Lecture Notes
Diodes for Power Electronic Applications
OUTLINE
• PN junction power diode construction • Breakdown voltage considerations • On-state losses • Switching characteristics • Schottky diodes • Modeling diode behavior with PSPICE
Copyright © by John Wiley & Sons 2003
Diodes - 1
Basic Structure of Power Semiconductor Diodes Anode
i P+
v
N- epi
N+ substrate
10 microns
19 -3 N = 10 cm A
breakdown voltage dependent
14 -3 N = 10 cm D 19 -3 N = 10 cm D
250 microns
Cathode
anode
i 1
i v
v
R on
BVBD ≈ 1 V
v
cathode Copyright © by John Wiley & Sons 2003
Diodes - 2
Breakdown Voltage Estimate - Step Junction Φ
¥ N on-punch-through diode. Drift region length W d > W (BV BD ) =
W(V)
length of space charge region at breakdow n.
x Φ
¥ W (V ) = W o
∞ Ωο =
1+V /Φχ
χ
Φχ + ς
2 εΦχ( Να+ Νδ ) θ ΝαΝδ
2Φ χ ¥ Em ax = 1 ⊇+ ⊇ς / Φ χ Ωο ∞ Πο ω ε ρ δ ιο δ ε ατ ρε ϖε ρσε β ρε ακ δ ο ω ν: Να >> Νδ ; Ε = ΕΒ∆ ; ς = Βς Β∆ >> Φ χ Ω ο 2 ⊇Βς Β∆ 2 εΦ χ 2 2 = ∞ Ω ( Βς Β∆ ) = ; Ω ο Φχ θ ⊇Νδ
¥ Conclusions
4ÊΦ χ
¥
(Em ax )2 = (EBD )2 =
∞
Σο λϖε φο ρ Ω ( Βς Β∆ ) ανδ Βς Β∆ το ο β ταιν ( π υτ ιν Σι ϖαλυε σ) ε⊇ΕΒ∆ 2 1 .3 ξ 1 0 1 7 Βς Β∆ = = ; [ς ] 2 ⊇θ ⊇Νδ Νδ
Ω ο2
Βς Β∆
2 ⊇Βς Β∆ Ω ( Βς Β∆ ) = = 1 0 −5 Βς Β∆ ; [∝µ ] ΕΒ∆
1.Large BV BD (10 3 V ) requires N d < 10 15 cm -3 2.Large BV BD (10 3 V ) requires N - drift region > 100 µ m
Copyright © by John Wiley & Sons 2003
Diodes - 3
Breakdown Voltage - Punch-Through Step Junction ¥ Punch-through step junction - W (BV BD ) > W d - V + + P
N-
W
N
d
V E 2
¥ V 1 + V 2 = BV BD ¥ E1 + E2 = EBD
+
Electric field
E + E2 1
¥ A t breakdow n:
1
qN dW d2 ¥ BV BD = EBD W d 2ε
∞ Ιφ Νδ < <
V2
x
ε( ΕΒ∆) 2
( ρε θ υιρε δ 2 θ ( Βς Β∆ ) ϖαλυε οφ Νδ φορ νον−πυνχη−τηρυ δ ιοδ ε ) , τηε ν
¥ E1 = ∞
qN dW d
ε
;ς1 =
θ Νδ Ω δ 2
ς 2 = Ε2 Ω δ
Copyright © by John Wiley & Sons 2003
2ε
∞ ∞
Βς Β∆ ⊕ ΕΒ∆ Ω δ ανδ Ω δ ( Πυνχη−τηρυ) ⊕ 0 .5 Ω δ ( νον−πυνχη−τηρυ) Diodes - 4
Effect of Space Charge Layer Curvature incident acceptor impurities diffusing acceptor SiO2 impurities
P depletion layer
¥ If radius of curvature is comparable to depletion layer thickness, electric field becomes spatially nonuniform.
+ R NN
¥ Spatially nonuniform electric field reduces breakdown voltage.
+
¥ Impurities diffuse as fast laterally as vertically
¥ Curvature develops in junction boundary and in depletion layer.
Copyright © by John Wiley & Sons 2003
¥ R > 6 W(BVBD) in order to limit breakdown voltage reduction to 10% or less. ¥ Not feasible to keep R large if BVBD is to be large ( > 1000 V).
Diodes - 5
Control of Space Charge Layer Boundary Contour field plates
• Electrically isolated conductors (field plates) act as equipotential surfaces.
P+ depletion layer boundary
N
SiO 2 P depletion layer boundary
P+ guard N
P
ring -
N+ aluminum contact
Copyright © by John Wiley & Sons 2003
• Correct placement can force depletion layer boundary to have larger radius of curvature and t;hus minimize field crowding. • Electrically isolated p-regions (guard rings)has depletion regions which interact with depletion region of main pn junction. • Correct placement of guard rings can result in composite depletion region boundary having large radius of curvature and thus minimize field crowding. Diodes - 6
Surface Contouring to Minimize Field Crowding depletion layer boundary
+ N N-
SiO
N+
2 N-
P+ bonding pad
P+ bonding pad
high field region
• Large area diodes have depletion layers that contact Si surface. • Difference in dielectric constant of Si and air causes field crowding at surface. • Electric fields fringing out into air attract impurities to surface that can lower breakdown voltage. Copyright © by John Wiley & Sons 2003
• Proper contouring of surface can mimimize depletion layer curvature and thus field crowding. • Use of a passivation layer like SiO2 can also help minimize field crowding and also contain fringing fields and thus prevent attraction of impurities to surface. Diodes - 7
Conductivity Modulation of Drift Region • Forward bias injects holes into drift region from P+ layer. Electrons attracted into drift region from N+ layer. So-called double injection.
x P
+
+
N
-
-
N+
W d p(x) = n(x) 16
= n a= 10
n p(x) n
log scale
• If Wd ≤ high level diffusion length La , carrier distributions quite flat with p(x) ≈ n(x) ≈ na.
po
n no= 10 p
no
14
= 10 6
• For na >> drift region doping Nd, the resistance of the drift region will be quite small. So-called conductivity modulation.
p (x) n p no
x
Copyright © by John Wiley & Sons 2003
• On-state losses greatly reduced below those estimated on basis of drift region low-level (Nd) ohmic conductivity. Diodes - 8
Drift Region On-State Voltage Estimate QF
¥ IF = = τ
θ⊇Α⊇Ω δ ⊇να τ
; Χυρρεντ νεεδεδ
το µαινταιν στορεδ χηαργε Θ Φ.
W d
θ⊇[∝ ν⊇+⊇∝π ]⊇ν α⊇Α⊇ς δ ∞ ΙΦ = ; Ωδ
x
Οηµ∏σ Λαω (ϑ = σΕ) P
Ωδ2
∞ ςδ= ; Εθυατε αβοϖε ⊇[∝ν⊇+⊇∝π ]⊇τ τωο εθυατιονσ ανδ σολϖε φορ ς δ
+
+
N
IF +V j
+
-
V d
-
N+
Cross-sectional area = A
∞ Χονχλυσιον: λονγ λιφετιµε τ µινιµιζεσ ς δ .
Copyright © by John Wiley & Sons 2003
Diodes - 9
Diode On-State Voltage at Large Forward Currents ¥ µn + µp =
µo na 1Ê+Ê nb
; nb Å 10 17 cm -3 .
¥ M obility reduction due to increased carrier-carrier scattering at large na.
qÊnaÊA ÊV d ¥ IF = Wd
µo na 1Ê+Ê nb
; O hm s Law
w ith density-dependent m obility.
¥ Invert O hm Õs Law equation to find V d as function IF assum ing na >> nb.
IfÊW d ¥ Vd = qʵoÊnbÊA
¥ V d = IF Ron
¥ V = V j+ V d Copyright © by John Wiley & Sons 2003
Diodes - 10
Diode Switching Waveforms in Power Circuits Q rr = I di
F
/ dt
d i / dt R
I F
rr
t
rr
0.25
/2
I rr
t
I
t
V
FP
t
t 4
3
V on
rr
5
¥ t
rr
t t 2 t
1
Copyright © by John Wiley & Sons 2003
t S =
t
V
rr
V
R
¥
diF diR and determined dt dt by external circuit. Inductances or power semiconductor devices.
5 4
Diodes - 11
Diode Internal Behavior During Turn-on t 1
i F
+ P (t)
+ + + +
C sc
interval N -
Rd
i (t) F
Λ = στραψ ορ ωιρινγ ινδυχτανχε
L
t P+
δι Φ ς ΦΠ ⊕ Ι Φ Ρ δ + Λ δτ
ε⊇Α C sc(V) = ⊇Ω(ς) Ωδ Ρδ = θ⊇µ ν ⊇Νδ ⊇Α
N+
- + - + - +
2
interval N -
N+
V j Å 1.0 V time time
• Injection of excess carriers into drift region greatly reduces Rd.
time
x
Copyright © by John Wiley & Sons 2003
Diodes - 12
Diode Internal Behavior During Turn-off t i (t) R
P
3
-
- + - + +
+
t 4 N
interval N+
-
¥ R d increases as excess carriers are rem oved via recom bination and carrier sw eep-out (negative current).
V j Å 1.0 V C
sc
Rd
L time time
time
diR ¥ V r = IrrR d + L dt x
ts inte rv al ¥ Insufficient excess carriers rem ain to support Irr,so P + N - junction becom es reverse-biased and current decreases to zero. ¥ V oltage drops from V rr to V R as current decreases to zero.N egative current integrated over its tim e duration rem oves a total charge Q rr.
Copyright © by John Wiley & Sons 2003
Diodes - 13
Factors Effecting Reverse Recovery Time diR diR trr ¥ Irr = t = ; Defined on dt 4 dt(SÊ+Ê1) sw itching w aveform diagram
IrrÊ trr diR trr2 ¥ Q rr = = ; Defined 2 dt 2(SÊ+Ê1) on w aveform diagram
¥ If stored charge rem oved m ostly by sw eep-out Q rr Å Q F Å IF τ
∞ Υσινγ τηισ ιν ε θ σ. φορ Ιρρ ανδ τρρ ανδ ασσυµ ινγ Σ + 1 ⊕ 1 γ ιϖε σ
τρρ =
2 ⊇ΙΦ⊇τ δ ιΡ
ανδ
δτ ¥ Inverting Q rr equation to solve for trr yields
trr =
2Q rr(S+1) diR dt
and Irr =
Copyright © by John Wiley & Sons 2003
diR 2Q rr dt
Ιρρ =
δ ιΡ 2 ⊇ΙΦ⊇τ⊇ δτ
(SÊ+Ê1)
Diodes - 14
Carrier Lifetime-Breakdown Voltage Tradeoffs ¥ Low on-state losses require L =
DÊ τ =
κΤ ⊇τ θ⊇[∝ ν ⊇+⊇∝π ]
Λ = Ω δ ≥ Ω(ς) = 10
−5 Βς
Β∆
∞ Σολϖινγ φορ τηε λιφετιµε ψιελδσ Ω δ2 τ= = 4ξ10 −12 (Βς Β∆ ) 2 (κΤ/θ)⊇[∝ ν +∝π ]
∞ Συβστιτυτινγ φορ τ ιν Ιρρανδ τ ρρεθυατιονσ γιϖεσ ∞ τρρ= 2.8ξ10
−6 Βς Β∆
∞ Ιρρ= 2.8ξ10
−6 Βς Β∆
Copyright © by John Wiley & Sons 2003
ΙΦ (δι Ρ /δτ)
Conclusions 1. Higher breakdow n voltages require larger lifetim es if low on-state losses are to be m aintained. 2. High breakdow n voltage devices slow er than low breakdow n voltage devices. 3. Turn-off tim es shortened diR by large but Irr is dt increased.
διΡ ΙΦ⊇ δτ Diodes - 15
Schottky Diodes anode
Characteristics ¥ V (on) = 0.3 - 0.5 volts.
SiO2
P
P
¥ Breakdow n voltages ² 100-200 volts.
¥ M ajority carrier device - no stored charge.
guard ring depletion layer boundary with guard rings
N
¥ Fast sw itching because of lack of stored charge.
depletion layer boundary without guard rings
N+
cathode
Copyright © by John Wiley & Sons 2003
aluminum contact rectifying
aluminum contact ohmic Diodes - 16
Physics of Schottky Diode Operation
¥ Electrons diffuse from Sito A l because electrons have larger average energy in silicon com pared to alum inum . ¥ Depletion layer and thus potential barrier set up.Gives rise to rectifying contact. ¥ No hole injection into silicon.No source of holes in alum inum .Thus diode is a m ajority carrier device. ¥ Reverse saturation current m uch larger than in pn junction diode. This leads to sm aller V (on) (0.3 0.5 volts)
Copyright © by John Wiley & Sons 2003
+ V -
i(t) Aluminum
n-type Si Electron Energy E
E Al
Al Diffusing electrons
-
-
+ + +
Si
N-Si
Depletion layer
Diodes - 17
Schottky Diode Breakdown Voltage ¥ Breakdow n voltage lim ited to 100-200 volts. ¥ Narrow depletion region w idths because of heavier drift region doping needed for low on-state losses. ¥ Sm allradius of curvature of depletion region w here m etallization ends on surface of silicon.Guard rings help to m itigate this problem . ¥ Depletion layer form s right at silicon surface w here m axim um field needed for breakdow n is less because of im perfections,contam inants. Copyright © by John Wiley & Sons 2003
Diodes - 18
Schottky Diode Switching Waveforms ¥ Schottky diodes sw itch m uch faster than pn junction diodes.No m inority carrier storage.
Current I F
¥ Forew ard voltage overshoot V FP
t
m uch sm aller in Schottky diodes. Drift region ohm ic resistance RΩ. ∞ Ρε ϖε ρσε ρε χοϖε ρψ τιµ ε τρρ µ υχη σµ αλλε ρ ιν Σχηοττκψ δ ιοδ ε σ. Νο µ ινοριτψ χαρριε ρ στοραγ ε . ∞ Ρε ϖε ρσε ρε χοϖε ρψ χυρρε ντ Ιρρ χοµ παραβλε το πν ϕυνχτιον δ ιοδ ε σ. σπαχε χηαργ ε χαπαχιτανχε ιν Σχηοττκψ δ ιοδ ε λαργ ε ρ τηαν ιν πν ϕυνχτιον δ ιοδ ε βε χασυε οφ ναρροωε ρ δ ε πλε τιον λαψε ρ ωιδ τησ ρε συλτινγ φροµ ηε αϖιε ρ δ οπινγ σ. Copyright © by John Wiley & Sons 2003
V
FP
V(on) t voltage C(Schottky) Å 5 C(PN)
R
Ω
(Sch.) << ΩR
(pn)
Diodes - 19
Ohmic Contacts ¥ Electrons diffuse from A linto ptype Sibecasue electrons in A l have higher average energy. ¥ Electrons in p-type Siform an accum ulation layer of greatly enhanced conductivity. ¥ Contact potentialand rectifying junction com pletely m asked by enhanced conductivity.So-called ohm ic contact. ¥ In N + Sidepletion layer is very narrow and electric fields approach im pact ionization values.Sm all voltages m ove electrons across barrier easily becasue quantum m echanicaltunneling occurs. Copyright © by John Wiley & Sons 2003
Electron Energy E Al E
Si
Accumulation layer
i(t) Al
-
-
P-Si or N + -Si
Diffusing electrons
Diodes - 20
PN Vs Schottkys at Large BVBD ¥ M inority carrier drift region relationships qÊ[µnÊ+ʵp]ÊnaÊA ÊV d ¥ IF Å Wd ¥ M axim um practicalvalue of na =10 17 cm -3 and corresponding to µn + µp = 900 cm 2 /(V -sec) ¥ Desired breakdow n voltage requires W d ³ 10 -5 BV BD IF Vd = 1.4x10 6 A BV BD ¥ M ajority carrier drift region relationships qÊ[µnÊ+ʵp]ÊN dÊA ÊV d ¥ IF Å Wd Copyright © by John Wiley & Sons 2003
¥ Desired breakdow n voltage 1.3x10 17 requires N d = and BV BD W d ³ 10 -5 BV BD ¥ Large BV BD (1000 V ) requires N d = 10 14 cm -3 w here µn + µp = 1500 cm 2 /(V -sec) IF Vd 6 ¥ Å 3.1x10 A [BV BD ]2 ¥ Conclusion:M inority carrier devices have low er on-state losses at large BV BD .
Diodes - 21
PSPICE Built-in Diode Model •
• Components
Circuit diagram ¥
Cj - nonlinear space-charge capacitance
¥
Cd - diffusion capacitance. Caused by excess
i
+
diode
+
carriers. Based on quasi-static description of stored charge in drift region of diode.
v j
C
v
i
C
(v dc
j
) j
d
diode -
¥
Current source idc(vj) models the exponential I-V characteristic.
R s
-
¥ v
= diode
v
+
R
i j
s
diode
Copyright © by John Wiley & Sons 2003
Rs accounts for parasitic ohmic losses at high currents.
Diodes - 22
Stored Charge in Diode Drift Region - Actual Versus Quasi-static Approximation x
-
+
N
P
N
n(x,t)
• One dimensional diagram of a power diode.
+
n(x,t)
• Quasistatic view of decay of excess carrier distribution during diode turn-off. n(x,t) = n(x=0,t) f(x)
time
time time
• Redistribution of excess carriers via diffusion ignored. Equ;ivalent to carriers moving with inifinte velocity.
x
0
Wd
time
time time
x
Copyright © by John Wiley & Sons 2003
• Actual behavior of stored charge distribution during turn-off. Diodes - 23
Example of Faulty Simulation Using Built-in Pspice Diode Model L stray
50 nH
• Test circuit example - step-down converter.
I o
D f +
V
50 A
d
• PSPICE diode model parameters - (TT=100ns Cjo=100pF Rs=.004 Is=20fA)
-
100 V
Sw
Diode Voltage
0V
-100V
-200V
• Diode voltage transient
-300V
-400V
-500V 0s
100ns
200ns
300ns
400ns
500ns
time
Diode Current
100A
50A
0A
-50A
• Diode current transient.
-100A
0s
100ns
200ns
300ns
400ns
500ns
time
Copyright © by John Wiley & Sons 2003
Diodes - 24
Improved (lumped-charge) Diode Model N - region
• More accurately model distributed nature of excess carrier distribution by dividing it into several regions, each described by a quasi-static function. Termed the lumped-charge approach.
p(x) = n(x) P+ Q1 region δ
Θ
2
Q 4
Q3
N+ region x
d
1
i
• Circuit diagram of improved diode model. Circuit written in terms of physical equations of the lumped-charge model.
diode
+
D
v
Gd
CJ
j Vsense1 -
6
5
8
7 +
-
2 R s
+
+ Re
Ee 3
Em
-
+ Rm
Edm
-
-
Cdm
Rdm
+ Emo -
0
4
+
• Detailed equations of model given in subcircuit listing.
Vsense2 -
9
• Many other even better (but more complicated models available in technical literature..
Copyright © by John Wiley & Sons 2003
Diodes - 25
Details of Lumped-Charge Model Subcircuit Listing .Subckt DMODIFY 1 9 Params: Is1=1e-6, Ise=1e-40, Tau=100ns, +Tm=100ns,Rmo=Rs=.001, Vta=.0259, CAP=100p, Gde=.5, + Fbcoeff=.5, Phi=1, Irbk=1e20,Vrbk=1e20 *Node 1= anodeand Node 9 = cathode Dcj 1 2 Dcap ; Included for space charge capacitance and reverse *breakdown. .model Dcap D (Is=1e-25 Rs=0 TT=0 Cjo={CAP} M={Gde} +FC={Fbcoeff} Vj={Phi} +IBV={Irbk} BV=Vrbk}) Gd 1 2 Value={(v(5)-v(6))/Tm +Ise*(exp(v(1,2)/Vta)-1)} *Following components model forward and reverse recovery. Ee 5 0 VALUE = {Is1*Tau*(exp(V(1,2)/(2*Vta))-1)}; Ee=Qe Re 5 0 1e6 Em 6 0 VALUE = {(V(5)/Tm-i(Vsense1))*Tm*Tau/(Tm+Tau)} *Em=Qm Rm 6 0 1e6 Edm 7 0 VALUE = {v(6)};Edm=Qm Vsense1 7 8 dc 0 ; i(vsense1)=dQm/dt Cdm 8 0 1 Rdm 8 0 1e9 Rs 2 3 4e-3 Emo 3 4 VALUE={2*Vta*Rmo*Tm*i(Vsense2) +/(v(6)*Rmo+Vta*Tm)}; Vm Vsense2 4 9 dc 0 .ends Copyright © by John Wiley & Sons 2003
• Symbolize subcircuit listing into SCHEMATICS using SYMBOL WIZARD • Pass numerical values of parameters Tau, Tm, Rmo,Rs, etc. by entering values in PART ATTRIBUTE window (called up within SCHEMATICS). • See reference shown below for more details and parameter extraction procedures. • Peter O. Lauritzen and Cliff L. Ma, "A Simple Diode Model with Forward and Reverse Recovery", IEEE Trans. on Power Electronics, Vol. 8, No. 4, pp. 342-346, (Oct., 1993) Diodes - 26
Simulation Results Using Lumped-Charge Diode Model Diode voltage and current waveforms
Simulation Circuit L
10V Diode
stray
50 nH
Voltage
0V
0V
Io 50 A
.
+
V d
-
100 V
-10V 410ns
D
f
420ns
415ns
-100V
Sw
-200V
0s
100ns
200ns
300ns
400ns
500ns
time
Diode
Current
• Note soft reverse recovery and forward voltage overshoot. Qualitatively matches experimental measurements.
50A
0A
-50A 0s
100ns
200ns
300ns
400ns
500ns
time
Copyright © by John Wiley & Sons 2003
Diodes - 27