ix
DISSERTATION ABSTRACT
Name : Mawardi Study Programe : Chemistry Title : Studies of Biosorption of Heavy Metal Ions By Green Algae Spirogyra subsalsa Biomass
The green algae Spirogyra subsalsa biomassa was used for the biosorption of Pb2+, Cu2+, Cd2+, Zn2+, Cr3+dan Cr6+ ions. The biosorption capacity of biomass strongly depends on pH and the maximum adsorption of Pb2+, Cu2+, Cd2+, Zn2+, Cr3+ ions on biomass was observed at pH 4.0 and the corresponding value for Cr6+ ion was 2.0. The biosorption of Pb2+, Cu2+, Cd2+, Zn2+, Cr3+ and Cr6+ ions by green algae S subsalsa increased as the initial concentration of Pb2+, Cu2+, Cd2+, Zn2+, Cr3+ and Cr6 ions increased in the biosorption medium. The Langmuir adsorption isotherms were used to fit the experimental data. The maximum biosorption capacities of green algae S. subsalsa biomass for Pb2+, Cu2+, Cd2+, Zn2+, Cr3+ and Cr6+ ions were 9,04 mg (0,044 mmol); 6,03 mg (0,095 mmol); 3,56 mg (0,032 mmol); 2,91 mg (0,045 mmol); 1,82 mg (0,035 mmol) dan 1,51 mg (0,029 mmol) per gram dry biomass, respectively in 30 minute. The affinity adsorption for algae biomass was Cr3+ > Cd2+ > Cr6+ > Cu2+ > Pb2+ > Zn2+ and biosorption capacities (mg/g) was Pb2+> Cu2+> Cd2+ > Zn2+ >Cr3+>Cr6+. FT-IR analysis of algal biomass revealed the presence of carboxyl, amino, amide, carbonyl and hydroxyl groups, which were responsible for biosorption of metal ions. The algae S. subsalsa biomass could be regenerated using 0,5 M HNO3, up to 89% recovery. The biosorption process of Pb2+, Cu2+, Cd2+ and Zn2+ cations was a rapid process, wherein 87,5%; 99%; 94,7% dan 97,2% of the final uptake value occur within the first 5 min of the contact time, recpectively, while Cr3+ and Cr6+ cations, 37,4%; and 21,9% uptake occurred whitin the first ten minutes of exposure. The experimental data of each binary cations system demonstrated that the presence of the secondary metal ion always reduced the total biosorption capacity of biomass. It has been found that metals biosorption by green algae S. subsalsa biomass is selective and, in some cases, competitive. Also, the mechanism involved in biosorption resulted ion exhange between cation metals, as counters ions present in the biomass and heavy metals ions and proton taken up from eluen. Treating of biomass by chemical modification of carboxyl, carbonyl and amine groups, that is, generally, cause reduced the total biosorption capacity of biomass. Generally, immobilization biomass by sodium silicate increased the total biosorption capacity of biomass. The biosorption process of metal ions by immobilized biomass was a rapid process, wherein more than 50% of the final uptake value occur at rate flow 2,5 mL/minute. Key Word : S. subsalsa, pH, biosorption capacity, affinity adsorption , functional graoups.
ix
Universitas Indonesia
x
DAFTAR ISI Halaman HALAMAN SAMPUL ..........................................................................
i
HALAMAN JUDUL .............................................................................
ii
HALAMAN PERNYATAAN ORISINALITAS ..................................
iii
LEMBARAN PENGESAHAN ………………………………………..
iv
KATA PENGANTAR …………………………………………………
vi
HALAMAN PERSETUJUAN PUBLIKASI KARYA ILMIAH .......... vii ABSTRAK ……………………………………………………………
viii
DAFTAR ISI ………………………………………………………..
x
DAFTAR TABEL …………………………………………………. . .
xiii
DAFTAR GAMBAR ………………………………………………….
xiv
DAFTAR LAMPIRAN ………………………………………………..
xvii
1. PENDAHULUAN ………………………………………………… ..
1
1.1 Latar Belakang Masalah …………………………… ………....
1
1.2 Objek Penelitian ……………………………………….…… .. .
4
1.3 Tujuan Penelitian ………………………………….............… .
5
1.4 Perumusan Masalah ……………………….............…………. .
7
1.5 Sistimatika Penulisan ………………………............………......
9
2. TINJAUAN PUSTAKA ………………………………...............… …. 12 2.1 Biomaterial Sebagai Biosorben Ion Logam ……............………. . 12 2.2 Alga Hijau Spirogyra subsalsa sp.……………………............. …
24
2.3 Tinjauan Tentang Logam …………………………… …..............
25
2.4 Biosorpsi …………………………………………… ............. …..
27
2.5 Zat Pemodifikasi Gugus Fungsi ……………………...............…
34
2.6 Tafsiran Spektrum FTIR …………………………….............… .
36
2.7 Prekonsentrasi …………………………………………............
3. METODA PENELITIAN ………………………………………...…
x
.
39
40
Universitas Indonesia
xi
3.1 Tahapan Penelitian …………………………………………..…
40
3.2 Perlakuan Penelitian Pada Sistim Batch …………………...…..
41
3.3 Perlakuan Amobilisasi Biomassa ……………………………....
43
3.4 Perlakuan Penelitian Pada Sistim Kontinu …………………......
44
3.5 Regenerasi Kolom ……………………………………………...
45
3.6 Aplikasi Pada Sampel Limbah dan Faktor Pemekatan …….....…
45
3.7 Teknik Analisa Data………………………………………….....
45
4. KARAKTERISASI DAN OPTIMASI BIOSORPSI LOGAM OLEH BIOMASSA ALGA Spirogyra subsalsa MURNI
……………........
47
4.1 Karakterisasi EDX dan FTIR Biomassa ……………………........
47
4.2 Pengaruh pH Larutan Terhadap Serapan Biomassa …………......
50
4.3 Pengaruh Ukuran Partikel Biosorben ………………………........
51
4.4 Pengaruh Kecepatan Pengadukan …………………………......…
53
4.5 Pengaruh Pemanasan Biosorben …………………………….......
54
4.6 Laju Biosorpsi……………………………………………......…..
55
4.7 Pengaruh Konsentrasi Awal Larutan ……………………….........
56
4.8 Aplikasi Pada Sampel Limbah …………………………….......…
59
4.9 Pengaruh Keberadaan Kation Lain dalam Larutan ………….........
61
4.10 Karakterisasi Selektifitas dan Pertukaran Ion Biomassa alga hijau Spirogyra subsalsa Sebagai Biosorben. ......................... 4.11 Kesimpulan …………………………………………………........
64 73
5. KARAKTERISASI DAN OPTIMASI BIOSORPSI LOGAM OLEH BIOMASSA ALGA Spirogyra subsalsa sp. YANG DIPERLAKUKAN DENGAN REAGEN PEMODIFIKASI GUGUS FUNGSI ………..... 76 5.1 Optimasi Volume Reagen Pemodifikasi …………………………
76
5.2 Karakterisasi FTIR Biomassa Alga Spirogyra subsalsa yang diperlakukan dengan Reagen Pemodifikasi Gugus Fungsi .… 78 5.3 Pengaruh pH Larutan Terhadap Serapan Biomassa Alga Spirogyra subsalsa yang Diperlakukan dengan Reagen Pemodifikasi Gugus Fungsi ………………………………….........
xi
81
Universitas Indonesia
xii
5.4 Pengaruh Konsentrasi Awal Larutan Terhadap Serapan Biomassa Alga Spirogyra subsalsa yang Diperlakukan dengan Reagen Pemodifikasi Gugus Fungsi……………………...
84
5.5 Kesimpulan dan Saran ....……………………………………..… 88
6. KARAKTERISASI DAN OPTIMASI BIOSORPSI LOGAM OLEH BIOMASSA ALGA Spirogyra subsalsa YANG DIAMOBILISASI.. 90 6.1 Karakterisasi EDX DAN SEM Biomassa Alga Spirogyra Subsalsa Terimmobilisasi ..............................................................
90
6.2 Karakterisasi FTIR Biomassa Alga Spirogyra subsalsa Teramobilisasi..................................................................................
91
6.3 Pengaruh Laju Alir Larutan Terhadap Serapan Biomassa …....….
93
6.4 Pengaruh pH Awal Larutan Terhadap Serapan Biomassa…..…....
94
6.5 Pengaruh Konsentrasi Awal Larutan ………………………......…
97
6.6 Pengaruh Amobilisasi Terhadap Daya Serap Biomassa…..............
99
6.7 Pengaruh Konsentrasi Asam Pengelusi Terhadap Perolehan Kembali (Desorpsi) Logam ………………………………...……
101
6.8 Aplikasi pada Sampel Limbah dan Faktor Pemekatan ……..........
102
6.9 Kesimpulan dan Saran ..…………………………………....……
104
7. KESIMPULAN SECARA UMUM ……....……………………....…
106
DAFTAR PUSTAKA ……………………………………………………… 110 LAMPIRAN …………………………………………………………… . .… 116
xii
Universitas Indonesia