DIFFERENTIAL EQUATIONS El presente documento contiene la solución de una ecuación diferencial por medio de variación de parámetros , coeficientes indeterminados y transformada de Laplace. Gracias al ingeniero Ricardo Lopez, profesor de física de la universidad Tecnológica de Pereira por la solución. Cualquier pregunta puede ser realizada a
[email protected] ABSTRACT : The following document containt describe how a differential equation can be solved by three methods: Undetermined coefficients , variation of parameters and Laplace Transform. Thanks to proffesor Ricardo Lopez for the solutions, he currently belongs to physics department from UNIVERSIDAD TECNOLOGICA DE PEREIRA . Any question can be done to
[email protected] 2 The equation : y ' ' ( x) + 4 y ( x) = cos x
SOLUTION USING VARIATION OF PARAMETERS The solution of the homogeneous equation is : yh = C1 cos(2 x ) + C2 sin( 2 x)
y p = u1 ( x) cos(2 x) + u2 ( x) sin( 2 x ) Wy1, y 2 =
cos(2 x) sin(2 x ) =2, − 2 sin(2 x ) 2 cos(2 x)
du1 sin( 2 x) du cos(2 x) =− cos 2 x , 2 = cos 2 x dx 2 dx 2
u1 ( x) = −
1 1 1 1 + cos(2 x ) sin(2 x) dx = cos(2 x) + 1 cos(4 x ) ∫ 2 2 8 32
cos(2 x ) cos( x)dx 1 1 1 1 + cos(2 x) 2 = ∫ cos(2 x) dx = ∫ cos(2 x )dx + ∫ cos (2 x) dx = 2 2 2 4 4 1 1 x 1 1 sin( 2 x) + ∫ (1 + cos(4 x)dx = + sin( 2 x ) + 8 8 8 8 32
u2 ( x) = ∫
y p = u1 ( x ) cos(2 x) + u2 ( x) sin( 2 x)
replacing
1 1 1 1 1 ∴ y p = cos 2 (2 x) + cos(2 x) cos(4 x) + sin 2 (2 x ) + x sin( 2 x) + sin( 4 x) sin( 2 x) 8 32 8 8 32 Then grouping the terms :
yp =
1 1 1 + x sin( 2 x) + cos(2 x) 8 8 32
The last one it’s exclude because it’s already in the homogeneous solution.
SOLUTION USING UNDETERMINED COEFFICIENTS y ' ' ( x) + 4 y ( x) = cos 2 x =
1 (1 + cos( 2 x ) ) 2
Auxiliary equation: r 2 + 4 = 0
r = ±2i
yh = C1 cos(2 x ) + C2 sin( 2 x) 1 (1 + cos(2 x) ) = 0 2 D( D 2 + 4)( D 2 + 4) y = 0 , D( D 2 + 4) 2 y = 0 D( D 2 + 4)
Auxiliary equation: r ( r 2 + 4) 2 = 0
r = 0 , r = ±2i
Particulary equation structure:
y p ( x) = A + Bx cos(2 x ) + Cx sin( 2 x ) y ' p ( x) = B cos(2 x) − 2 Bx sin( 2 x) + C sin( 2 x ) + 2Cx cos(2 x) y ' ' p ( x) = −3B sin( 2 x) + 4C cos(2 x ) − 4 Bx cos(2 x) − 4Cx sin(2 x) Replacing into the differential equation :
− 3B sin(2 x) + 4C cos(2 x ) − 4 B cos(2 x) − 4Cx sin(2 x) + 4 A + 4 Bx cos(2 x) + 4Cx sin(2 x ) = 1 1 1 1 ∴ A = , B = 0 , C = y p ( x) = + x sin(2 x) 8 8 8 8
General solution : y ( x) =C 1cos(2 x) + C2 sin(2 x ) +
1 1 + x sin(2 x) 8 8
1 1 + cos(2 x) 2 2
SOLUTION USING LAPLACE TRANSFORM x + 6 x + 18 x = cos 2t , x(0) = 1 , x (0) = −1 m 2 + 6m + 18 = 0 m = −3 ± 3i xh (t ) = −3t (C1 cos(3t ) + C2 sin(3t )) x p (t ) = A cos(3t ) + B sin(3t ) s 2 x ( s ) − s + 1 + 6 sx ( s ) − 6 + 18 x( s ) =
{
}
s s +4 2
s s +4 s As + B Cs + D = 2 + 2 2 2 ( s + 6s + 18)( s + 4) s + 4 s + 6 s + 18
x( s) s 2 + 6s + 18 = s + 5 +
2
( A + C ) S 3 + ( B + 6 A + D) S 2 + (6 B + 18 A + 4C ) S + 18 B + 4 D = 0 9 A + C = 0 ∴ C = − A , 18 B + 4 D = 0 D = − B 2 9 7 B + 6 A + D = B + 6 A − B = 0 ∴ − B + 6 A = 0 2 2 14 A + 6 B = 1 7 9 12 54 7 B = − = − C = − 170 2 170 170 170 2 7 6 7 11 − 3t x(t ) = − 3t cos(3t ) + − 3t sin(3t ) + cos(2t ) + sin( 2t ) − cos(3t )− 3t − sin(3t ) 3 170 170 170 170 307 163 − 3t 7 6 x(t ) = cos(3t ) + 3 − 3t sin(3t ) + cos(2t ) + sin(2t ) 170 170 170 170 A=
SOLUTION USING THE TRADITIONAL WAY
x + 6 x + 18 x = cos(3t ) x(0) = 1 , x (0) = −1 m 2 + 6m + 18 = 0 , m = −3 ± 3i xh (t ) = − 3t (C1 cos(3t ) + C2 sin(3t )) x p (t ) = A cos(2t ) + B sin( 2t ) x p (t ) = −2 A sin( 2t ) + 2 B cos(2t ) x p (t ) = −4 A cos(2t ) − 4 B sin( 2t ) (−4 A + 12 B + 18 A) cos(2t ) + (−4 A − 22 A + 18 B ) sin( 2t ) = cos(2t ) ∴ 14 A + 12 B = 1 − 12 A + 14 B = 0 1 12 A=
14
1
− 12 0 12 14 0 14 = , B = = 14 12 340 340 340 − 12 14
x(t ) = − 3t (C1 cos(3t ) + C2 sin(3t )) +
14 12 cos(2t ) + sin(2t ) 340 340
x (t ) = −3− 3t (C1 cos(3t ) + C2 sin(3t )) + − 3t (−3C1 sin(3t ) + 3C2 cos(3t )) − 1 = C1 +
14 7 163 = C1 + , C1 = 340 170 170
307 12 12 489 307 − 1 = −3C1 + 3C2 + , 3C2 = −1 − + = ∴ C2 = 13 170 170 170 170 170 307 163 7 6 − 3t 3 x(t ) = 3 cos(3t ) + sin(3t ) + cos(2t ) + sin(2t ) 170 170 170 170
28 24 sin(2t ) + cos(2t ) 340 340