078 5342 4329 2943 1812 5373 4242 908 534 2133 1759 2892 2380 4921 4409 2659 1613 5854 4808 2762 1651 5924 4813 2613 1384 5955 4726 724 301 2366 1943 545 265 1271 991 3091 2575 4203 3688 2897 2094 4768 3965 2952 2116 4800 3964 2876 1982 4817 3922 965 581 1989 1605 726 511 1031 815 2788 2468 4309 3989 2607 1999 4862 4254 2669 2029 4886 4246 2590 1891 4906 4207 790 530 2040 1780 490 241 1300 1052 2988 1884 5428 4324 3091 1942 5479 4329 2943 1675 5510 4242 908 534 2133 1759 724 286 1251 812 2988 1128 6184 4324 3091 1564 5857 4329 2943 919 6266 4242 908 156 2511 1759 1165 1127 1330 1291 1165 1127 1330 1291 3334 2026 5669 4361 2746 1934 5103 4291 1093 412 2466 1785 908 534 2133 1759 = = = = = = = =

5373 508 5955 265 5669 241 6266 156

kN kN kN kN kN kN kN kN

B1163502 DN102 rev. 0

P6 1253 597 3375 3316 3111 1385 3897 3762 3702 3497 1520 710 3173 3162 3129 3027 1220 599 3669 3646 3606 3508 1520 803 3219 3180 2974 1385 374 2463 2802 2218 1007 1253 1253 3054 3479 1104 1385

Safe Safe Safe Safe Safe Safe Safe Safe

5 Calculation of Reaction on Pile Page 56

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

6

Design of Pile

6.1

Lateral Capacity of Piles

B1163502 DN102 rev. 0

The depth of fixity and lateral capacity of pile have been worked out as per IS 2911-2010 Part 1 / sec2 Appendix C (clause 6.5.2). The pile is considered to be in submerged soil of dense sand type as per the soil report. Fixed head condition of piles is assumed 6.1.1

6.1.2

Input Data Diameter of the pile Characteristic compressive strength of concrete

D fck

= =

Characteristic yield strength of steel

fy

=

500 Mpa

Partial factor for Reinforcement

Ym

=

1.15

Design Yield Strength of Reinforcement

fyd

=

435 MPa

Characteristic yield strength of stirrups

fyk

=

2 500 N/mm

Modulus of elasticity for steel

Es

=

2E+05 N/mm2

Modulus of elasticity for concrete Clear cover (IRS:CBC 2014,cl.no.15.9.2) Gross cross section area of concrete

Ecm

= = =

2 3.1E+04 MN/m 50 mm 2 1130973 mm

c AC

1200 m 40 MPa

(IRS:CBC 2014,cl.no.12.4.3)

Check for lateral capacity Moment of Inertia of the pile cross section

4 1.0E-01 m

I K1

=

T

=

3.6 m

L1

=

0.0 m

L1 / T

=

0.0

Lf / T For Fixed headed piles in normally loaded sand For Fixed headed piles in normally loaded sand Lf Length of fixity of pile from top Pile head deflection of equivalent cantilever for fixed head pile Y=

=

2.2 (IS:2911-2010, Fig. 4)

=

8.0 m

Modulus of subgrade reaction Stiffness factor

T=

( E * I / K1 ) 0.2

Free length of pile above G.L. / Scour level

3 5.00 MN/m ( for N = 35 )

=

Q * (L1 + Lf)3

12 * E * I Deflection at pile top is less than 1 % of pile diameter . where, Y= 0.012 m (IRC: 78-2000, Amendment Notification no. 54, cl.no. 709.3.5) Safe Lateral Load Capacity of pile

Q

Max horizontal force at top of pile (Unfactored Normal loads)

Note:

= = = =

88.75 T SQRT( HL2 + HT2 ) (SQRT(722^2+151^2))/6 12.29 T SAFE

Increase lateral capacity with 25% for load governing by Wind / Seismic

Increased Lateral Load Capacity of pile

Q

=

Max horizontal force at top of pile (Unfactored wind/seismic load)

= = =

Max horizontal force at top of pile ( Factored load for Design )

H

= = = =

110.93 T SQRT( HL2 + HT2 ) (SQRT(1370^2+158^2))/6 22.98 T SAFE SQRT( HL2 + HT2 ) (SQRT(1407^2+294^2))/6 23.96 T 239.6 kN

Design Moment for pile where,

m

=

m * Q * (L1 + Lf) / 2 M = Moment Reduction factor m = M

= =

0.82 (IS:2911-2010, Fig.5B) 78.6 T m 785.8 kN m

6 Design of Pile Page 57

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

6.1.3

Design of Pile Provide Diameter of londitudinal bar Number of longitudinal bars Clear spacing provided between vertical bars

= = =

16 25 117

Diameter of lateral ties Spacing of lateral ties provided

= =

10 150

+ > Safe mm mm

Effective cover Effective depth of Pile (0.75 D)

d' deff

= =

68 mm 900 mm

Area of reinforcement provided

Ast provd

=

2 5027 mm

Astmin

=

Minimum area of reinforcement required

Percentage of steel provided Effective cover to Depth Ratio

pt % d' / D

0 0 100

= =

mm no. mm

(IRC:78-2014,cl.no.709.4.4)

0.4% of AG 4524 mm2

[ IRC:112-2011, cl.no. 16.2.2 (4)]

6.1.4

B1163502 DN102 rev. 0

OK

0.44 0.0567

Check for Axial and Flexure Capacities The pile is checked for maximum axial load with corresponding BM case and maximum BM with corresponding maximum and minimum axial load. The maximum axial capacity of pile is calculated as per IRC112:2011, cl. No. 8.3.2 (4) and flexural capacities are calculated from the interaction diagram as per SP:16. Maximum Axial Load and corresponding BM Pmax

=

Corresponding horizontal force at top of pile

H

= =

Corresponding Bending Moment

M

=

786 kN m

Mu/fck.D^3

=

0.04

.`. Mu M / Mu

= =

2765 kN m 0.28

Maximum Axial Load on Pile

For,

p/fck P/fckD^2

= =

0.0111 0.1436

8273 kN ( Load Comb 1.2.3 ) (SQRT(1407^2+294^2))/6 239.57 kN

(From SP 16)

SAFE

Maximum BM and corresponding Minimum Axial Load Case Max horizontal force at top of pile (Factored load)

= = =

SQRT( HL2 + HT2 ) (SQRT(1407^2+294^2))/6 23.96 T

Hmax

=

239.6 kN ( Load Comb 1.2.3 )

Corresponding minimum Vertical load on Pile

Pmin

=

2098 kN

Maximum Bending Moment

Mmax

=

Mu/fck.D^3

=

.`. Mu M / Mu

= =

For,

p/fck P/fckD^2

= =

0.0111 0.0364

786 kN m 0.013

(From SP 16)

899 kN m 0.87

SAFE

6 Design of Pile Page 58

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

B1163502 DN102 rev. 0

Minimum Axial Load and corresponding BM Pmin

=

Corresponding horizontal force at top of pile

H

= =

Corresponding Bending Moment

M

=

Mu/fck.D^3

=

.`. Mu M / Mu

= =

Minimum axial load on pile

For,

6.1.5

p/fck P/fckD^2

= =

0.0111 0.0048

Check for Shear Capacity

274 kN ( Load Comb 2.3.6 ) (SQRT(178^2+347^2))/6 65.02 kN 213 kN m 0.012

(From SP 16)

829 kN m 0.26

SAFE

( IRS:CBC 2014, cl.no.15.4.3)

Calculation of Shear Stress Hmax Max horizontal force at top of pile Corresponding minimum Vertical load on Pile Pmin

=

239.6 kN

=

2098 kN

( Load Comb 1.2.3 )

Effective depth Equivalent Width

deff b

= =

Shear Area ( 0.75 Ac )

AV

=

Shear Stress on the section

v

=

Maximum capacity of section

vmax

= = =

0.75 fck1/2

= =

100 Ast / AV

=

(0.27 / Ym) * (100 Ast / bwd)1/3 * (fck)1/3

=

0.62 N/mm2 (500 / deff)1/4

900 mm SQRT(3.14/4×1200^2) 1063 mm 2 848230 mm

0.282 N/mm2

4.74 4.74 N/mm2

SAFE OR OR

4.75 4.75

Calculation of Shear Capacity of the Section Percentage of steel provided

pt %

vc

Ultimate shear stress in the concrete Depth factor

s

Axial load factor

s vc

Shear Reinforcement Calculation Provide

<=

= = =

0.86 0.86

s vc

=

OR OR

0.70 0.70

1 + (0.05 P / Ac)

= =

Shear stress capacity of section

v

0.59 %

1.09 2

0.59 N/mm Provide Minimum Shear Reinforcement

( IRS:CBC 2014, cl.no.15.4.3.2) 2L

10mm

dia stirrups

Asv

=

Asv

>=

sV

= =

2 157 mm

0.4 b sV / (0.87 fyv) Asv * 0.87 * fyv / (0.4 b) 161 mm

6 Design of Pile Page 59

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height

v

s vc

>

6.2

>=

sV

= =

sV

Spacing provided Hence provide

Asv

2L

b sV (v + 0.4 - svc) / (0.87 fyv) Asv * 0.87 * fyv / (0.4 b (v + 0.4 - svc)) --- mm

=

10mm dia at

B1163502 DN102 rev. 0

150 mm 150mm

SAFE

c/c

Check for stresses in Pile (SLS) Comb 1 to Comb V (IRS: CBC 2014, Table 11)

Calculation

Mpa

Perm flexural compressive stress in concrete Perm Axial compressive stress in concrete Perm Tensile stress in Steel

= 0.5×40 = 0.38×40 = 0.75×-500

20.0 15.2 -375.0

Summary of Forces for Stress check in Pile Comb I to Comb V Max Axial Load Min Axial Load Max √(HL2+ HT2)/n

Load Case 7.2.3 6.3.6 7.2.3

Pmax kN 6371 6371

Pmin kN 477 1280

HL kN 220 14 220

HT kN 28 28 28

√(HL2+ HT2)/n

ML

kN 222

(kN MT

(kN

m)

m)

723 45 723

93 90 93

Maximum Stresses in Pile ( Results from Software MIDAS GSD)

6.3

Load Case

Flexural Comp Stress in Concrete ( Mpa )

Section

Axial Comp Stress in Concrete ( Mpa )

Section

Tensile Stress in Steel ( Mpa )

Section

7.2.3 6.3.6 7.2.3

9.65 0.98 9.65

SAFE SAFE SAFE

5.50 0.41 5.50

SAFE SAFE SAFE

1.36 0.01 1.36

SAFE SAFE SAFE

Check for Stresses for Crack Width in Pile Comb 1 (IRS: CBC 2014, Table 11)

Calculation

Mpa

Perm flexural compressive stress in concrete Perm Axial compressive stress in concrete Perm Tensile stress in Steel

= 0.5×40 = 0.38×40 = 0.75×-500

20.0 15.2 -375.0

Summary of Forces for Stress check in Pile Comb I to Comb V Max Axial Load Min Axial Load Max √(HL2+ HT2)/n

Load Case 5.2.3 5.1.2

Pmax kN 5875 -

Pmin kN 851

HL kN 147 0

HT kN 31 2

√(HL2+ HT2)/n

kN -

m)

m)

483 0

102 7

5.2.3

5875

1896

147

31

151

483

102

ML

(kN MT

(kN

Maximum Stresses in Pile ( Results from Software MIDAS GSD) Load Case

Flexural Comp Stress in Concrete ( Mpa )

Section

Axial Comp Stress in Concrete ( Mpa )

Section

Tensile Stress in Steel ( Mpa )

Section

5.2.3 5.1.2 5.2.3

7.89 0.76 7.89

SAFE SAFE SAFE

5.06 0.74 5.06

SAFE SAFE SAFE

2.26 0.70 2.26

SAFE SAFE SAFE

NOTE :- Since no tension in concrete, the section is Uncracked , Check for crack width is not Required

6 Design of Pile Page 60

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height B1163502 DN102 rev. 0

7

Calculation of Vertical Capacity of Pile

7.1

Geotechnical Capacity of Piles in Hard Rock The safe load carrying capacity of pile is estimated in accordance with Section-9 of Appendix-5 of IRC78: 2014, Method 1 for piles socketted in hard rock. Ultimate capacity of pile in N

Qu

=

Re + Raf

=

Ksp qc df Ab + As Cus

Core recovery

CR

=

50 %

Rock Quality Designation

RQD

=

50 %

=

50 %

(CR + RQD) / 2

=(50+50)/2

Emperical co-efficient

Ksp

=

Average UCC of rock core

qc

=

2 15000 t/m

Ultimate shear strength of rock

Cus

=

2 27.56 t/m

Diameter of pile

D

=

1.2 m

Socket length provided

Ls

=

0.3 m

Area of pile base

Ab

=

2 1.13 m

0.56

2 0.00 m

As Surface area of socket = (Neglecting friction from top 300mm depth of socket) Depth factor

df = 1+0.4 Ls/D

=

1.2 (Limited to 1.2)

Re

=

11342.0 t

Raf

=

0.0 t

Factor of Safety for End Bearing (Re)

FSe

=

3

Factor of Safety for Friction (Raf)

FSaf

=

6

Qsafe

=

= (Re / FSe) + (Raf / FSaf)

3781 t

7 Calculation of Vertical Capacity of Pile Page 61

Detailed Design of Metro-cum-Flyover Viaduct from Ajni Square to Airport Road in Nagpur Metro Reach I (North-South Corridor) Design of Substructure Foundation 28m + 28m Span, 19.6m Width, 22m Height B1163502 DN102 rev. 0

7.2

Geotechnical Capacity of Piles in Weathered Rock

The safe load carrying capacity of pile is estimated in accordance with Section-9 of Appendix-5 of IRC78: 2014, Method 2 for piles in weatherd rock or intermediate goe-material. Ultimate capacity of pile in N

Qu

= =

Nc

=

Re + Raf Cub Nc Ab + As Cus 9

Average SPT N value below pile base

=

150 <=300

Average SPT N value of socket portion

=

90 <=300

As per table in Section-9 of IRC: 78-2014 for Method 2, N value 60 100 200 300 Cub / Cus 0.4 0.7 1.9 3.3 in MPa Average Shear Strength below base Cub

=

2 130 t/m

Ultimate shear strength along socket

=

62.5 t/m2

Design shear strength along socket Cus

=

2 66.82 t/m

Concrete grade in piles

fck

=

Diameter of pile

D

=

1.2 m

Socket length provided

Ls

=

6m

Area of pile base

Ab

=

2 1.13 m

Surface area of socket

As

=

2 21.49 m

M40

(Neglecting friction from top 300mm depth of socket) Re

=

1323.2 t

Raf

=

1435.8 t

Factor of Safety for End Bearing (Re)

FSe

=

3

Factor of Safety for Friction (Raf)

FSaf

=

6

Qsafe

=

= (Re / FSe) + (Raf / FSaf)

680 t

7 Calculation of Vertical Capacity of Pile Page 62

Related Documents


More Documents from ""