Differential Equations : Undetermined Coefficients , Variation Of Parameters And Laplace Transform

  • Uploaded by: Juan Pablo Gómez
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Differential Equations : Undetermined Coefficients , Variation Of Parameters And Laplace Transform as PDF for free.

More details

  • Words: 1,281
  • Pages: 4
DIFFERENTIAL EQUATIONS El presente documento contiene la solución de una ecuación diferencial por medio de variación de parámetros , coeficientes indeterminados y transformada de Laplace. Gracias al ingeniero Ricardo Lopez, profesor de física de la universidad Tecnológica de Pereira por la solución. Cualquier pregunta puede ser realizada a [email protected] ABSTRACT : The following document containt describe how a differential equation can be solved by three methods: Undetermined coefficients , variation of parameters and Laplace Transform. Thanks to proffesor Ricardo Lopez for the solutions, he currently belongs to physics department from UNIVERSIDAD TECNOLOGICA DE PEREIRA . Any question can be done to [email protected] 2 The equation : y ' ' ( x) + 4 y ( x) = cos x

SOLUTION USING VARIATION OF PARAMETERS The solution of the homogeneous equation is : yh = C1 cos(2 x ) + C2 sin( 2 x)

y p = u1 ( x) cos(2 x) + u2 ( x) sin( 2 x ) Wy1, y 2 =

cos(2 x) sin(2 x ) =2, − 2 sin(2 x ) 2 cos(2 x)

du1 sin( 2 x) du cos(2 x) =− cos 2 x ,      2 = cos 2 x dx 2 dx 2

u1 ( x) = −

1 1 1  1 + cos(2 x )  sin(2 x) dx = cos(2 x) + 1 cos(4 x ) ∫ 2 2 8 32  

cos(2 x ) cos( x)dx 1 1 1  1 + cos(2 x)  2 = ∫ cos(2 x) dx = ∫ cos(2 x )dx + ∫ cos (2 x) dx = 2 2 2 4 4   1 1 x 1 1 sin( 2 x) + ∫ (1 + cos(4 x)dx = + sin( 2 x ) + 8 8 8 8 32

u2 ( x) = ∫

y p = u1 ( x ) cos(2 x) + u2 ( x) sin( 2 x)

replacing

1 1 1 1 1 ∴ y p = cos 2 (2 x) + cos(2 x) cos(4 x) + sin 2 (2 x ) + x sin( 2 x) + sin( 4 x) sin( 2 x) 8 32 8 8 32 Then grouping the terms :

yp =

1 1 1 + x sin( 2 x) + cos(2 x) 8 8 32

The last one it’s exclude because it’s already in the homogeneous solution.

SOLUTION USING UNDETERMINED COEFFICIENTS y ' ' ( x) + 4 y ( x) = cos 2 x =

1 (1 + cos( 2 x ) ) 2

Auxiliary equation: r 2 + 4 = 0

r = ±2i

yh = C1 cos(2 x ) + C2 sin( 2 x) 1 (1 + cos(2 x) ) = 0 2 D( D 2 + 4)( D 2 + 4) y = 0            ,  D( D 2 + 4) 2 y = 0 D( D 2 + 4)

Auxiliary equation: r ( r 2 + 4) 2 = 0

r = 0  ,  r = ±2i

Particulary equation structure:

y p ( x) = A + Bx cos(2 x ) + Cx sin( 2 x ) y ' p ( x) = B cos(2 x) − 2 Bx sin( 2 x) + C sin( 2 x ) + 2Cx cos(2 x) y ' ' p ( x) = −3B sin( 2 x) + 4C cos(2 x ) − 4 Bx cos(2 x) − 4Cx sin(2 x) Replacing into the differential equation :

− 3B sin(2 x) + 4C cos(2 x ) − 4 B cos(2 x) − 4Cx sin(2 x) + 4 A + 4 Bx cos(2 x) + 4Cx sin(2 x ) = 1 1 1 1 ∴  A =   ,  B = 0   ,  C =     y p ( x) = + x sin(2 x) 8 8 8 8

General solution : y ( x) =C 1cos(2 x) + C2 sin(2 x ) +

1 1 + x sin(2 x) 8 8

1 1 + cos(2 x) 2 2

SOLUTION USING LAPLACE TRANSFORM x + 6 x + 18 x = cos 2t , x(0) = 1  ,  x (0) = −1 m 2 + 6m + 18 = 0    m = −3 ± 3i xh (t ) = −3t (C1 cos(3t ) + C2 sin(3t )) x p (t ) = A cos(3t ) + B sin(3t ) s 2 x ( s ) − s + 1 + 6 sx ( s ) − 6 + 18 x( s ) =

{

}

s s +4 2

s s +4 s As + B Cs + D = 2 + 2 2 2 ( s + 6s + 18)( s + 4) s + 4 s + 6 s + 18

x( s) s 2 + 6s + 18 = s + 5 +

2

( A + C ) S 3 + ( B + 6 A + D) S 2 + (6 B + 18 A + 4C ) S + 18 B + 4 D = 0 9 A + C = 0     ∴  C = − A  ,  18 B + 4 D = 0    D = − B   2 9 7 B + 6 A + D = B + 6 A − B = 0   ∴  − B + 6 A = 0 2 2 14 A + 6 B = 1 7 9  12  54 7     B = −    = −    C = −    170 2  170  170 170 2 7 6 7 11 − 3t x(t ) = − 3t cos(3t ) + − 3t sin(3t ) + cos(2t ) + sin( 2t ) − cos(3t )− 3t −  sin(3t ) 3 170 170 170 170 307 163 − 3t 7 6 x(t ) =  cos(3t ) + 3 − 3t sin(3t ) + cos(2t ) + sin(2t ) 170 170 170 170 A=

SOLUTION USING THE TRADITIONAL WAY

x + 6 x + 18 x = cos(3t )        x(0) = 1  ,  x (0) = −1 m 2 + 6m + 18 = 0   ,   m = −3 ± 3i xh (t ) = − 3t (C1 cos(3t ) + C2 sin(3t )) x p (t ) = A cos(2t ) + B sin( 2t ) x p (t ) = −2 A sin( 2t ) + 2 B cos(2t ) x p (t ) = −4 A cos(2t ) − 4 B sin( 2t ) (−4 A + 12 B + 18 A) cos(2t ) + (−4 A − 22 A + 18 B ) sin( 2t ) = cos(2t ) ∴    14 A + 12 B = 1 − 12 A + 14 B = 0 1 12 A=

14

1

− 12 0 12 14 0 14 =     ,    B = = 14 12 340 340 340 − 12 14

x(t ) = − 3t (C1 cos(3t ) + C2 sin(3t )) +

14 12 cos(2t ) + sin(2t ) 340 340

x (t ) = −3− 3t (C1 cos(3t ) + C2 sin(3t )) + − 3t (−3C1 sin(3t ) + 3C2 cos(3t )) − 1 = C1 +

14 7 163 = C1 +   ,  C1 = 340 170 170

307 12 12 489 307 − 1 = −3C1 + 3C2 +   ,  3C2 = −1 − + =   ∴  C2 = 13 170 170 170 170 170 307    163  7 6 − 3t 3  x(t ) = 3 cos(3t ) + sin(3t )  + cos(2t ) + sin(2t ) 170 170  170  170    

28 24 sin(2t ) + cos(2t ) 340 340

Related Documents


More Documents from ""