SM SAINS ALAM SHAH, K.L. PROGRAM MKS ADDITIONAL MATHEMATICS
BY :
PN. DING HONG ENG
Topics
Paper 1
Paper 2 B
A 03
04
05
06
07 03
5.
Indices and Logarithms
2 2 3 3 2
6.
Coordinate Geometry
2
7.
Statistics
8.
Circular Measures
2 1 1 1
04 05
06
1 1
07 03
04
1 1
05
06
C 07 03
04
05 06 07
1 1
1 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 3 2 1 2 1
1 1 1 1
1 2
2 3
1 2
1 2
1 2
1 2
1 2
9.
Differentiation
10.
Solution of Triangles
1 1 1 1 1
11.
Index Number
1 1 1 1 1
Topics
Paper 1
Paper 2 B
A 03
04
05
05
06 03
04
05
06 03
04
C
06
05 03
04
5.
Indices dan Logarithms
2
6.
Geometry Coordinates
2
7.
Statistics
8.
Circular Measures
1
9.
Differentiation
2
10.
Solution of Triangles
1
1
1
11.
Index Number
1
1
1
2
3
3
1
1
1
1 1
1
1 1
1
1
1
2
3
1
2
2
1 2
1
1
1 1 2
1 2
1
1 2
1
1 3
06
DIFFERENTIATIO N The first derivative
Differentiate axn Addition/Subtractionofalgebraicterms
The second derivative
Product Rule, Quotient Rule
Differentiate Composite Function
APPLICATION OF DIFFERENTIATION Gradient of a curve Gradient of tangent Gradient of normal Equation of tangent Equation of normal
maximum and minimum value/point
The rate of change
Small changes and approximati on
CONCEPT OF DIFFERENTIATION y=f(x)
y=f(x) y2
y2
Q(x2, y2)
Q(x2, y2)
Q1
y1 0
P(x1, y1)
y1
x1
Gradient of chord
x2
=
y2 − y1 x2 − x1
P(x1, y1)
0
x1
Q2 x2
When point Q approaches point P (i.e x2
y2 − y1 δy = x2 − x1 δx
Then When x2 Then
x1)
x1, δ x
0
y2 − y1 δ y dy = lim = lim x2 → x1 x − x 2 1 δ x→0 δ x dx
Differentiation Technicques Differentiate axn (a) If y = a, a is a constant --(b) If y = ax, a is a constant--(c) If y= axn, a is a constant ---
dy =0 dx dy =a dx
dy = nax n −1 dx
(d) Differentiate Addition, Subtraction of algebraic terms. If , then
f ( x) = p( x) ± q ( x) f ' ( x) = p' ( x) ± q' ( x)
Differentiate Product/ Quotient of two Polynomials • (a) If y = uv, then
dy dv du =u +v dx dx dx u • (b) If y = , then v du dv v −u dy = dx 2 dx dx v
Differentiate Composite Function If y = f(u) and u = g(x), then, the composite function dy dy du = × dx du dx
or
d (ax+b)n = an(ax+b)n-1 dx
The Second Derivative 2
d y d dy = ( ) = f ' ' ( x ) 2 dx dx dx
Application of Differentiation 1. The gradient of the curve y= f(x) at a point is the derivative of y with respect to x, i.e. dy or f’(x). dx
2. The gradient of tangent at point A is the value of 3. (Gradient of normal) x (gradient of tangen) = -1 y normal
tangent
x
dy dx
at point A.
Equation of Tangent and Equation of Normal Equation of tangent at point (x1, y1) with gradient m is y – y 1 = m ( x – x1) Equation of normal at point (x1, y1) is y – y1 =
1 − m(
x – x 1)
Maximum and Minimum Point/Value dy At the turning point (stationary point), 2 dx =0 d y
dx (a)For maximum point
2
<0
2
d y dx 2
(b)For minimum point >0 y 0 + + + 0 x O
The Rate of Change If y = f(x),
then
dy dy dx = × dt dx dt
is the rate of change of y with respect to time, t
SMALL CHANGES AND APPROXIMATION • If y = f(x) and ∂y is a small change in y corresponding with ∂x , a small change in x, then
∂ y dy ≈ ∂ x dx dy ∂ y ≈ .∂ x dx