Distributions∗ USC Linguistics August 17, 2007
binomal pdf: p(c(t)) =
n k
=
N c(t)
p(t)c(t) (1 − p(t))N −c(t)
(1)
n! n ∗ (n − 1) ∗ ... ∗ (n − (k − 1)) = k!(n − k)! k!
(2)
N X N p(t)ci (t) (1 − p(t))N −ci (t) p(c (t) > ci (t)) = ci (t) 0
(3)
i
Binomial PDF; p(t)=.5 0.18 0.16 0.14 0.12 p(c(t))
0.1 0.08 0.06 0.04 0.02 0 0
5
10 c(t); N=20 events
15
20
multinomial pdf: p(c(v1 ), ..., c(vk )) =
N! p(v1 )c(v1 ) ...p(vk )c(vk ) c(v1 )!...c(vk )!
∗
(4)
Collecting so much information in such a short time would not have been possible without the invaluable aid of Wikipedia, PlanetMath, MathWorld, and many other helpful academic pages.
1
normal distribution:
(x−µ)2 1 (− √ e 2σ2 ) σ 2π
(5)
Normal PDF 0.18 µ = 10, σ =
0.16
√
5
0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0
5
10
15
20
µ = N p : 20 ∗ .5 = 10
(6)
σ 2 = N p(1 − p) : 10 ∗ .5 = 5
(7)
e
Z ∞ X 1 1 e= ; dx = 1 k! x k=0
(8)
1
1 δ logb e δ ; loge (x) = logb (x) = x δx x δx
(9)
poisson distribution:
e−E(c(t))E(c(t))c(t) p(c(t)) = c(t)! E(c(t)) =
totaltime 10minutes = = 2.5 averagetime/event 4minutes/event E(c(t)) = µ = σ 2
2
(10) (11) (12)
Normal & Poisson PDFs 0.14
√ µ = 10, σ = 10 E(c(t)) = 10
♦ ♦
0.12
♦
♦
0.1 0.08
♦
♦
0.06
♦
0.04
♦
0.02 0♦ ♦ ♦ 0
♦
♦
p(c(t))
♦
♦ ♦
♦ ♦ 15
10 c(t)
5
gamma function:
Z∞ Γ(α) =
xα−1 e−x dx
♦
♦ ♦ ♦ 20
(13)
0
for α ∈ N: Γ(α) = (α − 1)! gamma pdf: p(x) =
λα α−1 −λx x e Γ(α)
χ2 : f◦ =degrees of freedom α= p(x) =
(14)
f◦ 1 ,λ = 2 2
( 21 )
f◦ 2
◦ Γ( f2 )
x
f◦ −1 2
(16) 1
e− 2 x
f ◦ = (#rows − 1)(#columns − 1) E=
T otal(row) ∗ T otal(col) N χ2 =
X (O − E)2 E
3
(15)
(17) (18) (19)
(20)
Gamma PDF (χ2 : f ◦ = 2α; λ = .5) 0.5
α = 10, λ = 2 α = 5, λ = 2 α = 3, λ = .5 α = 1, λ = .5 α = .5, λ = .5
0.4 0.3 0.2 0.1 0 0
2
4
E[X] =
6
8
10
α α ; V ar[X] = 2 λ λ
(21)
E[χ2 ] = 2α = f ◦ ; V ar[χ2 ] = 4α = 2f ◦ Observed poor rich greedy 80 40 lazy 60 20 total 140 60 χ2 =
Expected poor rich greedy 84 36 lazy 56 24 total 140 60
120 80 200
16 16 16 16 + + + = 1.59 84 36 56 24
p(χ2 > 1.59, f ◦ = 1) = .2073
(22)
120 80 200 (23) (24)
References Baird, Davis (1983) “The Fisher/Pearson Chi-Squared Controversy: A Turning Point for Inductive Inference,” Br J Philos Sci, 34(2), 105–118.
4