Diffusivities in Gases: D AB =
Reid & Sherwood(1966)
0.0018583T 3 / 2 1/ M A + 1/ M B P(σ AB ) 2 Ω D , AB
Binary air-hydrocarbon or non-hydrocarbon gas mixtures at low pressure. 0.00100T 7 / 4 D AB = 1/ M A + 1/ M B Fuller et al. (1966) P[(∑ν )1A/ 3 + (∑ν )1B/ 3 ]2
0.0150T 1.81 1/ M A + 1/ M B 0.4 0.4 2 P (TCATCB ) 0.1405 (VCA + VCA )
Chen & Othmer (1962)
D AB =
Chen & Othmer (1962)
⎡ 1/ M A + 1/ M B ⎤ 2.74 D AB = (2.52 × 10 7 ) µ air ⎢ 0.4 0.4 2 ⎥ ⎣⎢ (VCA + VCB ) ⎥⎦
Gas diffusivity of binary hydrocarbon-hydrocarbon gas systems at low pressure 0.5 0.1014T 1.5 (1 / M A + 1 / M B ) Gilliland D AB = 2 P V A1 / 3 + VB1 / 3
(
)
Binary mixture low pressure-non polar: 0.0027 − 0.0005M 1AB/ 2 T 3 / 2 M 1AB/ 2 D AB = 2 Pδ AB ΩD
(
)
Diffusivities of multi-component gas mixtures: ⎡ ⎤ ⎛ Nc ⎞⎤ Nc ⎡⎛ xN ⎞ Stefan-Maxwell, Smith & Taylor Dim = ⎢1 − xi ⎜⎜ ∑ N j / N i ⎟⎟⎥ / ∑ ⎢⎜⎜ x j − i i ⎟⎟ / Dij ⎥ Ni ⎠ ⎢⎣ ⎝ j =1 ⎠⎥⎦ j =1 ⎣⎝ ⎦ −1
Blanc
⎛ Nc x ⎞ Dim = ⎜ ∑ j ⎟ ⎜ j =1 D ⎟ ij ⎠ ⎝
−1
Wilke
⎛ Nc ⎞ xj ⎟ ⎜ Dim = ⎜ ∑ ⎟ ⎜ ij≠=1j Dij ⎟ ⎝ ⎠
Diffusivities in Liquids: ° D AB µ AB 7.4 × 10 −8 (ξM B )1 / 2 = T VbA0.6
Wilk & Chang (1955)
(Excluded water as solute) For unassociated solvents ξ=1.0; for water ξ=2.6; for methanol ξ=2.6; for ethanol ξ=1.5.
Scheibel (1954)
D
° AB
⎡ ⎛ 3V ⎤ ⎡ T = 8.2 × 10 −8 ⎢1 + ⎜⎜ bB = K⎢ 1/ 3 ⎥ ⎢⎣ ⎝ VbA ⎣ µ ABVbA ⎦
⎞ ⎟⎟ ⎠
2/3
⎤⎡ T ⎤ ⎥⎢ 1/ 3 ⎥ ⎥⎦ ⎣ µ ABVbA ⎦
(Excluded water as solute) Special solvent cases:water VbA
Othmer & Thakar (1953)
D
° AB
14 × 10−5 = 0.6 1.1∆H BT ∆H WT VbA µ B′ µWT
(Excluded water as solute)
Othmer & Thakar (1953)
° DAB =
14 × 10−5 1.1 0.6 µWT VbA
(Aqueous solutions only)
Olander (1961)
D°Water as solute=(D°Wilk & Chang) / 2.3 ° AB
⎛ M 1 / 2 ∆H 1 / 3T ⎞ = 5.4 × 10 ⎜⎜ B 0.5 B 0.3 ⎟⎟ ⎝ µ BVbA ∆H A ⎠
0.93
−8
Sitaraman et al (1963)
D
King et al (1963)
° ⎛V ⎞ µB DAB = 4.4 × 10−8 ⎜⎜ bB ⎟⎟ T ⎝ VbA ⎠
Reddy & Doraiswamy (1967)
° µ B 10 × 10−8 M B1 / 2 VbB DAB = ; ≤ 1.5 T VbA1 / 3VbB1 / 3 VbA
Reddy & Doraiswamy (1967)
° D AB µ B 8.5 × 10 −8 M B1 / 2 VbB = ; > 1.5 T VbA VbA1 / 3VbB1 / 3
Lusis & Ratcliff (1968)
1/ 3 ° ⎡ ⎛ VbB ⎞ DAB V ⎤ µB −8 −1 / 3 ⎟⎟ + bB ⎥ = 8.52 × 10 VbB ⎢1.40⎜⎜ T VbA ⎥ ⎢⎣ ⎝ VbA ⎠ ⎦
1/ 6
(Organic solvents)
1/ 2
⎛ ∆HmB ⎞ ⎜⎜ ⎟⎟ ∆ Hm A ⎠ ⎝
D AB =
Sun & Chen
1.23 ×10 −10 T µ 0.799VCA0.49
(ρ D AB = 5.152 DC Tr
Catchpole & King
⎛ M ⎞ − 0.4510 ⎜⎜1 + A ⎟⎟ R ⎝ MB ⎠
)
−0.667
(1 + (V
General mixtures: ° AB
=
Tyn-Claus
D
Umesi-Danner
° D AB =
Siddiqi-Lucas
D
° AB
(
8.93 ×10 −8 V A / VB2
0.333 2
) (Ψ 1/ 6
B
µB
(
)
/ VCA )
CB
/ ΨA ) T 0.6
)
2.75 × 10 −8 RB / R A2 / 3 T
µ
−8
9.89 × 10 VB0.265T = µ B0.907V A0.45
Gases in low viscosity liquids: Sridhar-Potter
D
° AB
D
° AB
⎛V ⎞ = DBB ⎜⎜ CB ⎟⎟ ⎝ VCA ⎠
2/3
⎛ VB ⎜⎜ ⎝ VmlB
⎞ ⎟⎟ ⎠
(βVCB )2 / 3 (RTCB )1/ 2 (V − 1)⎛⎜ T ⎞⎟ r 1/ 3 ⎜T ⎟ M 1A/ 6 (M BVCA ) ⎝ CB ⎠
1/ 2
Chen-Chen
= 2.018 ×10
Aqueous Solution:
−9
13.16 × 10 − 5 µW1.14V A0.589
Hayduk-Laudie
° = D AW
Siddiqi-Lucas
° D AB = 2.98 ×10 −7 V A−0.5473 µW−1.026T
Hydrocarbon Mixtures: Hayduk-Mihas
° D AB = 13.3 ×10 −8 T 1.47µ B(10.2 / VA −0.791)V A−0.71
Matthewes-Akgerman
° D AB = 32.88M A−0.61VD−1.04T 0.5 (VB − VD )
Riazi-Whiston
D AB
( ρD AB )° ⎛ µ ⎜ = 1.07 ρ
⎞ ⎜ µ ° ⎟⎟ ⎝ ⎠
−0.27 −0.38ω + ( −0.05+ 0.1ω ) Pr
Diffusion of dilute species A in a mixture of two solvents: Cullinan & Cusick (1967)
⎡ ⎤ xC xB lim D = ⎢ + ⎥ ° )xB (α ABC DBC° )xC (DAC° )xC (α ACB DCB° )xB ⎥⎦ ⎢⎣ (D AB xA → 0 ° A
α ABC =
° ° / DBC ) VC (1 − D AC D° , 1 − AC > 0.25 ° V A − VB DBC
α ABC =
VC D° , 1 − AC < 0.25 ° VA DBC
α ACB =
° ° / DCB ) VB (1 − D AB D° , 1 − AB > 0.25 ° V A − VC DCB
α ACB
° VB D AB = , 1 − ° < 0.25 VA DCB
Simpler and somewhat more effective form:
(lim D )µ ° A
xA → 0
ABC
(
° = D AB µB
)
xB
(
° + D AC µC
)
xC
−1
Concentrated Solutions of Non-Electrolyte: Gordon (1937) James et al. (1939) Aqueous solutions:
d ln γ A ° ⎟⎟ ⎜⎜1 + (D A )Conc. = D AB
⎞ µB
⎛
d ln x A ⎠ µ AB
⎝
Powell et al. (1941) Wilke (1949) ⎛ D° µ D° µ ⎛ D A µ AB ⎞ Ideal solutions: = ⎜⎜ BA A − AB B ⎟ ⎜ T ⎝ T ⎠ Conc. ⎝ T
⎞ D° µ ⎟⎟ x A + AB B T ⎠
Powell et al. (1941) Wilke (1949) ⎡⎛ D ° µ D° µ ⎛ D A µ AB ⎞ = ⎢⎜⎜ BA A − AB B Non-ideal solutions: ⎜ ⎟ T ⎝ T ⎠ Conc. ⎣⎝ T
(
)
(
)
Caldwell-Babb
° ° DAB = xB DBA + xB DAB βA
Rathbun-Babb
° ° DAB = x A DBA + xB DAB β An
DAB
⎡ K ⎛ ∂ ln xA ⎞⎤ = D° ⎢1 + − 1⎟⎥ ⎜ ⎣ x A x B ⎝ ∂ ln aA ⎠⎦
DAB
KT = 1/ 3 2πµmix (V / A)
Ausfour-Dullien
DAB
⎛ D° ⎞ = ⎜⎜ AB ⎟⎟ ⎝ µB ⎠
Siddiqi-Lucas
° ° DAB = C BVB DAB + C AVA DBA βA
Cussler
Cullinan
xB
⎞ D ° µ ⎤⎛ d ln γ A ⎞ ⎟⎟ x A + AB B ⎥⎜⎜1 + ⎟ T ⎦⎝ d ln x A ⎟⎠ ⎠
−1 / 2
⎡ ⎤ 2πx A xB β A ⎢1 + β (2πx x − 1) ⎥ A A B ⎣ ⎦
1/ 2
xA
° ⎛ DBA ⎞ ⎜⎜ ⎟⎟ ξµβ A µ ⎝ A ⎠
(
)
Non-associated solutions, ideal and non-ideal; also associated solutions if degree of association is constant. Poor for binaries of n-alkanes. Vignes (1966)
° (DA )Conc. = (DAB )x
Leffler & Cullinan (1970)
x ° (D A µ AB )Conc. = (D AB µB )
B
(D )
° xA BA
B
⎛ d ln γ A ⎞ ⎟⎟ ⎜⎜1 + ⎝ d ln x A ⎠
(D
° BA
⎛
µ A ) ⎜⎜1 + xA
⎝
d ln γ A ⎞ ⎟ d ln x A ⎟⎠
Electrolytes: Dilute solution of a single salt ⎛ ι 0ι 0 ⎞⎛ Z + Z − ⎞ ⎟⎟ DA° = 8.931 × 10 −10 T ⎜⎜ 0 + − 0 ⎟⎟⎜⎜ + ⎝ ι+ + ι− ⎠⎝ Z + Z − ⎠ ι : Cationic / anionic conductance at infinite dilution, mho/equivalent
Nernst-Haskell
Self Diffusivity, High Pressure: Mathur-Thodos
D AA =
10.7 ×10 −7 Tr ; ρ r ≤ 1.5 β .ρ r
Lee-Thodos
D AA =
0.77 ×10 −5 Tr ; ρr ≤ 1 δ .ρ r
Lee-Thodos
D AA =
(0.007094G + 0.001916)2.5 Tr ; ρ δ
r
> 1, G < 1
Pore Diffusivity, Gas phase diffusion in small pores at low pressure: 1/ 2 1 ⎡ 3 ⎛ πM ri ⎞ 1⎤ DPi = ⎟ + ⎥ ⎜ ⎢ Di ⎥⎦ τ P ⎣⎢ 4rPore ⎝ 2 RT ⎠
Satterfield (1970)
For liquid-phase diffusion of large adsorbate molecules: DPi =
λm =
Di
τP
rm rPore
(1 − λm )−2 ⎡⎢1 + 9 λm ln λm − 1.239λm ⎤⎥ ⎣
8
⎦
rm: Stokes-Einstein radii of the solute
−1