1|Page
Assignment 1 Question No 1: Solve the given differential equation by Separation of variables.
e y sin 2 x dx cos x e2 y y dy 0
cos x e 2 y y dy e y sin 2 x dx e2 y y sin 2 x dx dy y e cos x 2y e y 2sin x cos x dx y y dy e cos x e (e 2 y y ye y ) dy 2sin x dx (e y ye y ) dy 2sin x dx
e dy ye y
y
dy 2 sin x dx
d e y y e y dy e y dy. ( y ) dy 2cos x c dy e y ye y e y dy 2cos x c e y ye y e y dy 2cos x c e y ye y (e y ) 2cos x c e y ye y e y 2cos x c
is the required general solution of given D.E.
Question No 2: Solve the following Differential Equations
x ydx y cos x dy 0 y x y cos x dy y dx y dy y (i ) x dx y cos x y
2|Page
y x y cos x y ty y f (tx, ty ) tx x ty cos tx y cos x ty y f ( x, y )
As f ( x, y) f (tx, ty) , so the given D.E. is homogeneous Let
x y
u
y
x u
d d ( x).u x (u ) dy dx dx 2 dx u du ux dy dx dx u2 So equation (i) becomes du dx 2
u-x u
u-x
du dx
u-x
du dx
u-x
du dx
u-x
du dx
x u
x cos u x u x (u 2 ) u x cos u x u xu x cos u x u xu 1 x cos u 1 u u 1 cos u 1 u
3|Page
du u u dx 1 cos u 1 u 1 u u cos u 1 du u -x 1 dx cos u 1 u du u cos u u -x 1 dx cos u 1 u du cos u -x dx 1 cos u 1 u du cos u x 1 dx cos u 1 u 1 cos u 1 1 u du dx cos u x cos u u 1 du dx u cos u x u 1 cos u du dx x u cos u u cos u -x
1 1 sec u du dx x u ln u ln sec u tan u ln x ln c u ln cx sec u tan u u cx sec u tan u x Put u y ln
x y sec
x x tan y y
cx
is the required solution of given D.E.
Question No 3: Solve the following Differential Equation
4|Page
x
2
y 2 dx 2 xy dy 0
M x2 y 2 M 2y y
As
N 2 xy N 2y x
M N , so the given D.E. is exact y x
f x 2 y 2 (i ) x f 2 xy (ii ) x
Integrate equation (i) wrt x f ( x, y ) ( x 2 y 2 )dx x3 f ( x, y ) xy 2 h( y ) 3
Differentiate above equation wrt y f 2 xy h / ( y ) y
Compare above equation with equation (ii) 2 xy h / ( y ) 2 xy h/ ( y) 0 h( y ) c
So general solution of given D.E. is y
x3 xy 2 c 3
Question No 4: Solve the initial value problems
5|Page
dy 2 y x e3 x e 2 x , dx
y 0 2
dy 2 y x (e 3 x e 2 x ) dx P( x) 2 3x 2x Q( x) x(e e ) I .F . u ( x ) e =e
P ( x ) dx 2 dx
=e 2 x
y
u ( x)Q( x)dx c
(e y
u ( x) 2 x
)( x)(e3 x e 2 x ) dx c e 2 x
( xe y
3x2 x
( xe y
3x2 x
( xe y
xe 2 x 2 x )dx c e 2 x xe 2 x 2 x )dx c e 2 x
x
x)dx c e 2 x
d x2 x e x dx e x dx ( x ) dx c dx 2 y 2 x e 2 x xe x e x c 2 y e 2 x xe x ex x2 c y 2 x 2 x 2 x 2 x e e 2e e 1 y xe3 x e3 x x 2e 2 x ce 2 x 2
6|Page
y (0) 2 1 2 (0)e3(0) e3(0) (0)2 e2(0) ce2(0) 2 2 1 c c3 So 1 y xe3 x e3 x x 2e2 x 3e2 x 2
7|Page
Assignment 2 Q#1: Solve
x.
dy y y 2 . ln x dx
Solution dy y y 2 . ln x dx Dividing by x dy 1 ln x .y y2. dx x x It is bernoulli D.E. x.
divide by y 2 above eq dy 1 1 ln x y 2 y dx x x Multiply by (1) above eq. dy 1 1 ln x y 2 y (1) dx x x put y 1 v diff w.r.t.x dy dv y 2 dx dx
8|Page
dv 1 ln x v dx x x It is linear in v 1
1 dx I .F e x e ln x e ln x x 1 1 I .F x Multiply I .F by eq (1) 1 dv 1 1 1 ln x . ( v) ( ) x dx x x x x 1 ln x d (v. ) ( 2 ) dx x x Taking int egrate both sides. 1 ln x d (v. x ) ( x 2 ) dx 1 x 1 x 1 1 v. (ln x. . ) x 1 1 x y 1 1 x 1 .ln x c x x 1 1 1 1 .ln x c xy x x or 1 ln x 1 xc y
Q#2: Find the orthogonal trajectory to the family of curve Solution:
x cy 2
9|Page
x cy 2 (1) diff w.r.t.x dy 1 2cy dx 1 dx c put in eq (1) 2 y dy 1 dx 2 x( )y 2 y dy dy y dx 2 x is a differential eq. of eq (1) So differential equation of family of orthogonal trajectories is \ dy 2x dx y It can be separable. y dy 2 x dx
y dy 2 x dx y2 x2 c/ 2 y2 2x2 c ,
where c 2c /
Q#3: If the rate of spread of dengue virus is proportional to infected & non infected persons. Then what will be number of infected persons after 2 weeks provided that a man carrying this virus, come back to his community of 10000.Further it is provided that after one week, carriers increase to 98. Solution:
10 | P a g e
a man carries dengue virus initially enter community x(0) 1 {i e no of carrier at t 0} Assuming no one leaves from community of 10,000. So, initial value problem is dy kt 10,000 t ; x(0) 1 dt i e logistic equation when comparing with dP P(a bP) such that a 10000k , b k dt It ' s solution is given by aP0 P(t ) ; Here P0 x(0) 1 bP0 a bP0 e at So, 10,000k 10,000 (1) 10,000 kt k 9999e 1 9999e10,000kt it is given that after one week , x(t )
Q a man carries dengue virus initially enter community \x(0)=1 {i-e no of carrier at t=0} Assuming no one leaves from community of 10,000. So,initial value problem is dy =kt 10,000-t ; x(0)=1 dt i-e logisticequation when comparing with dP =P(a-bP) such that a=10000k, b=k dt It's solution is given by aP0 P(t)= ; Here P0 =x(0)=1 bP0 + a-bP0 e-at So, 10,000k 10,000 = -----(1) -10,000kt k+9999e 1+9999e-10,000kt Q it is given that after one week, x(t)=
11 | P a g e
Q#4: Determine whether the functions f1 x e x , f 2 x xe x and f3 x x 2e x are linearly independent or linearly dependent.
Solution
The functions
12 | P a g e
f 1 x e x , f 2 x xe x , and f 3 x x 2 e x
ex W e x , xe x , x 2e x e x ex
xe x xe x e x xe x 2e x
x 2e x x 2e x 2 xe x x 2e x 4 xe x 2e x
2 e3 x 0
Thus the functions are linearly independent on any interval of the x-axis because for all x R .
13 | P a g e
Assignment 3 Question No 1: Given that y1 x 2 is a solution of x 2 y // 2 xy / 6 y 0 Find general solution of the differential equation on the interval 0, . The DE x 2 y // 2 xy / 6 y 0 can be written as
2x 6 x 2 y // 2 y / 2 y 0 x x 2x 6 y // 2 y / 2 y 0 x x Here p( x)
2 x
Pdx e y2 y1 dx ( y1 ) 2 2
dx x 2 e y2 x 2 2 dx (x )
y2 x 2
e
2
1
xdx
x4
dx
e 2 ln x y2 x 4 dx x 2
2
eln x y2 x 4 dx x 2 x y2 x 2 4 dx x 2
14 | P a g e
y2 x 2 x 6 dx x 6 1 y2 x 2 6 1 x 5 y2 x 2 5 y2
1 5 x3
General solution is given by formula y c1 y1 c2 y2 1 y c1 ( x 2 ) c2 3 5x c y c1 x 2 23 5x
Question No 2: Solve y // 4 y / 4 y e2 x
For complementary solution y // 4 y / 4 y 0
Put y e mx
y / memx y // m2emx So
m2emx 4memx 4emx 0 (m2 4m 4)emx 0 As emx 0 So auxiliary equation is
15 | P a g e
m 2 4m 4 0 (m 2) 2 0 m 2, 2
So yc c1e 2 x c2 xe 2 x is our complementary solution For particular solution g ( x) e2 x
So
y p Ae 2 x y p / 2 Ae 2 x y p // 4 Ae 2 x So
y p // 4 y p / 4 y p e 2 x 4 Ae2 x 4(2 Ae2 x ) 4( Ae2 x ) e2 x 4 Ae2 x 8 Ae2 x 4 Ae2 x e 2 x 0 e2 x So our assumption is wrong, we remove duplication now, as Ae2x is present in yc Now we find particular solution of form y p Axe2x y p / Ae 2 x 2 Axe 2 x y p // 4 Ae 2 x 4 Axe 2 x
Substituting in given DE y p // 4 y p / 4 y p e2 x , we get 4 Ae 2 x 4 Axe 2 x 4 Ae 2 x 2 Axe 2 x 4 Axe 2 x e 2 x 4 Ae 2 x 4 Axe 2 x 4 Ae 2 x 8 Axe 2 x 4 Axe 2 x e 2 x 0 e2 x
This has again resulted in duplication
16 | P a g e
Therefore, now we find the particular solution of the form y p Ax2e2x y p / 2 Axe 2 x 2 Ax 2e 2 x y p // 2 Ae 2 x 8 Axe 2 x 4 Ax 2e 2 x
Substituting in given DE y p // 4 y p / 4 y p e2 x , we get 2 Ae 2 x 8 Axe 2 x 4 Ax 2e 2 x 4 2 Axe 2 x 2 Ax 2e 2 x 4 Ax 2e 2 x e 2 x 2 Ae 2 x 8 Axe 2 x 4 Ax 2e 2 x 8 Axe 2 x 8 Ax 2e 2 x 4 Ax 2e 2 x e 2 x 2 Ae 2 x e 2 x 2A 1 A
1 2
Therefore our particular solution is y p
1 2 2x xe 2
y yc y p
y c1e2 x c2 xe2 x
1 2 2x x e is the required general solution of given DE 2
Question No 3: Solve D3 D y 3 4e x , y(0) 4 , y / (0) 5 , y // (0) 1 by undermined coefficients using annihilator operator approach. For complementary solution Auxiliary equation is m3 m 0 m( m 2 1) 0 m 0, i, i
Therefore yc c1e(0)( x ) c2e(0)( x ) cos x c3e(0)( x ) sin x
yc c1 c2 cos x c3 sin x is our complementary solution
For particular solution
17 | P a g e
Now we find the annihilator operator for function g ( x) 3 4e x D (3) = 0 And annihilator operator for 4e x Here 1 and n 1 Therefore annihilator operator for 4e x will be D , which will be equal to D 1 D 1 n
Therefore D( D 1) is the annihilator operator for function g ( x) 3 4e x Now we apply D( D 1) to both sides of given DE
D( D 1)( D3 D) y D( D 1)(3 4e x ) D( D 1)( D3 D) y 0 Auxiliary equation is m(m 1)(m3 m) 0 m(m 1)(m 2 1)m 0 m 0,0,1, i, i
y c1e(0)( x ) c2 xe(0)( x ) c3e x c4 cos x c5 sin x y c1 c2 x c3e x c4 cos x c5 sin x The terms c1 c4 cos x c5 sin x are present in yc Therefore remaining terms are c2 x c3e x So y p Ax B Cex
y p / A Ce x y p // Ce x y p /// Ce x Putting it in DE y p /// y p / 3 4ex
1
18 | P a g e
Ce x A Ce x 3 4e x A 2Ce x 3 4e x Comparing coefficients, we get
A3 2C 4 C 2
Therefore, our particular solution conforms to y p 3x 2e x
y yc y p y c1 c2 cos x c3 sin x 3x 2e x y(0) 4
4 c1 c2 cos 0 c3 sin 0 3(0) 2e(0) 4 c1 c2 2 c1 c2 2 (i ) y / c2 sin x c3 cos x 3 2e x
y / (0) 5
5 c2 sin 0 c3 cos 0 3 2e(0) 5 c3 3 2 c3 0 y // c2 cos x c3 sin x 2e x
y // (0) 1
1 c2 cos 0 c3 sin 0 2e(0) 1 c2 2 c2 1
Put c2 1 in equation (i) to get the value of c1
19 | P a g e
c1 c2 2 c1 1 2 c1 1 Therefore our solution is y 1 cos x 3x 2e x
Question No 4: Solve the DE y /// y / tan x by using variation of parameters Given information:
u1/ tan x , u2/ sin x , u3 sin x ln sec x tan x For complementary solution y /// y / 0
Put y e mx y / me mx y // m 2e mx y /// m3e mx
Therefore
m3emx memx 0 emx (m3 m) 0 As emx 0 , therefore auxiliary equation is ( m 3 m) 0 m( m 2 1) 0 m 0, i, i
So
yc c1e(0)( x ) c2 cos x c3 sin x yc c1 c2 cos x c3 sin x
20 | P a g e
Particular Solution From complementary solution, we see that y1 1 , y2 cos , y3 sin x u1/ tan x u1 tan xdx u1 ln cos x
u2 / sin x u2 sin xdx u2 cos x
u3 sin x ln sec x tan x y p u1 y1 u2 y2 u3 y3 y p ln cos x (1) cos x(cos x) sin x ln sec x tan x sin x y p ln cos x cos 2 x sin 2 x sin x ln sec x tan x As cos2 x sin 2 x 1 Therefore
y p ln cos x 1 sin x ln sec x tan x y yc y p
y c1 c2 cos x c3 sin x ln cos x 1 sin x ln sec x tan x
21 | P a g e
Assignment 4 Question No 1: Solve the initial value problem; also find amplitude and period of oscillation?
d 2x 16 x 0 dt 2 x(0) 10 , x / (0) 0 Put x emt
dx me mt dt d 2x m 2e mt 2 dt
So the equation becomes
m2emt 16emt 0 emt m2 16 0 As emt 0 So, the auxiliary equation becomes m2 16 0 m 4i x(t ) c1 cos 4t c2 sin 4t
x(0) 10
10 c1 cos 4 0 c2 sin 4 0 c1 10 x / (t ) 4c1 sin 4t 4c2 cos 4t
x / (0) 0
22 | P a g e
0 4c1 sin 4 0 4c2 cos 4 0 c2 0 Therefore x(t ) 10cos 4t
Amplitude A c12 c2 2 (10) 2 (0) 2 10 Period of oscillation Here 4 Therefore Period of oscillation
2
2 4
2
Question No 2: Find the charge q(t) on the capacitor in an LRC series circuit when L=1/4 Henry, R=10 Ohms, C=0.001 farad , E(t)=0 volts , q(0)=q0 coulombs & I(0)=0 amperes. Also, check that it is a transient or steady state solution. d 2q dq q L 2 R E (t ) dt dt c
Putting values, we get
1 d 2q dq q 10 0 2 4 dt dt 0.001 1 d 2q dq 2 40 4000q 0 4 dt dt d 2q dq 2 40 4000q 0 dt dt Put q emt , q / memt , q // m 2e mt
23 | P a g e
m 2e mt 40me mt 4000e mt 0 e mt m 2 40m 4000 0
As emt 0 , Therefore auxiliary equation is m2 40m 4000 0 Here
a=1
,
b = 40
,
c = 4000
40 (40) 2 4(1)(4000) 2(1) 40 120i m 2(1) m 20 60i m
q(t ) c1e20t cos60t c2e20t sin 60t q(0) q0 q0 c1e200 cos 60 0 c2e200 sin 60 0 c1 q0 q / (t ) 20c1e20t cos60t 60c1e20t sin 60t 20c2e20t sin 60t 60c2e20t cos60t q / (0) 0 0 20c1e 200 cos 60 0 60c1e 200 sin 60 0 20c2e 200 sin 60 0 60c2e 200 cos 60 0 0 20c1 60c2 Put c1 =q 0 0 20q0 60c2 60c2 20q0 c2
q0 3
Therefore
q0 20t e sin 60t 3 1 q(t ) q0e 20t cos 60t sin 60t 3 q(t ) q0e 20t cos 60t
24 | P a g e
Amplitude A c12 c2 2
sin
q ( q0 ) 0 3
2
2
q0 2
2
q0 9
10 2 q0 9
10 q0 3
=
q0 A q0
10 q0 3 3 = 10
1 q0 cos 3 A 1 q0 3 = 10 q0 3 1 = 10
sin cos 3 10 1 10 3
tan
tan -1 (3) 1.249 radians
Therefore q(t )
10 q0e 20t sin 60t 1.249 3
Two conditions should be fulfilled for transient solution. 1. R 0 2. lim x(t ) 0 t
Here R is 10, so first condition is true, and as there is no steady term in the solution, so lim x(t ) 0 t
Therefore, this is a transient solution
Q#3: Solve x Sol:
d 4y d 3y 6 0 dx 4 dx 3
25 | P a g e
4 3 d4y d3y 4 d y 3 d y 6 0 x 6 x 0 dx 4 dx3 dx 4 dx 3 Put x et t ln x
x
Its auxiliary equation becomes ( 1)( 2)( 3) 6( 1)( 2) 0 0,1, 2, 3 so we get y c1 c2 et c3e 2t c4e 3t but t ln x so y c1 c2 x c3 x 2 c2c3 x 3 ( x 1) n n 2n n 0
Q#4: Find the radius and the interval of convergence of the given power series Sol:
( x 1) n n 2n n 0
( x 1) n ( x 1) n 1 Here an an 1 n 2n (n 1)2n 1 an 1 ( x 1) n 1 n 2n x 1 x 1 lim lim n 1 n n a n ( n 1)2 n 1 ( x 1) 2 n (1 )2 n The above power series converges for x 1 2 R lim
i.e. 2 x 1 2 3 x 1 or x (3,1) It is the required int erval of convergence.
26 | P a g e
Assignment 5 // / Q#1: Solve the differential equation 2 y y 0 by using the power series
n solution y cn x n 0
Solution:
Given 2 y // y 0
Let y cn x n Then n 0
2n(n 1)c x n2
cn x n 0
n2
n
n 0
put n 2 k we get
2(k 2)(k 1)c k 0
k k k 2 x ck x 0 k 0
ck ck 2 ; k 0,1, 2,3,... 2(k 2)(k 1) c c k 0; c2 0 k 1; c3 1 2 2! 2 3! c c3 c2 c k 2; c4 0 k 3; c5 1 2 4 3 2 4! 2 4 5 2 4! 2 3 4 y ( x) c0 c1 x c2 x c3 x c4 x ... c0 2 c c c x 1 x 3 0 x 4 1 x 5 ... 2 2! 2 3! 2 4! 2 4! 2 4 3 x x x x5 y ( x) c0 [1 ...] c1[ x ...] 2 2! 2 4! 2 3! 2 4! y ( x) c0 c1 x
Q#2: Solve the Bessel function in terms of sin x and cos x of the J 7 ( x ) 2
27 | P a g e
Solution: C onsi der t hat J v 1 x J v 1 x
2v Jv x x
As f or t a ki n g v
5 2
J 5 1 x J 5 1 x 2 2 J3
2
x J7 x 2
2 J
2 5 x
5
2
x
5 J5 x x 2
5 J 7 x J 5 x J 3 x (1) x 2 2 2 w e know J5
2
x
3 si n x 2 ( . x x x
2 cos x) x
2 si n x x
si n x 2 2 . cos x x x x T hen equat i on (1) becomes J 3 / 2 ( x)
J7
2
x
5 2 3 [ 2 1 si n x x x x
2 3 .( cos x)] x x
2 si n x cos x x x
Q#3: Check that the Legendre polynomials Pn ( x ) x 2 3 x 3 and Pm ( x) 2 x 3 x 2 5 x 5 are orthogonal on [0, 2].
Solution:
28 | P a g e
2
2
2
2
0
2
Pn ( x).Pm ( x)dx ( x 2 3x 3)(2 x 3 x 2 5 x 5)dx 0
0
2
Pn ( x).Pm ( x)dx (15 30 x 17 x 2 8x 3 5 x 4 2 x 5 )dx 0
0
0
Pn ( x).Pm ( x)dx 15 x 15 x 2
17 x3 x6 2 x 4 x5 3 3
Pn ( x).Pm ( x)dx 6 0 6 0
Hence these functions are not orthogonal.
29 | P a g e
Assignment 6 Q#1:
Find out all the complementary solution (not particular) from the system of differential dx dy dx dy 2 5x et ; x 5et dt dt dt dt equation
Solution: We can write them in the form of
(2 D 5) x Dy et ; ( D 1) x Dy et
And determinants are 2D 5
D
D 1
D
2D 5
D
D 1
D
D2 4D x
et
D
5et
D
&
2D 5
D
D 1
D
y
2D 5
et
D 1
5et
we get ( D 2 4 D) x 4et ...(1) & ( D 2 4 D) y 15et ...(2) Now we find the complementary function for the two equations m 2 4m 0 m 0, 4 xc c1 c2 e 4t & yc c3 c4e 4t
Q#2: Find the Eigen values and Eigen vector of the given matirx
30 | P a g e
5 1 A 0 5 5 1
0 9 0
Solution:
5 -1 0 | A I | 0 -5- 9 0 5
-1
-
16 3 0
(16 2 ) 0 0, 4, 4 Here eigen values are 0,4,-4.
For
=0, we have 5 -1 0 x 0 -5 9 y 0 5 -1 0 z 5x y 0 5 y 9 z 0 Let y=k Then x=k/5 and z=5k/9 So vector becomes x k / 5 1/ 5 9 y k k 1 k 45 z 5k / 9 5 / 9 25 So eigen vector is {9,45,25}
31 | P a g e
And eigenvectors for
=4,-4 are {1,9,1} , {1,1,1}.
Q#3: dx dy 2y , 8x dt dt
Find the general solution of the given system
Solution:
dx 2y , dt dx dt 0 dy 8 dt
dy 8x dt 2 x 0 2 x where A &X 0 y 8 0 y
Then det( A I ) 0
8
2
0 4, 4
32 | P a g e
for 4 , ( A I ) X 0 4 x1 2 x2 0 &8 x1 4 x2 0 x2 k let x2 k x1 2 2 k 1 2 & eigen vector is K 2 1 k 1 for 4 , ( A I ) X 0 4 x1 2 x2 0 &8 x1 4 x2 0 we get x1
x2 k let x2 k x1 2 2 1 eigen vector is K 2 2 2 we get x1
1 1 ThereforeX1 2 e4t , X2 2 e4t 1 2 1 4t e Hencegeneralsolutionof thesystemisthe followingX c1X1 c2X2 c1 2 4t e So x(t)
4t ce c2e4t 4t 1 & y(t) ce 2c2e4t 1 2
c 2
1 4t e 2 2e4t
4t c2e4t ce 1 4t 2 4t 2c2e ce 1