Diffusion

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Diffusion as PDF for free.

More details

  • Words: 1,558
  • Pages: 6
Diffusivities in Gases: D AB =

Reid & Sherwood(1966)

0.0018583T 3 / 2 1/ M A + 1/ M B P(σ AB ) 2 Ω D , AB

Binary air-hydrocarbon or non-hydrocarbon gas mixtures at low pressure. 0.00100T 7 / 4 D AB = 1/ M A + 1/ M B Fuller et al. (1966) P[(∑ν )1A/ 3 + (∑ν )1B/ 3 ]2

0.0150T 1.81 1/ M A + 1/ M B 0.4 0.4 2 P (TCATCB ) 0.1405 (VCA + VCA )

Chen & Othmer (1962)

D AB =

Chen & Othmer (1962)

⎡ 1/ M A + 1/ M B ⎤ 2.74 D AB = (2.52 × 10 7 ) µ air ⎢ 0.4 0.4 2 ⎥ ⎣⎢ (VCA + VCB ) ⎥⎦

Gas diffusivity of binary hydrocarbon-hydrocarbon gas systems at low pressure 0.5 0.1014T 1.5 (1 / M A + 1 / M B ) Gilliland D AB = 2 P V A1 / 3 + VB1 / 3

(

)

Binary mixture low pressure-non polar: 0.0027 − 0.0005M 1AB/ 2 T 3 / 2 M 1AB/ 2 D AB = 2 Pδ AB ΩD

(

)

Diffusivities of multi-component gas mixtures: ⎡ ⎤ ⎛ Nc ⎞⎤ Nc ⎡⎛ xN ⎞ Stefan-Maxwell, Smith & Taylor Dim = ⎢1 − xi ⎜⎜ ∑ N j / N i ⎟⎟⎥ / ∑ ⎢⎜⎜ x j − i i ⎟⎟ / Dij ⎥ Ni ⎠ ⎢⎣ ⎝ j =1 ⎠⎥⎦ j =1 ⎣⎝ ⎦ −1

Blanc

⎛ Nc x ⎞ Dim = ⎜ ∑ j ⎟ ⎜ j =1 D ⎟ ij ⎠ ⎝

−1

Wilke

⎛ Nc ⎞ xj ⎟ ⎜ Dim = ⎜ ∑ ⎟ ⎜ ij≠=1j Dij ⎟ ⎝ ⎠

Diffusivities in Liquids: ° D AB µ AB 7.4 × 10 −8 (ξM B )1 / 2 = T VbA0.6

Wilk & Chang (1955)

(Excluded water as solute) For unassociated solvents ξ=1.0; for water ξ=2.6; for methanol ξ=2.6; for ethanol ξ=1.5.

Scheibel (1954)

D

° AB

⎡ ⎛ 3V ⎤ ⎡ T = 8.2 × 10 −8 ⎢1 + ⎜⎜ bB = K⎢ 1/ 3 ⎥ ⎢⎣ ⎝ VbA ⎣ µ ABVbA ⎦

⎞ ⎟⎟ ⎠

2/3

⎤⎡ T ⎤ ⎥⎢ 1/ 3 ⎥ ⎥⎦ ⎣ µ ABVbA ⎦

(Excluded water as solute) Special solvent cases:water VbA
Othmer & Thakar (1953)

D

° AB

14 × 10−5 = 0.6 1.1∆H BT ∆H WT VbA µ B′ µWT

(Excluded water as solute)

Othmer & Thakar (1953)

° DAB =

14 × 10−5 1.1 0.6 µWT VbA

(Aqueous solutions only)

Olander (1961)

D°Water as solute=(D°Wilk & Chang) / 2.3 ° AB

⎛ M 1 / 2 ∆H 1 / 3T ⎞ = 5.4 × 10 ⎜⎜ B 0.5 B 0.3 ⎟⎟ ⎝ µ BVbA ∆H A ⎠

0.93

−8

Sitaraman et al (1963)

D

King et al (1963)

° ⎛V ⎞ µB DAB = 4.4 × 10−8 ⎜⎜ bB ⎟⎟ T ⎝ VbA ⎠

Reddy & Doraiswamy (1967)

° µ B 10 × 10−8 M B1 / 2 VbB DAB = ; ≤ 1.5 T VbA1 / 3VbB1 / 3 VbA

Reddy & Doraiswamy (1967)

° D AB µ B 8.5 × 10 −8 M B1 / 2 VbB = ; > 1.5 T VbA VbA1 / 3VbB1 / 3

Lusis & Ratcliff (1968)

1/ 3 ° ⎡ ⎛ VbB ⎞ DAB V ⎤ µB −8 −1 / 3 ⎟⎟ + bB ⎥ = 8.52 × 10 VbB ⎢1.40⎜⎜ T VbA ⎥ ⎢⎣ ⎝ VbA ⎠ ⎦

1/ 6

(Organic solvents)

1/ 2

⎛ ∆HmB ⎞ ⎜⎜ ⎟⎟ ∆ Hm A ⎠ ⎝

D AB =

Sun & Chen

1.23 ×10 −10 T µ 0.799VCA0.49

(ρ D AB = 5.152 DC Tr

Catchpole & King

⎛ M ⎞ − 0.4510 ⎜⎜1 + A ⎟⎟ R ⎝ MB ⎠

)

−0.667

(1 + (V

General mixtures: ° AB

=

Tyn-Claus

D

Umesi-Danner

° D AB =

Siddiqi-Lucas

D

° AB

(

8.93 ×10 −8 V A / VB2

0.333 2

) (Ψ 1/ 6

B

µB

(

)

/ VCA )

CB

/ ΨA ) T 0.6

)

2.75 × 10 −8 RB / R A2 / 3 T

µ

−8

9.89 × 10 VB0.265T = µ B0.907V A0.45

Gases in low viscosity liquids: Sridhar-Potter

D

° AB

D

° AB

⎛V ⎞ = DBB ⎜⎜ CB ⎟⎟ ⎝ VCA ⎠

2/3

⎛ VB ⎜⎜ ⎝ VmlB

⎞ ⎟⎟ ⎠

(βVCB )2 / 3 (RTCB )1/ 2 (V − 1)⎛⎜ T ⎞⎟ r 1/ 3 ⎜T ⎟ M 1A/ 6 (M BVCA ) ⎝ CB ⎠

1/ 2

Chen-Chen

= 2.018 ×10

Aqueous Solution:

−9

13.16 × 10 − 5 µW1.14V A0.589

Hayduk-Laudie

° = D AW

Siddiqi-Lucas

° D AB = 2.98 ×10 −7 V A−0.5473 µW−1.026T

Hydrocarbon Mixtures: Hayduk-Mihas

° D AB = 13.3 ×10 −8 T 1.47µ B(10.2 / VA −0.791)V A−0.71

Matthewes-Akgerman

° D AB = 32.88M A−0.61VD−1.04T 0.5 (VB − VD )

Riazi-Whiston

D AB

( ρD AB )° ⎛ µ ⎜ = 1.07 ρ

⎞ ⎜ µ ° ⎟⎟ ⎝ ⎠

−0.27 −0.38ω + ( −0.05+ 0.1ω ) Pr

Diffusion of dilute species A in a mixture of two solvents: Cullinan & Cusick (1967)

⎡ ⎤ xC xB lim D = ⎢ + ⎥ ° )xB (α ABC DBC° )xC (DAC° )xC (α ACB DCB° )xB ⎥⎦ ⎢⎣ (D AB xA → 0 ° A

α ABC =

° ° / DBC ) VC (1 − D AC D° , 1 − AC > 0.25 ° V A − VB DBC

α ABC =

VC D° , 1 − AC < 0.25 ° VA DBC

α ACB =

° ° / DCB ) VB (1 − D AB D° , 1 − AB > 0.25 ° V A − VC DCB

α ACB

° VB D AB = , 1 − ° < 0.25 VA DCB

Simpler and somewhat more effective form:

(lim D )µ ° A

xA → 0

ABC

(

° = D AB µB

)

xB

(

° + D AC µC

)

xC

−1

Concentrated Solutions of Non-Electrolyte: Gordon (1937) James et al. (1939) Aqueous solutions:

d ln γ A ° ⎟⎟ ⎜⎜1 + (D A )Conc. = D AB

⎞ µB



d ln x A ⎠ µ AB



Powell et al. (1941) Wilke (1949) ⎛ D° µ D° µ ⎛ D A µ AB ⎞ Ideal solutions: = ⎜⎜ BA A − AB B ⎟ ⎜ T ⎝ T ⎠ Conc. ⎝ T

⎞ D° µ ⎟⎟ x A + AB B T ⎠

Powell et al. (1941) Wilke (1949) ⎡⎛ D ° µ D° µ ⎛ D A µ AB ⎞ = ⎢⎜⎜ BA A − AB B Non-ideal solutions: ⎜ ⎟ T ⎝ T ⎠ Conc. ⎣⎝ T

(

)

(

)

Caldwell-Babb

° ° DAB = xB DBA + xB DAB βA

Rathbun-Babb

° ° DAB = x A DBA + xB DAB β An

DAB

⎡ K ⎛ ∂ ln xA ⎞⎤ = D° ⎢1 + − 1⎟⎥ ⎜ ⎣ x A x B ⎝ ∂ ln aA ⎠⎦

DAB

KT = 1/ 3 2πµmix (V / A)

Ausfour-Dullien

DAB

⎛ D° ⎞ = ⎜⎜ AB ⎟⎟ ⎝ µB ⎠

Siddiqi-Lucas

° ° DAB = C BVB DAB + C AVA DBA βA

Cussler

Cullinan

xB

⎞ D ° µ ⎤⎛ d ln γ A ⎞ ⎟⎟ x A + AB B ⎥⎜⎜1 + ⎟ T ⎦⎝ d ln x A ⎟⎠ ⎠

−1 / 2

⎡ ⎤ 2πx A xB β A ⎢1 + β (2πx x − 1) ⎥ A A B ⎣ ⎦

1/ 2

xA

° ⎛ DBA ⎞ ⎜⎜ ⎟⎟ ξµβ A µ ⎝ A ⎠

(

)

Non-associated solutions, ideal and non-ideal; also associated solutions if degree of association is constant. Poor for binaries of n-alkanes. Vignes (1966)

° (DA )Conc. = (DAB )x

Leffler & Cullinan (1970)

x ° (D A µ AB )Conc. = (D AB µB )

B

(D )

° xA BA

B

⎛ d ln γ A ⎞ ⎟⎟ ⎜⎜1 + ⎝ d ln x A ⎠

(D

° BA



µ A ) ⎜⎜1 + xA



d ln γ A ⎞ ⎟ d ln x A ⎟⎠

Electrolytes: Dilute solution of a single salt ⎛ ι 0ι 0 ⎞⎛ Z + Z − ⎞ ⎟⎟ DA° = 8.931 × 10 −10 T ⎜⎜ 0 + − 0 ⎟⎟⎜⎜ + ⎝ ι+ + ι− ⎠⎝ Z + Z − ⎠ ι : Cationic / anionic conductance at infinite dilution, mho/equivalent

Nernst-Haskell

Self Diffusivity, High Pressure: Mathur-Thodos

D AA =

10.7 ×10 −7 Tr ; ρ r ≤ 1.5 β .ρ r

Lee-Thodos

D AA =

0.77 ×10 −5 Tr ; ρr ≤ 1 δ .ρ r

Lee-Thodos

D AA =

(0.007094G + 0.001916)2.5 Tr ; ρ δ

r

> 1, G < 1

Pore Diffusivity, Gas phase diffusion in small pores at low pressure: 1/ 2 1 ⎡ 3 ⎛ πM ri ⎞ 1⎤ DPi = ⎟ + ⎥ ⎜ ⎢ Di ⎥⎦ τ P ⎣⎢ 4rPore ⎝ 2 RT ⎠

Satterfield (1970)

For liquid-phase diffusion of large adsorbate molecules: DPi =

λm =

Di

τP

rm rPore

(1 − λm )−2 ⎡⎢1 + 9 λm ln λm − 1.239λm ⎤⎥ ⎣

8



rm: Stokes-Einstein radii of the solute

−1

Related Documents

Diffusion
November 2019 43
Diffusion
December 2019 31
Diffusion
November 2019 31
Diffusion
November 2019 35
Pp Diffusion
October 2019 22
Fasc. Diffusion
October 2019 30