Differential Equations - Solved Assignments - Semester Spring 2009

  • Uploaded by: Muhammad Umair
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Differential Equations - Solved Assignments - Semester Spring 2009 as PDF for free.

More details

  • Words: 6,080
  • Pages: 32
1|Page

Assignment 1 Question No 1: Solve the given differential equation by Separation of variables.

e y sin 2 x dx  cos x  e2 y  y  dy  0

cos x  e 2 y  y  dy  e y sin 2 x dx  e2 y  y  sin 2 x dx   dy   y e cos x   2y e y 2sin x cos x dx  y  y  dy   e  cos x e (e 2 y  y  ye  y ) dy  2sin x dx (e y  ye  y ) dy  2sin x dx

 e dy   ye y

y

dy  2  sin x dx

    d e y   y  e  y dy     e  y dy. ( y )  dy   2cos x  c dy     e y    ye  y   e  y dy   2cos x  c   e y  ye  y   e  y dy  2cos x  c e y  ye  y  (e  y )  2cos x  c e y  ye  y  e  y  2cos x  c

is the required general solution of given D.E.

Question No 2: Solve the following Differential Equations

  x ydx   y cos  x  dy  0 y     x  y cos  x  dy   y dx y   dy y       (i ) x dx y cos  x y

2|Page

y x y cos  x y ty y f (tx, ty )    tx x ty cos  tx y cos  x ty y f ( x, y )  

As f ( x, y)  f (tx, ty) , so the given D.E. is homogeneous Let

x y

u

y

x u

d d ( x).u  x (u ) dy dx dx   2 dx u du ux dy dx  dx u2 So equation (i) becomes du dx  2

u-x u

u-x

du  dx

u-x

du  dx

u-x

du  dx

u-x

du  dx



x u

x cos u  x u x  (u 2 ) u x cos u  x u  xu x cos u  x u  xu 1  x  cos u  1  u  u 1 cos u  1 u

3|Page

du u  u dx 1 cos u  1 u 1  u  u  cos u  1 du u  -x  1 dx cos u  1 u du u  cos u  u -x  1 dx cos u  1 u du  cos u -x  dx 1 cos u  1 u du cos u x  1 dx cos u  1 u 1 cos u  1 1 u du  dx cos u x cos u  u 1 du  dx u cos u x u  1  cos u    du  dx x  u cos u u cos u  -x

1 1    sec u  du  dx x u  ln u  ln sec u  tan u  ln x  ln c u  ln cx sec u  tan u u  cx sec u  tan u x Put u  y ln

x y sec

x x  tan y y

 cx

is the required solution of given D.E.

Question No 3: Solve the following Differential Equation

4|Page

x

2

 y 2  dx  2 xy dy  0

M  x2  y 2 M  2y y

As

N  2 xy N  2y x

M  N  , so the given D.E. is exact y x

f  x 2  y 2        (i ) x f  2 xy          (ii ) x

Integrate equation (i) wrt x f ( x, y )   ( x 2  y 2 )dx x3 f ( x, y )   xy 2  h( y ) 3

Differentiate above equation wrt y f  2 xy  h / ( y ) y

Compare above equation with equation (ii) 2 xy  h / ( y )  2 xy  h/ ( y)  0  h( y )  c

So general solution of given D.E. is y

x3  xy 2  c 3

Question No 4: Solve the initial value problems

5|Page

dy  2 y  x  e3 x  e 2 x  , dx

y  0  2

dy  2 y  x (e 3 x  e 2 x ) dx  P( x)  2  3x 2x Q( x)  x(e  e ) I .F .  u ( x )  e  =e 

P ( x ) dx 2 dx

=e 2 x

y

 u ( x)Q( x)dx  c

 (e y

u ( x) 2 x

)( x)(e3 x  e 2 x ) dx  c e 2 x

 ( xe y

3x2 x

 ( xe y

3x2 x

 ( xe y

 xe 2 x  2 x )dx  c e 2 x  xe 2 x  2 x )dx  c e 2 x

x

 x)dx  c e 2 x

d x2   x  e x dx     e x dx ( x ) dx   c dx  2  y 2 x e 2 x xe x  e x   c 2 y e 2 x xe x ex x2 c y  2 x  2 x  2 x  2 x e e 2e e 1 y  xe3 x  e3 x  x 2e 2 x  ce 2 x 2

6|Page

y (0)  2 1  2  (0)e3(0)  e3(0)  (0)2 e2(0)  ce2(0) 2  2  1  c c3 So 1 y  xe3 x  e3 x  x 2e2 x  3e2 x 2

7|Page

Assignment 2 Q#1: Solve

x.

dy  y  y 2 . ln x dx

Solution dy  y  y 2 . ln x dx Dividing by x dy 1 ln x  .y  y2. dx x x It is bernoulli D.E. x.

divide by y 2 above eq dy 1 1 ln x y 2  y  dx x x Multiply by (1) above eq. dy 1 1 ln x  y 2  y   (1) dx x x put y 1  v diff w.r.t.x dy dv  y 2  dx dx

8|Page

dv 1 ln x  v dx x x It is linear in v 1

1   dx I .F  e x  e  ln x  e ln x  x 1 1 I .F  x Multiply I .F by eq (1) 1 dv 1 1 1 ln x .  ( v)   ( ) x dx x x x x 1 ln x d (v. )   ( 2 ) dx x x Taking int egrate both sides. 1 ln x  d (v. x )    ( x 2 ) dx 1 x 1 x 1 1 v.   (ln x.  . ) x 1 1 x y 1 1 x 1  .ln x  c x x 1 1 1 1  .ln x   c xy x x or 1  ln x  1  xc y

Q#2: Find the orthogonal trajectory to the family of curve Solution:

x  cy 2

9|Page

x  cy 2  (1) diff w.r.t.x dy 1  2cy dx 1 dx c put in eq (1) 2 y dy 1 dx 2 x( )y 2 y dy dy y  dx 2 x is a differential eq. of eq (1) So differential equation of family of orthogonal trajectories is \ dy 2x  dx y It can be separable. y dy  2 x dx

 y dy    2 x dx y2   x2  c/ 2 y2   2x2  c ,

where c  2c /

Q#3: If the rate of spread of dengue virus is proportional to infected & non infected persons. Then what will be number of infected persons after 2 weeks provided that a man carrying this virus, come back to his community of 10000.Further it is provided that after one week, carriers increase to 98. Solution:

10 | P a g e

 a man carries dengue virus initially enter community  x(0)  1 {i  e no of carrier at t  0} Assuming no one leaves from community of 10,000. So, initial value problem is dy  kt 10,000  t  ; x(0)  1 dt i  e logistic equation when comparing with dP  P(a  bP) such that a  10000k , b  k dt It ' s solution is given by aP0 P(t )  ; Here P0  x(0)  1 bP0   a  bP0  e at So, 10,000k 10,000       (1) 10,000 kt k  9999e 1  9999e10,000kt  it is given that after one week , x(t ) 

Q a man carries dengue virus initially enter community \x(0)=1 {i-e no of carrier at t=0} Assuming no one leaves from community of 10,000. So,initial value problem is dy =kt 10,000-t  ; x(0)=1 dt i-e logisticequation when comparing with dP =P(a-bP) such that a=10000k, b=k dt It's solution is given by aP0 P(t)= ; Here P0 =x(0)=1 bP0 +  a-bP0  e-at So, 10,000k 10,000 = -----(1) -10,000kt k+9999e 1+9999e-10,000kt Q it is given that after one week, x(t)=

11 | P a g e

Q#4: Determine whether the functions f1  x   e x , f 2  x   xe x and f3  x   x 2e x are linearly independent or linearly dependent.

Solution

The functions

12 | P a g e

f 1  x   e x , f 2  x   xe x , and f 3  x   x 2 e x

ex W  e x , xe x , x 2e x   e x ex

xe x xe x  e x xe x  2e x

x 2e x x 2e x  2 xe x x 2e x  4 xe x  2e x

 2 e3 x 0

Thus the functions are linearly independent on any interval of the x-axis because for all x  R .

13 | P a g e

Assignment 3 Question No 1: Given that y1  x 2 is a solution of x 2 y //  2 xy /  6 y  0 Find general solution of the differential equation on the interval  0,  . The DE x 2 y //  2 xy /  6 y  0 can be written as

2x 6   x 2  y //  2 y /  2 y   0 x x   2x 6  y //  2 y /  2 y  0 x x Here p( x) 

2 x

 Pdx e  y2  y1  dx ( y1 ) 2 2

  dx x 2 e  y2  x  2 2 dx (x )

 y2  x 2 

e

2

1

 xdx

x4

dx

e 2 ln x  y2  x  4 dx x 2

2

eln x  y2  x  4 dx x 2 x  y2  x 2  4 dx x 2

14 | P a g e

 y2  x 2  x 6 dx  x 6 1   y2  x 2    6  1   x 5   y2  x 2    5   y2  

1 5 x3

General solution is given by formula y  c1 y1  c2 y2  1  y  c1 ( x 2 )  c2   3   5x  c y  c1 x 2  23 5x

Question No 2: Solve y //  4 y /  4 y  e2 x

For complementary solution y //  4 y /  4 y  0

Put y  e mx

 y /  memx  y //  m2emx So

m2emx  4memx  4emx  0  (m2  4m  4)emx  0 As emx  0 So auxiliary equation is

15 | P a g e

m 2  4m  4  0  (m  2) 2  0  m  2, 2

So yc  c1e 2 x  c2 xe 2 x is our complementary solution For particular solution g ( x)  e2 x

So

y p  Ae 2 x  y p /  2 Ae 2 x  y p //  4 Ae 2 x So

y p //  4 y p /  4 y p  e 2 x  4 Ae2 x  4(2 Ae2 x )  4( Ae2 x )  e2 x  4 Ae2 x  8 Ae2 x  4 Ae2 x  e 2 x  0  e2 x So our assumption is wrong, we remove duplication now, as Ae2x is present in yc Now we find particular solution of form y p  Axe2x  y p /  Ae 2 x  2 Axe 2 x  y p //  4 Ae 2 x  4 Axe 2 x

Substituting in given DE y p //  4 y p /  4 y p  e2 x , we get 4 Ae 2 x  4 Axe 2 x  4  Ae 2 x  2 Axe 2 x   4  Axe 2 x   e 2 x 4 Ae 2 x  4 Axe 2 x  4 Ae 2 x  8 Axe 2 x  4 Axe 2 x  e 2 x 0  e2 x

This has again resulted in duplication

16 | P a g e

Therefore, now we find the particular solution of the form y p  Ax2e2x y p /  2 Axe 2 x  2 Ax 2e 2 x y p //  2 Ae 2 x  8 Axe 2 x  4 Ax 2e 2 x

Substituting in given DE y p //  4 y p /  4 y p  e2 x , we get 2 Ae 2 x  8 Axe 2 x  4 Ax 2e 2 x  4  2 Axe 2 x  2 Ax 2e 2 x   4  Ax 2e 2 x   e 2 x 2 Ae 2 x  8 Axe 2 x  4 Ax 2e 2 x  8 Axe 2 x  8 Ax 2e 2 x  4 Ax 2e 2 x  e 2 x 2 Ae 2 x  e 2 x  2A  1  A

1 2

Therefore our particular solution is y p 

1 2 2x xe 2

y  yc  y p

y  c1e2 x  c2 xe2 x 

1 2 2x x e is the required general solution of given DE 2

Question No 3: Solve  D3  D  y  3  4e x , y(0)  4 , y / (0)  5 , y // (0)  1 by undermined coefficients using annihilator operator approach. For complementary solution Auxiliary equation is m3  m  0  m( m 2  1)  0  m  0, i, i

Therefore yc  c1e(0)( x )  c2e(0)( x ) cos x  c3e(0)( x ) sin x

yc  c1  c2 cos x  c3 sin x is our complementary solution

For particular solution

17 | P a g e

Now we find the annihilator operator for function g ( x)  3  4e x D (3) = 0 And annihilator operator for 4e x Here   1 and n  1 Therefore annihilator operator for 4e x will be  D    , which will be equal to  D  1  D  1 n

Therefore D( D  1) is the annihilator operator for function g ( x)  3  4e x Now we apply D( D  1) to both sides of given DE

D( D  1)( D3  D) y  D( D  1)(3  4e x )  D( D  1)( D3  D) y  0 Auxiliary equation is m(m  1)(m3  m)  0  m(m  1)(m 2  1)m  0  m  0,0,1, i, i

 y  c1e(0)( x )  c2 xe(0)( x )  c3e x  c4 cos x  c5 sin x  y  c1  c2 x  c3e x  c4 cos x  c5 sin x The terms c1  c4 cos x  c5 sin x are present in yc Therefore remaining terms are c2 x  c3e x So y p  Ax  B  Cex

y p /  A  Ce x y p //  Ce x y p ///  Ce x Putting it in DE y p ///  y p /  3  4ex

1

18 | P a g e

 Ce x  A  Ce x  3  4e x  A  2Ce x  3  4e x Comparing coefficients, we get

A3 2C  4 C 2

Therefore, our particular solution conforms to y p  3x  2e x

y  yc  y p y  c1  c2 cos x  c3 sin x  3x  2e x y(0)  4

 4  c1  c2 cos 0  c3 sin 0  3(0)  2e(0)  4  c1  c2  2  c1  c2  2        (i ) y /  c2 sin x  c3 cos x  3  2e x

y / (0)  5

 5  c2 sin 0  c3 cos 0  3  2e(0)  5  c3  3  2  c3  0 y //  c2 cos x  c3 sin x  2e x

y // (0)  1

1  c2 cos 0  c3 sin 0  2e(0)  1  c2  2  c2  1

Put c2  1 in equation (i) to get the value of c1

19 | P a g e

c1  c2  2  c1  1  2  c1  1 Therefore our solution is y  1  cos x  3x  2e x

Question No 4: Solve the DE y ///  y /  tan x by using variation of parameters Given information:

u1/  tan x , u2/   sin x , u3  sin x  ln sec x  tan x For complementary solution y ///  y /  0

Put y  e mx  y /  me mx  y //  m 2e mx  y ///  m3e mx

Therefore

m3emx  memx  0 emx (m3  m)  0 As emx  0 , therefore auxiliary equation is ( m 3  m)  0  m( m 2  1)  0  m  0, i, i

So

yc  c1e(0)( x )  c2 cos x  c3 sin x yc  c1  c2 cos x  c3 sin x

20 | P a g e

Particular Solution From complementary solution, we see that y1  1 , y2  cos , y3  sin x u1/  tan x  u1   tan xdx  u1   ln cos x

u2 /   sin x  u2    sin xdx  u2  cos x

u3  sin x  ln sec x  tan x y p  u1 y1  u2 y2  u3 y3 y p   ln cos x (1)  cos x(cos x)   sin x  ln sec x  tan x  sin x y p   ln cos x  cos 2 x  sin 2 x  sin x ln sec x  tan x As cos2 x  sin 2 x  1 Therefore

y p   ln cos x  1  sin x ln sec x  tan x y  yc  y p

y  c1  c2 cos x  c3 sin x  ln cos x  1  sin x ln sec x  tan x

21 | P a g e

Assignment 4 Question No 1: Solve the initial value problem; also find amplitude and period of oscillation?

d 2x  16 x  0 dt 2 x(0)  10 , x / (0)  0 Put x  emt

dx  me mt dt d 2x  m 2e mt 2 dt

So the equation becomes

m2emt  16emt  0  emt  m2  16   0 As emt  0 So, the auxiliary equation becomes m2  16  0  m  4i  x(t )  c1 cos 4t  c2 sin 4t

x(0)  10

 10  c1 cos  4  0   c2 sin  4  0   c1  10 x / (t )  4c1 sin 4t  4c2 cos 4t

x / (0)  0

22 | P a g e

 0  4c1 sin  4  0   4c2 cos  4  0   c2  0 Therefore x(t )  10cos 4t

Amplitude A  c12  c2 2  (10) 2  (0) 2  10 Period of oscillation  Here   4 Therefore Period of oscillation  

2



2 4



2

Question No 2: Find the charge q(t) on the capacitor in an LRC series circuit when L=1/4 Henry, R=10 Ohms, C=0.001 farad , E(t)=0 volts , q(0)=q0 coulombs & I(0)=0 amperes. Also, check that it is a transient or steady state solution. d 2q dq q L 2 R   E (t ) dt dt c

Putting values, we get

1 d 2q dq q  10  0 2 4 dt dt 0.001  1  d 2q dq   2  40  4000q   0 4  dt dt  d 2q dq  2  40  4000q  0 dt dt Put q  emt , q /  memt , q //  m 2e mt

23 | P a g e

 m 2e mt  40me mt  4000e mt  0  e mt  m 2  40m  4000   0

As emt  0 , Therefore auxiliary equation is m2  40m  4000  0 Here

a=1

,

b = 40

,

c = 4000

40  (40) 2  4(1)(4000) 2(1) 40  120i m 2(1) m  20  60i m

 q(t )  c1e20t cos60t  c2e20t sin 60t q(0)  q0  q0  c1e200 cos  60  0   c2e200 sin  60  0   c1  q0  q / (t )  20c1e20t cos60t  60c1e20t sin 60t  20c2e20t sin 60t  60c2e20t cos60t q / (0)  0  0  20c1e 200 cos  60  0   60c1e 200 sin  60  0   20c2e 200 sin  60  0   60c2e 200 cos  60  0   0  20c1  60c2 Put c1 =q 0  0  20q0  60c2  60c2  20q0  c2 

q0 3

Therefore

q0 20t e sin 60t 3 1    q(t )  q0e 20t  cos 60t  sin 60t  3    q(t )  q0e 20t cos 60t 

24 | P a g e

Amplitude A  c12  c2 2

sin  

q   ( q0 )   0   3

2

2

 q0 2 

2

q0 9



10 2 q0 9



10 q0 3

=

q0 A q0

10 q0 3 3 = 10

1 q0 cos   3 A 1 q0 3 = 10 q0 3 1 = 10

sin  cos  3  10 1 10 3

tan  

   tan -1 (3)    1.249 radians

Therefore q(t ) 

10 q0e 20t  sin 60t  1.249  3

Two conditions should be fulfilled for transient solution. 1. R  0 2. lim x(t )  0 t 

Here R is 10, so first condition is true, and as there is no steady term in the solution, so lim x(t )  0 t 

Therefore, this is a transient solution

Q#3: Solve x Sol:

d 4y d 3y  6 0 dx 4 dx 3

25 | P a g e

4 3 d4y d3y 4 d y 3 d y  6  0  x  6 x 0 dx 4 dx3 dx 4 dx 3 Put x  et  t  ln x

x

Its auxiliary equation becomes (  1)(  2)(  3)  6(   1)(   2)  0   0,1, 2, 3 so we get y  c1  c2 et  c3e 2t  c4e 3t but t  ln x so y  c1  c2 x  c3 x 2  c2c3 x 3 ( x  1) n  n 2n n 0 

Q#4: Find the radius and the interval of convergence of the given power series Sol:

( x  1) n  n 2n n 0 

( x  1) n ( x  1) n 1 Here an   an 1  n 2n (n  1)2n 1 an 1 ( x  1) n 1 n 2n x 1 x 1  lim  lim  n  1 n n  a n  ( n  1)2 n  1 ( x  1) 2 n (1  )2 n The above power series converges for x  1  2 R  lim

i.e.  2  x  1  2  3  x  1 or x  (3,1) It is the required int erval of convergence.

26 | P a g e

Assignment 5 // / Q#1: Solve the differential equation 2 y  y  0 by using the power series



n solution y   cn x n 0

Solution:

Given 2 y //  y  0 

Let y   cn x n Then n 0



 2n(n  1)c x n2



  cn x n  0

n2

n

n 0

put n  2  k we get 

 2(k  2)(k  1)c k 0



k k k  2 x   ck x  0 k 0

ck ck  2  ; k  0,1, 2,3,... 2(k  2)(k  1) c c k  0; c2   0 k  1; c3   1 2  2! 2  3! c c3 c2 c k  2; c4    0 k  3; c5    1 2  4  3 2  4! 2  4  5 2  4! 2 3 4 y ( x)  c0  c1 x  c2 x  c3 x  c4 x  ... c0 2 c c c x  1 x 3  0 x 4  1 x 5  ... 2  2! 2  3! 2  4! 2  4! 2 4 3 x x x x5 y ( x)  c0 [1    ...]  c1[ x    ...] 2  2! 2  4! 2  3! 2  4! y ( x)  c0  c1 x 

Q#2: Solve the Bessel function in terms of sin x and cos x of the J 7 ( x ) 2

27 | P a g e

Solution: C onsi der t hat J v 1  x   J v 1  x  

2v Jv  x  x

As f or t a ki n g v 

5 2

J 5 1  x   J 5 1  x   2 2 J3

2

 x   J7  x   2

 2 J

2 5 x

5

2

 x

5 J5  x  x 2

5 J 7  x   J 5  x   J 3  x     (1) x 2 2 2 w e know J5

2

 x 

3 si n x 2 ( .  x x x

2 cos x)  x

2 si n x x

si n x 2 2 .  cos x x x x T hen equat i on (1) becomes J 3 / 2 ( x) 

J7

2

 x 

 5 2  3 [  2  1  si n x  x x  x 

2 3 .( cos x)]  x x

2  si n x   cos x   x  x 

Q#3: Check that the Legendre polynomials Pn ( x )  x 2  3 x  3 and Pm ( x)  2 x 3  x 2  5 x  5 are orthogonal on [0, 2].

Solution:

28 | P a g e



2



2



2



2

0

2

Pn ( x).Pm ( x)dx   ( x 2  3x  3)(2 x 3  x 2  5 x  5)dx 0

0

2

Pn ( x).Pm ( x)dx   (15  30 x  17 x 2  8x 3  5 x 4  2 x 5 )dx 0

0

0

Pn ( x).Pm ( x)dx  15 x  15 x 2 

17 x3 x6  2 x 4  x5  3 3

Pn ( x).Pm ( x)dx  6  0  6  0

Hence these functions are not orthogonal.

29 | P a g e

Assignment 6 Q#1:

Find out all the complementary solution (not particular) from the system of differential dx dy dx dy 2  5x   et ; x  5et dt dt dt dt equation

Solution: We can write them in the form of

(2 D  5) x  Dy  et ; ( D  1) x  Dy  et

And determinants are 2D  5

D

D 1

D

2D  5

D

D 1

D

 D2  4D x

et

D

5et

D

&

2D  5

D

D 1

D

y

2D  5

et

D 1

5et

we get ( D 2  4 D) x  4et ...(1) & ( D 2  4 D) y  15et ...(2) Now we find the complementary function for the two equations m 2  4m  0  m  0, 4  xc  c1  c2 e 4t & yc  c3  c4e 4t

Q#2: Find the Eigen values and Eigen vector of the given matirx

30 | P a g e

 5 1  A  0 5  5 1 

0  9 0 

Solution:

5   -1 0 | A   I | 0 -5- 9  0 5

-1

-

16   3  0

 (16   2 )  0   0, 4, 4 Here eigen values are 0,4,-4.

For

 =0, we have 5 -1 0   x  0 -5 9   y   0    5 -1 0   z  5x  y  0 5 y  9 z  0 Let y=k Then x=k/5 and z=5k/9 So vector becomes x  k / 5  1/ 5  9   y   k   k 1   k  45          z  5k / 9  5 / 9   25 So eigen vector is {9,45,25}

31 | P a g e

And eigenvectors for

 =4,-4 are {1,9,1} , {1,1,1}.

Q#3: dx dy  2y ,  8x dt dt

Find the general solution of the given system

Solution:

dx  2y , dt  dx   dt  0    dy  8  dt 

dy  8x dt 2  x  0 2 x where A   &X       0   y 8 0   y

Then det( A   I )  0 

 8

2 

 0    4, 4

32 | P a g e

for   4 , ( A   I ) X  0  4 x1  2 x2  0 &8 x1  4 x2  0 x2 k let x2  k x1   2 2  k  1   2  & eigen vector is K    2  1     k    1  for   4 , ( A   I ) X  0   4 x1  2 x2  0 &8 x1  4 x2  0 we get x1  

x2 k let x2  k x1  2 2  1 eigen vector is K 2   2     2 we get x1 

 1  1  ThereforeX1  2 e4t , X2  2 e4t     1   2  1 4t  e Hencegeneralsolutionof thesystemisthe followingX c1X1 c2X2 c1  2  4t  e So x(t) 

4t ce c2e4t 4t 1 & y(t)  ce 2c2e4t 1 2

  c   2   

1 4t e 2 2e4t

4t c2e4t   ce 1      4t 2 4t  2c2e   ce 1

    

Related Documents


More Documents from ""