Differential Calculus.docx

  • Uploaded by: Peter Lay
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Differential Calculus.docx as PDF for free.

More details

  • Words: 12,993
  • Pages: 99
CLASSIFICATION OF FUNCTIONS

functions

algebraic

trencendendal

rational

rational

integral

fractional

elementary

trigometric inverse trigo

higher

exponential logarithmic

Relation Is any set of one or more ordered pair.

Function Is a rule of correspondence between empty set such that two each element of the 1st set, there is corresponds one and only one element of the 2nd set.

Notation The function notation (f) (x) means the value of the function f at number x.

1

Vertical Line Test A graph of a relation is a function if any vertical line drawn passing through the graph intersects it at exactly one point. ๐‘“(๐‘ฅ) = 2๐‘ฅ 2 + 5๐‘ฅ โˆ’ 3

It at exactly one point:

๐‘“(2) = 2(2)2 + 5(2) โˆ’ 3 = 8 + 10 โˆ’ 3 ๐‘“(2) = 15

๐‘ฆ = 2๐‘ฅ 2 + 5๐‘ฅ โˆ’ 3 ๐‘ฆ = 2๐‘ฅ 2 + 5๐‘ฅ โˆ’ 3 5 ๐‘ฆ + 3 = 2 (๐‘ฅ 2 + ๐‘ฅ) 2 25 5 25 + ๐‘ฆ + 3 = 2 (๐‘ฅ 2 + ๐‘ฅ + ) 8 2 16 49 5 2 ๐‘ฆ+ = 2 (๐‘ฅ + ) 8 4 ๐‘ฆ 49 5 2 โˆš โˆš + = (๐‘ฅ + ) 2 16 4 ๐‘ฆ 49 5 ๐‘ฅ=โˆš + โˆ’ 2 6 4

2

Kinds of Functions A. Constant function A constant function C is a function the range of which contain a single real number K Example: The graph shows a constant function y = 12. The value of y is 12 for any x.

For all real number in its domain C(x) =k

Domain: all real number

Y=k

Range: 12

3

B.

Identity function: ๐Ÿ(๐ฑ) = ๐ฑ Evaluating any value for x will result in that same value.

For example, ๐‘“(0) = 0 and ๐‘“(2) = 2. The identity function is linear, ๐‘“(๐‘ฅ) = 1๐‘ฅ + 0, with slope m=1 and y-intercept (0, 0).

๐‘“(๐‘ฅ) = ๐‘ฅ

x

๐‘“(๐‘ฅ)

0 2

0 2

The domain and range both consist of all real numbers.

4

C.

Linear function Is a function that can be written in the form of ๐‘“(๐‘ฅ) = ๐‘š๐‘ฅ + ๐‘ where m and

b are real numbers and m โ‰  0. Example: Graph the function f(x) = 2x โ€“ 1.

The graph is always a line with either positive or negative slope. The domain and range both consist of all real numbers.

5

D. Absolute function The absolute value parent function, written as ๐‘“(๐‘ฅ) = |๐‘ฅ|, is defined as To graph an absolute value function, choose several values of x and find some ordered pairs.

X

๐‘ฆ = |๐‘ฅ|

-2 -1 0 1 2

2 1 0 1 2

Plot the points on a coordinate plane and connect them.

Domain: All real Numbers Range: All real numbers greater than or equal to 0 (๐‘ฆ โ‰ฅ 0)

6

E.

Square Root Function: ๐‘“(๐‘ฅ) = โˆš๐‘ฅ

Its domain is ๐‘ฅ| ๐‘ฅ โ‰ฅ 0 & its range is {๐‘ฆ|๐‘ฆ > 0| The parent function of the functions of the form f(x) = โˆšx โˆ’ a + b is f(x) = โˆšx.

Note that the domain of ๐‘“(๐‘ฅ) = โˆš๐‘ฅ is ๐‘ฅ โ‰ฅ 0and the range is๐‘ฆ โ‰ฅ 0. The graph of ๐‘“(๐‘ฅ) = โˆš๐‘ฅ โˆ’ ๐‘Ž + ๐‘ can be obtained by translating the graph of ๐‘“(๐‘ฅ) = โˆš๐‘ฅ to a units to the right and then b units up.

7

๐‘(๐‘ฅ)

F. Rational Function: ๐‘“(๐‘ฅ) = ๐ท(๐‘ฅ)

N(x) & D(x) are polynomial functioning ๐ท(๐‘ฅ) โ‰  0 Asymptotes: Is an imaginary line being approached but does not reached or intersected by a graph as it. Example: ๐‘“(๐‘ฅ) = 1โ„๐‘ฅ . X -4 -2 -1 -0.1 -0.01 0.01 0.1 1 2 4

f(x) -0.25 -0.5 -1 -10 -100 100 10 1 0.5 0.25

8

G. Greatest Integer Function: ๐บ(๐‘ฅ) = [๐‘ฅ] Domain of ๐บ(๐‘ฅ) = [๐‘ฅ] where [ ] denotes greatest integer function. Example: ๐’‡(๐’™) =

๐Ÿ โˆš[๐’™] โˆ’ ๐’™

Domain: All real numbers Range: All real numbers

H. Piece wise Function These functions are defined compositely using several expressions on different interval domains. Example:

9

๐‘ฅ โˆ’ 2, ๐‘ฅ โ‰ค 0 ๐‘“(๐‘ฅ) = { ๐‘ฅ + 3, ๐‘ฅ > 0

Domain: All real numbers Range: y > 3 & y <=-2 I. Signum Function The signum function, denoted sgn, is defined as follows: 1, ๐‘ ๐‘”๐‘›(๐‘ฅ) = {โˆ’1, 0,

๐‘ฅ>0 ๐‘ฅ<0 ๐‘ฅ=0

Graph:

10

Domain: All real numbers Range: y = 1, -1, 0 J. Unit Step Function The Unit-step function is defined by ๐‘ข. (๐‘ก) = {0 ๐‘–๐‘“ ๐‘œ โ‰ค ๐‘ก < ๐‘Ž} That is, u is a function of time t, and u has value zero when time is negative and value one when time is positive.

Domain: All real numbers Range: 1 & 0

K. Transcendental Function Is a function that does not satisfy a polynomial equation whose coefficients are themselves roots of polynomials, in contrast to an algebraic function, which does satisfy such an equation. Example: The following functions are transcendental: ๐‘“1 (๐‘ฅ) = ๐‘ฅ ๐œ‹ ๐‘“2 (๐‘ฅ) = ๐‘ ๐‘ฅ , ๐‘ โ‰  0,1 ๐‘“3 (๐‘ฅ) = ๐‘ฅ ๐‘ฅ = 2๐‘ฅ 11

1

๐‘“4 = ๐‘ฅ 2 ๐‘“5 (๐‘ฅ) = log ๐‘ ๐‘ฅ. ๐‘ โ‰  0,1 ๐‘“6 (๐‘ฅ) = sin ๐‘ฅ

Note that in particular for ฦ’2 if we set c equal to e, the base of the natural logarithm, then we get that ex is a transcendental function. Similarly, if we set

c equal to e in ฦ’5, then we get that ln(x), the natural logarithm, is a transcendental function. For more information on the second notation of ฦ’3, see tetration.

๐ธ๐‘ฅ. ๐ผ๐‘“ ๐‘“(0) = ๐‘ฅ 2 โˆ’ ๐‘ฅ + 3 Find ๐‘Ž. ๐‘“(0) = 02 โˆ’ 0 + 3 = 3 ๐‘. ๐‘“(2) = 22 โˆ’ 2 + 3 = 4 โˆ’ 2 + 3 = 5 ๐‘. ๐‘“(โˆ’4) = (โˆ’4)2 โˆ’ (โˆ’4) + 3 = 16 + 4 + 3 = 23 ๐‘‘. ๐‘“(โˆ’2๐‘ฅ) = (โˆ’2๐‘ฅ)2 โˆ’ (โˆ’2๐‘ฅ) + 3 = 4๐‘ฅ 2 + 2๐‘ฅ + 3

12

Name: Course/Year & Section:

ASSIGNMENT no.1 One Value & Many Valued Functions 1. ๐ผ๐‘“๐น(๐‘ฆ) = ๐‘ฆ(๐‘ฆ โˆ’ 3)2 , Find: ๐น(๐‘) = ๐‘(๐‘ โˆ’ 3)2 = ๐‘(๐‘ 2 โˆ’ 6๐‘ + 9) = ๐’„๐Ÿ‘ โˆ’ ๐Ÿ”๐’„๐Ÿ + ๐Ÿ—๐’„

๐น(0) = 0(0 โˆ’ 3)2 = 0(9) =๐ŸŽ ๐น(3) = 3(3 โˆ’ 3)2 = 3(0)2 =๐ŸŽ ๐น(โˆ’1) = โˆ’1(โˆ’1 โˆ’ 3)2 = ๏€ญ1(๏€ญ4)2 = ๏€ญ1(16) = ๏€ญ๐Ÿ๐Ÿ” ๐น(๐‘ฅ + 3) = (๐‘ฅ + 3)(x + 3 โˆ’ 3)2 = (๐‘ฅ + 3)(x 2 ) = ๐’™๐Ÿ (๐’™ + ๐Ÿ‘) 2. ๐ผ๐‘“๐‘”(๐‘ฅ) = 4๐‘ฅ 4 โˆ’ 3๐‘ฅ 3 + 2๐‘ฅ โˆ’ 2, Find: ๐‘Ž. ๐‘”(2) = 4(2)4 โˆ’ 3(2)3 + 2(2) โˆ’ 2 = 4(16)๏€ญ 3(8) + 4 ๏€ญ 2 = 64 ๏€ญ 24 + 4 ๏€ญ 2 = ๐Ÿ’๐Ÿ ๐‘. ๐‘”(โˆ’2) = 4(โˆ’2)4 โˆ’ 3(โˆ’2)3 + 2(โˆ’2) โˆ’ 2 13

= 4(16) โˆ’ 3(โˆ’8) โˆ’ 4 โˆ’ 2 = 64 + 24 ๏€ญ 4 ๏€ญ 2 = ๐Ÿ–๐Ÿ

1 1 4 1 3 1 ๐‘. ๐‘” ( ) = 4 ( ) โˆ’ 3 ( ) + 2 ( ) โˆ’ 2 2 2 2 2 1 1 1 3 โˆ’๐Ÿ— = 4( )๏€ญ 3( ) + 1 ๏€ญ 2 = ๏€ญ โˆ’ 1 = 16 8 4 8 ๐Ÿ–

๐‘‘. ๐‘”(โˆ’๐‘ฅ) = 4(โˆ’๐‘ฅ)4 โˆ’ 3(โˆ’๐‘ฅ)3 + 2(โˆ’๐‘ฅ) โˆ’ 2 = 4(๐‘ฅ 4 )๏€ญ 3(โˆ’๐‘ฅ 3 ) + (โˆ’2๐‘ฅ) ๏€ญ 2 = ๐Ÿ’๐’™๐Ÿ’ + ๐Ÿ‘๐ฑ ๐Ÿ‘ โˆ’ ๐Ÿ๐ฑ โˆ’ ๐Ÿ

3. ๐ผ๐‘“๐œ‘(๐‘ฅ) = ๐‘๐‘œ๐‘  ๐‘ฅ, Find: ๐‘Ž. ๐œ‘(0) = ๐‘๐‘œ๐‘ (0) = ๐Ÿ

1 1 ๐‘. ๐œ‘ ( ๐œ‹) = ๐‘๐‘œ๐‘  ๐œ‹ 2 2 = ๐‘๐‘œ๐‘  90 = ๐ŸŽ

๐‘. ๐œ‘(๐œ‹) = ๐‘๐‘œ๐‘ ๐œ‹ = ๐‘๐‘œ๐‘  180 = ๏€ญ๐Ÿ

๐‘‘. ๐œ‘(โˆ’๐‘ฅ) = ๐‘๐‘œ๐‘ (โˆ’๐‘ฅ) = ๐’„๐’๐’” ๐’™ e. ๐œ‘(๐œ‹ โˆ’ ๐‘ฆ) = ๐‘๐‘œ๐‘ (๏ฐ ๏€ญ ๐‘ฆ) = ๐‘๐‘œ๐‘ (180 ๏€ญ ๐‘ฆ) = ๏€ญ ๐’„๐’๐’” ๐’š

4. ๐ผ๐‘“ ๐œ“(๐‘ฅ) = ๐‘ก๐‘Ž๐‘› ๐‘ฅ, 14

Find: ๐œ‹ ๐œ‹ ๐‘Ž. ๐œ“ ( ) = ๐‘ก๐‘Ž๐‘› 6 6 = ๐‘ก๐‘Ž๐‘› 30 โˆš๐Ÿ‘ = ๐Ÿ‘ 1 1 ๐‘. ๐œ“ (๐‘ฅ โˆ’ ๐œ‹) = ๐‘ก๐‘Ž๐‘› (๐‘ฅ โˆ’ ฯ€) 2 2 = ๐‘ก๐‘Ž๐‘›(๐‘ฅ โˆ’ 90) ๐‘ก๐‘Ž๐‘› ๐‘ฅ ๏€ญ ๐‘ก๐‘Ž๐‘› 90 = 1 + ๐‘ก๐‘Ž๐‘›๐‘ฅ๐‘ก๐‘Ž๐‘›90 = ๐’–๐’๐’…๐’†๐’‡๐’Š๐’๐’†๐’…

๐‘. ๐œ“(โˆ’๐‘ฅ) = ๐‘ก๐‘Ž๐‘›(โˆ’x) = โˆ’ ๐’•๐’‚๐’ ๐’™ Express ๐œ“(2๐‘ฅ) as a function of ๐œ“(๐‘ฅ). ๏น(2๐‘ฅ) = ๐‘ก๐‘Ž๐‘› 2๐‘ฅ = 2๐‘ก๐‘Ž๐‘› ๐‘ฅ = ๐Ÿ๏€ญ ๐’•๐’‚๐’๐Ÿ ๐ฑ

15

Examples: 1.) The amount of $1 @ 4% simple interest, as a function of time. ๐ผ = ๐‘ƒ๐‘Ÿ๐‘ก ๐ผ = 1(0.04)๐‘ก ๐‘ฐ = ๐ŸŽ. ๐ŸŽ๐Ÿ’ ๐’•

2.) The volume of a sphere as a function of the radius. 4๐œ‹ 3 ๐‘Ÿ 3 4 ๐‘‰ = ๐œ‹ ๐‘Ÿ3 3 ๐‘‰=

3.) The radius of the sphere as a function of the volume. 3

๐‘Ÿ =

โˆš3๐‘ฃ 4๐œ‹

4.)The length, e of an edge of a cube as a function of the surface area, A of a cube. e A = 6e2 ๐ด = 6๐‘’ 2

e

๐ด

e = โˆš6

e

e

Definition of a Limit ๏‚ฎLet ๐‘“(๐‘ฅ) be a function of x & let โ€œaโ€ be constant. If there is a number L such that, in order to make a value of ๐‘“(๐‘ฅ) as close to L as many be desired, it is sufficient to choose x close enough to a , but different from a ,then we say that the limit of ๐‘“(๐‘ฅ) as a x approaches a , is L.

๐ฟ๐‘–๐‘š๐‘“(๐‘ฅ) = ๐ฟ 16

๐‘ฅโ†’๐‘Ž ๐ฟ๐‘–๐‘š(2๐‘ฅ + 1) = 7 ๐‘ฅโ†’3 ๏ผ(2๐‘ฅ + 1)7๏ผ๏€ผ โˆˆ |2๐‘ฅ โˆ’ 6|๏€ผ โˆˆ โˆˆ 2 โˆˆ ๐ฟ๐‘’๐‘ก๐‘“ = 2 |๐‘ฅ โˆ’ 3|๏€ผ

(2 โˆ’ 3) <

โˆˆ ๐‘ฅโ‰ 3 2

It follows that |2๐‘ฅ โˆ’ 6| <โˆˆ From which 1(2๐‘ฅ + 1) โˆ’ 7 <โˆˆ |๐‘ฅ โˆ’ 3| < โˆˆโ„2 โˆ’ 3 < โˆˆ ๐‘ฅโ„2 โ‰  3 It follows that |2๐‘ฅ โˆ’ 6 | <โˆˆ From which ๐‘™(2๐‘ฅ + 1) โˆ’ 7 <โˆˆ ๐ฟ๐‘–๐‘š๐‘–๐‘ก (๐‘ฅ 2 + 1) = 5 ๐‘ฅ๏‚ฎ2 |(๐‘ฅ2 + 1) ๏€ญ5| <โˆˆ |๐‘ฅ 2 ๏€ญ 4| <โˆˆ |๐‘ฅ ๏€ญ 2| ๏€ญ |๐‘ฅ + 2| <โˆˆ |๐ด + ๐ต| โ‰ค |๐ด| + |๐ต| Since ๐‘ฅ + 2 = ๐‘ฅ ๏€ญ 2 + 4, if follows that |๐‘ฅ โˆ’ 2| โ‰ค |๐‘ฅ โˆ’ 2| + 4 Thus if we choose |๐‘ฅ โˆ’ 2| < 8 |๐‘ฅ + 2| < 8 + 4

Theorem 1: The limit of the sum of two (or more) functions is equal to the sum of their limits.

17

๐ฟ๐‘–๐‘š [๐‘ข(๐‘ฅ) + ๐‘ฃ(๐‘ฅ)] = ๐ฟ๐‘–๐‘š ๐‘ข(๐‘ฅ) + ๐ฟ๐‘–๐‘š ๐‘ฃ(๐‘ฅ) ๐‘ฅ๏‚ฎ๐‘Ž ๐‘ฅ๏‚ฎ๐‘Ž ๐‘ฅ๏‚ฎ๐‘Ž

Theorem 2: The limit of the product of two or more functions is equal to the product of their limits. ๐ฟ๐‘–๐‘š [๐‘ข(๐‘ฅ) ๐‘ข(๐‘ฅ)] = [๐ฟ๐‘–๐‘š ๐‘ข (๐‘ฅ)] [๐ฟ๐‘–๐‘š ๐‘ข(๐‘ฅ)] ๐‘ฅ๏‚ฎ๐‘Ž ๐‘ฅ๏‚ฎ๐‘Ž ๐‘ฅ๏‚ฎ๐‘Ž Theorem 3: The limit of the quotient of two functions is equal to the quotient of the limits, provided the limit of the denominator is not zero.

๐ฟ๐‘–๐‘š

๐‘ข(๐‘ฅ) ๐ฟ๐‘–๐‘š ๐‘ข(๐‘ฅ) ๐‘ฅ๏‚ฎ๐‘Ž = ๐‘ฃ(๐‘ฅ) ๐ฟ๐‘–๐‘š ๐‘ฃ(๐‘ฅ) ๐‘ฅ๏‚ฎ๐‘Ž

๐ผ๐‘“ ๐ฟ๐‘–๐‘š ๐‘ฃ(๐‘ฅ) โ‰  0 ๐‘ฅ๏‚ฎ ๐‘Ž

Examples: Theorem 1 Evaluate ๐ฟ๐‘–๐‘š (๐‘ฅ 3 + 4๐‘ฅ) = ๐ฟ๐‘–๐‘š ๐‘ฅ 3 + ๐ฟ๐‘–๐‘š 4๐‘ฅ

๐‘ฅ ๏‚ฎ3

๐‘ฅ๏‚ฎ3 = 33 + 4(3) = 27 + 12 = ๐Ÿ‘๐Ÿ—

๐‘ฅ๏‚ฎ3

Theorem 2 ๐ฟ๐‘–๐‘š (๐‘ฅ 3 + 4๐‘ฅ) = [๐ฟ๐‘–๐‘š ๐‘ฅ][๐ฟ๐‘–๐‘š ๐‘ฅ][๐ฟ๐‘–๐‘š ๐‘ฅ] + [๐ฟ๐‘–๐‘š 4][๐ฟ๐‘–๐‘š ๐‘ฅ] ๐‘ฅ ๏‚ฎ3

๐‘ฅ๏‚ฎ3

๐‘ฅ๏‚ฎ3

๐‘ฅ๏‚ฎ3

๐‘ฅโ†’3

๐‘ฅ๏‚ฎ3

= (3)(3)(3) + 4(3) = 27 + 12 = ๐Ÿ‘๐Ÿ—

Lim

x3 โˆ’9x+10 x2 โˆ’4

18

Lim (x3 ๏€ญ 9x + 10) = 0 Lim (x2 ๏€ญ 4) = 0 ๐‘ฅ๏‚ฎ2

๐‘ฅ๏‚ฎ2

Lim (x2 ๏€ญ 4) = 0 ๐‘ฅ๏‚ฎ2 ๐ฟ๐‘–๐‘š

[๐‘ฅ 2 + 2๐‘ฅ โˆ’ 5][๐‘ฅ โˆ’ 2] (๐‘ฅ 2 + 2๐‘ฅ โˆ’ 5) = ๐ฟ๐‘–๐‘š (๐‘ฅ + 2)(๐‘ฅ โˆ’ 2) ๐‘ฅ+2 ๐‘ฅ๏‚ฎ2

๐‘ฅ๏‚ฎ2 22 + 2(2) โˆ’ 5 2+2 4+4โˆ’5 = 4 ๐Ÿ‘ = ๐Ÿ’ =

Right hand and Left hand limits ๐ฟ๐‘–๐‘š ๐‘“(๐‘ฅ) = ๐ฟ ๐‘ฅ๏‚ฎ ๐‘Ž+ & mean by ๐‘ฅ ๏‚ฎ ๐‘Ž+ that each x involved is greater than a. Right hand limit - the independent variable x approaches โ€œaโ€ from the right. Left hand limit โ€“ the independent variable x approaches โ€œaโ€ from the left. It means that x ๏‚ฎ a- that each x involved is lesser than โ€œaโ€. #12: Limit of ๐‘ ๐‘–๐‘›๏‚ตโ„๏‚ต as ๏‚ต approaches zero Theorem 4: If ๏‚ต is measured in ratios ๐ฟ๐‘–๐‘š

๐‘ ๐‘–๐‘›๏‚ต

๏‚ต

= 1

Area RB T 19

1 ๐ต๐‘‡ . ๐‘…๐‘‡ 2 1 = ๐‘Ÿ ๐‘๐‘œ๐‘  โˆ ๐‘Ÿ ๐‘ ๐‘–๐‘› โˆ 2

๐ด๐‘…๐‘‡๐ต

=

๐‘Ÿ 2 ๐‘ ๐‘–๐‘›๏‚ต ๐‘๐‘œ๐‘ ๏‚ต = 2 ๐ต๐‘‡ ๐‘…๐‘‡

๐ถ๐‘œ๐‘ ๏‚ต =

๐ต๐‘‡ = ๐‘Ÿ ๐‘๐‘œ๐‘  ๏‚ต ๐‘…๐‘‡ = ๐‘Ÿ ๐‘ ๐‘–๐‘› โˆ ๐‘…๐‘‡ = ๐‘Ÿ๐‘ ๐‘–๐‘›๏‚ต Area of the sector

๏‚ต

๐ด๐‘ ๐‘’๐‘ = =

2๐‘Ÿ

(๏ฐ๐‘Ÿ2)

๏‚ต

๏‚ต๐‘Ÿ 2 2

Area of SUB = 1โ„2 (๐ต๐‘‰)(๐‘†๐‘‰) 1 = ๐‘Ÿ (๐‘Ÿ ๐‘‡๐‘Ž๐‘› ๏‚ต) 2 ๐‘Ÿ๐‘ก๐‘Ž๐‘›๏‚ต = 2 ๐‘ ๐‘ฃ ๐‘Ÿ ๐‘Ÿ ๐‘ ๐‘–๐‘› ๏‚ต๐‘๐‘œ๐‘ ๏‚ต

๐‘‡๐‘Ž๐‘› ๏‚ต =

[

2

๐‘†๐‘‰

๐‘†๐‘‰ = ๐‘Ÿ ๐‘‡๐‘Ž๐‘›๏‚ต

๏‚ต๐‘Ÿ2 <

2

๐‘Ÿ2 ๐‘ก๐‘Ž๐‘› ๏‚ต <

[๐‘ ๐‘–๐‘›๏‚ต ๐‘๐‘œ๐‘ ๏‚ต < ๏‚ต < ๐‘ก๐‘Ž๐‘›๏‚ต]

2

๐ต๐‘‰

]

2 1โˆ’2

1 ๐‘ ๐‘–๐‘›๏‚ต

๏‚ต 1 < ๐‘ ๐‘–๐‘›๏‚ต ๐‘๐‘œ๐‘ ๏‚ต 1 ๏‚ต > > ๐‘๐‘œ๐‘  ๏‚ต ๐‘๐‘œ๐‘  ๏‚ต ๐‘ ๐‘–๐‘› ๏‚ต ๐ถ๐‘œ๐‘ ๏‚ต <

1 > ๐‘ข๐‘›๐‘‘ > 1 20

๐ถ๐‘œ๐‘  ๏‚ต >

๐‘ ๐‘–๐‘›๏‚ต

๏‚ต

> ๐‘๐‘œ๐‘  โˆ’ ๏‚ต

1 > 1 > 1 ๐ฟ๐‘–๐‘š

๐‘ ๐‘–๐‘› ๏‚ต

๏‚ต

= 1

EXAMPLES: 1. ๐ฟ๐‘–๐‘š (๐‘ฅ 2 + 3๐‘ฅ โ€“ 5) ๐‘ฅ๏‚ฎ4 = 42 + 3 (4) โ€“ 5 = 16 + 12 โ€“ 5 = 23 2. ๐ฟ๐‘–๐‘š (๐‘ฆ 3 โ€“ 2๐‘ฆ + 7) ๐‘ฆ ๏‚ฎ3 = 33 โ€“ 2(3) + 7 = 27 ๏€ญ 6 + 7 = ๐Ÿ๐Ÿ–

๏ข3 + ๏ข2 โˆ’ 8๏ข โˆ’ 12 3. ๐ฟ๐‘–๐‘š 3 ๏ข โˆ’ 4๏ข2 โˆ’ 3๏ข + 18 ๏ข๏‚ฎ3 33 + 32 โˆ’ 8(3) โˆ’ 12 = 3 3 โˆ’ 4(3)2 โˆ’ 3(3) + 18 =

27+9โˆ’24โˆ’12 27โˆ’36โˆ’9+18

= ๐‘ต๐’ ๐‘ณ๐’Š๐’Ž๐’Š๐’•

๏ข2 + 4๏ข + 4 = 0 (๏ข + 2)2 (๏ข โˆ’ 3) (๏ข + 2)2 (๏ข โˆ’ 3) = (๏ข + 2)(๏ข โˆ’ 3)2

21

=

๏ข +2 3+2 ๐Ÿ“ = = ๐‘ต๐’ ๐‘ณ๐’Š๐’Ž๐’Š๐’• ๏ข โˆ’3 3โˆ’3 ๐ŸŽ

4. ๐ฟ๐‘–๐‘š

๏ข3 + 7๏ข โˆ’ 6 2๏ข3 โˆ’ 11๏ข2 + 12๏ข + 9

๏ข๏‚ฎ3 33 โˆ’ 7(3) โˆ’ 6 = 2(3)3 โˆ’ 11 (3)2 + 12 (3) + 9 27 โˆ’ 21 โˆ’ 6 ๐ŸŽ = ๐‘ผ๐’๐’…๐’†๐’‡๐’Š๐’๐’†๐’… 54 โˆ’ 99 + 36 + 9 ๐ŸŽ (๏ข + 1)(๏ข + 2)(๏ข โˆ’ 3) = (2๏ข + 1)(๏ข โˆ’ 3)2 =

=

(๏ข + 1)(๏ข + 2) (2๏ข + 1)(๏ข โˆ’ 3)

๏ข๏‚ฎ3 =

(3 + 1)(3 + 2) (2(3) + 1)(3 โˆ’ 3)

=

๐Ÿ๐ŸŽ ๐‘ต๐’ ๐‘ณ๐’Š๐’Ž๐’Š๐’• ๐ŸŽ

5. ๐ฟ๐‘–๐‘š ๐‘ฅ๏‚ฎ

=

=

=

=

4๐‘ฅ 3 โˆ’ 3๐‘ฅ + 1 12๐‘ฅ 3 โˆ’ 8๐‘ฅ 2 โˆ’ ๐‘ฅ + 1

1 2

1 3 1 4 (2) โˆ’ 3 (2) + 1 1 3 1 2 1 12 (2) โˆ’ 8 (2) โˆ’ (2) + 1 1 1 4 (8) โˆ’ 3 (2) + 1 1 1 1 12 (8) โˆ’ 8 (2) โˆ’ 2 + 1 0 3 1 2 โˆ’2 + 2 0 ๐‘ข๐‘›๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘’๐‘‘ 0 22

(x + 1)(2x โˆ’ 1)2 = (12x + 4)(2x โˆ’ 1)2 =

(x + 1) (12x + 4)

1 3โ„ (2 + 1) ๐Ÿ‘ = = 2= 1 10 ๐Ÿ๐ŸŽ (12 (2) + 4)

6. ๐ฟ๐‘–๐‘š

๐‘‡๐‘Ž๐‘›๐œƒ ๐‘ ๐‘–๐‘›2 ๐œƒ

๏ฆ = 90 sin ๐œƒ sin ๐œƒ cos ๐œƒ = = 2 ๐‘ ๐‘–๐‘› ๐œƒ cos ๐œƒ๐‘ ๐‘–๐‘›2 ๐œƒ sin 90 1 = 2 cos 90๐‘ ๐‘–๐‘› 90 0(1)2 =

๐ŸŽ ๐’–๐’๐’… ๐ŸŽ

7. ๐ฟ๐‘–๐‘š

๐ถ๐‘œ๐‘ 2๏ฆ ๐‘‡๐‘Ž๐‘› ๏ฆ

ฯ€ 2 ๐‘๐‘œ๐‘  180 = ๐‘ก๐‘Ž๐‘› 90 โˆ’๐Ÿ = ๐’–๐’๐’… ๏ฆโ†’

8. ๐ฟ๐‘–๐‘š

๐‘๐‘œ๐‘  2 ๏ฆ โˆ’ ๐‘ ๐‘–๐‘›2 ๏ฆ ๐‘ ๐‘–๐‘›๏ฆ ๐‘๐‘œ๐‘ ๏ฆ

๏ฆ ๏‚ฎ 90 ๐‘๐‘œ๐‘ ๏ฆ ๐‘๐‘œ๐‘  2 ๏ฆ โˆ’ ๐‘ ๐‘–๐‘›2 ๏ฆ ๐‘ ๐‘–๐‘›๏ฆ ๐ฟ๐‘–๐‘š ๐‘ฅ ๐‘ ๐‘–๐‘›๏ฆ ๐‘๐‘œ๐‘ ๏ฆ ๐‘๐‘œ๐‘ ๏ฆ ๐‘ ๐‘–๐‘›๏ฆ

23

๐‘๐‘œ๐‘  ๏ฆ (๐‘๐‘œ๐‘  2 ๏ฆ โˆ’ ๐‘ ๐‘–๐‘›2 ๏ฆ) = ๐‘ ๐‘–๐‘›๏ฆ =

0 (0 โˆ’ 1) 0 = 1 1

= ๐ŸŽ

โˆš๐‘ฅ โˆ’ 2

9. ๐ฟ๐‘–๐‘š

โˆš๐‘ฅ 2 โˆ’ 4

๐‘ฅ๏‚ฎ2 ๐ฟ๐‘–๐‘š โˆš

(๐‘ฅ โˆ’ 2)1 1 1 ๐Ÿ = โˆš = โˆš = (๐‘ฅ โˆ’ 2)(๐‘ฅ + 2) ๐‘ฅ+2 4 ๐Ÿ

10. ๐ฟ๐‘–๐‘š

๐‘ฅโˆ’3 โˆš๐‘ฅ 2 โˆ’ 9

= 0

๐‘ฅ๏‚ฎ 3 2

(๐‘ฅ โˆ’ 3)2

๐ฟ๐‘–๐‘š

1

(๐‘ฅ 2 โˆ’ 9)2 (๐‘ฅ โˆ’ 3)2 โˆš = (๐‘ฅ โˆ’ 3)(๐‘ฅ + 3) 3โˆ’3 = โˆš 3+3

= โˆš

0 = ๐ŸŽ 6

1

11. ๐ฟ๐‘–๐‘š

(๐‘ฅ 4 โˆ’ 4๐‘ฅ + 5๐‘ฅ 2 โˆ’ 4๐‘ฅ + 4)2 1

(๐‘ฅ 2 โˆ’ 3๐‘ฅ + 2)2 ๐‘ฅ๏‚ฎ2 1

1

(๐‘ฅ โˆ’ 2)2 (๐‘ฅ 2 + 1) 2 (๐‘ฅ โˆ’ 2)(๐‘ฅ 2 + 1) 2 ๐ฟ๐‘–๐‘š [ ] = ๐ฟ๐‘–๐‘š [ ] (๐‘ฅ โˆ’ 2)(๐‘ฅ โˆ’ 1) (๐‘ฅ โˆ’ 1) 1

(2 โˆ’ 2)(22 + 1) 2 =( ) 1

1

0 2 = ( ) 1

= ๐ŸŽ 24

1

12. ๐ฟ๐‘–๐‘š

(๐‘ฅ 2 + 4๐‘ฅ โˆ’ 5)2 1

(๐‘ฅ 2 โˆ’ 4๐‘ฅ + 3)2 ๐‘ฅ๏‚ฎ 1 1

1

(๐‘ฅ + 5)(๐‘ฅ โˆ’ 1) 2 (๐‘ฅ + 5) 2 ๐ฟ๐‘–๐‘š [ ] = ๐ฟ๐‘–๐‘š [ ] (๐‘ฅ โˆ’ 3)(๐‘ฅ โˆ’ 1) (๐‘ฅ โˆ’ 3) 1

1

1+5 2 6 2 = ( ) = ( ) = โˆšโˆ’๐Ÿ‘ 1โˆ’3 โˆ’2

13. ๐ฟ๐‘–๐‘š

4๐‘ฅ 3 โˆ’ 3๐‘ฅ + 1 12 ๐‘ฅ 3 โˆ’ 8 ๐‘ฅ 2 โˆ’ ๐‘ฅ + 1

1 2 (2๐‘ฅ โˆ’ 1)2 (4 ๐‘ฅ + 4) = (2๐‘ฅ โˆ’ 1)2 (12๐‘ฅ + 4) ๐‘ฅ๏‚ฎ

=

4(๐‘ฅ + 1) 4(3๐‘ฅ + 1)

=

(๐‘ฅ + 1) (3๐‘ฅ + 1)

1 +1 = 2 1 3 (2) + 1

3 =2 5 2

=

๐Ÿ‘ ๐Ÿ“

25

Name: Course/Year & Section:

ASSIGNMENT no.2 Limits 1. Lim(2๐‘ฅ 2 + ๐‘ฅ + 4) ๐‘ฅโ†’ โˆ’1

= [2(๏€ญ1)2 + (๏€ญ1) + 4] = [2(1) ๏€ญ 1 + 4] = ๐Ÿ“ 2. Lim(๐‘ฆ 2 + 5 โˆ’ 1) ๐‘ฆโ†’ โˆ’2

= [(๏€ญ2)2 + 5 ๏€ญ 1] = [4 + 5 ๏€ญ 1] = ๐Ÿ– 2๐‘ก 2 + 1 3. Lim 3 ๐‘กโ†’0 ๐‘ก + 3๐‘ก โˆ’ 4 2(0)2 + 1 = (0)3 + 3(0) โˆ’ 4 = โˆ’

4. lim ๐‘กโ†’1

๐Ÿ ๐Ÿ’

(๐‘ก + 1)2 2(๐‘ก 2 + 3) (1+1)2 = 2[(1)2 + 3] =

(2)2 2(4)

=

๐Ÿ ๐Ÿ

26

3๐‘ค 2 โˆ’ 4๐‘ค + 2 5. lim ๐‘คโ†’2 ๐‘ค3 โˆ’ 5 3(2)2 โˆ’ 4(2) + 2 = (2)3 โˆ’ 5 =

12 โˆ’ 8 + 2 8โˆ’5

= ๐Ÿ 3๐‘ค 3 โˆ’ 2๐‘ค + 7 ๐‘คโ†’โˆ’1 ๐‘ค2 + 1

6. lim

=

3(โˆ’1)3 โˆ’ 2(โˆ’1) + 7 (โˆ’1)2 + 1

=

โˆ’3 + 2 + 7 1+1

= ๐Ÿ‘

๐‘ ๐‘–๐‘›2 ๐œƒ 7. lim 3 1 ๐œƒโ†’ ๐œ‹ ๐‘ก๐‘Ž๐‘› ๐œƒ 2

๐‘ ๐‘–๐‘›2 ๐œƒ = ๐‘ ๐‘–๐‘›3 ๐œƒ ๐‘๐‘œ๐‘  3 ๐œƒ ๐‘๐‘œ๐‘  3 ๐œƒ = ๐‘ ๐‘–๐‘› ๐œƒ . ๐‘ ๐‘–๐‘›3 ๐œƒ 0 = 1 2

= ๐ŸŽ

8. lim๐œ‹ ๐œƒโ†’

6

sin 2๐œƒ sin ๐œƒ tan ๐œƒ =

2 ๐‘ ๐‘–๐‘› ๐œƒ ๐‘๐‘œ๐‘  ๐œƒ 2 ๐‘๐‘œ๐‘  ๐œƒ == ๐‘ ๐‘–๐‘› ๐œƒ ๐‘ก๐‘Ž๐‘› ๐œƒ ๐‘ก๐‘Ž๐‘› ๐œƒ

2โˆš3 = 2 1 โˆš3

=

โˆš3 1 โˆš3

=๐Ÿ‘

27

๐‘ฅ2 โˆ’ 1 9. lim 2 ๐‘ฅโ†’1 ๐‘ฅ + 3๐‘ฅ โˆ’ 4 (๐‘ฅ โˆ’ 1)(๐‘ฅ + 1) = (๐‘ฅ + 4)(๐‘ฅ โˆ’ 1) =

(๐‘ฅ + 1) (๐‘ฅ + 4)

1+1 1+4 ๐Ÿ = ๐Ÿ“ =

๐‘ฅ 2 + ๐‘ฅ โˆ’ 12 10. lim 2 ๐‘ฅโ†’3 2๐‘ฅ โˆ’ 7๐‘ฅ + 3 (๐‘ฅ + 4)(๐‘ฅ โˆ’ 3) = (2๐‘ฅ โˆ’ 1)(๐‘ฅ โˆ’ 3) ๐‘ฅ+4 2๐‘ฅ โˆ’ 1 3+4 = 2(3) โˆ’ 1 =

=

๐Ÿ• ๐Ÿ“

2๐‘ฅ 2 โˆ’ ๐‘ฅ โˆ’ 3 ๐‘ฅโ†’โˆ’1 3๐‘ฅ 3 + 5๐‘ฅ + 2

11. lim

=

(๐‘ฅ + 1)(2๐‘ฅ โˆ’ 3) 3(โˆ’1)3 + 5(โˆ’1) + 2

(โˆ’1 + 1)[2(โˆ’1) โˆ’ 3] โˆ’3 โˆ’ 5 + 2 0 = โˆ’6 =

= ๐ŸŽ

28

2๐‘ฅ 3 โˆ’ 7๐‘ฅ โˆ’ 4 12. lim 2 ๐‘ฅโ†’4 ๐‘ฅ โˆ’ ๐‘ฅ โˆ’ 12 2(4)3 โˆ’ 7(4) โˆ’ 4 = (๐‘ฅ โˆ’ 4)(๐‘ฅ + 3) =

128 โˆ’ 28 โˆ’ 4 (4 โˆ’ 4)(4 โˆ’ 3)

= ๐‘ผ๐’๐’…๐’†๐’‡๐’Š๐’๐’†๐’… ๐‘ฆ3 โˆ’ ๐‘ฆ2 โˆ’ ๐‘ฆ โˆ’ 2 13. lim 3 ๐‘ฆโ†’2 2๐‘ฆ โˆ’5๐‘ฆ 2 + 5๐‘ฆ โˆ’ 6

๐‘ฆ 3 โˆ’ 13๐‘ฆ + 12 ๐‘ฆโ†’3 ๐‘ฆ 3 โˆ’ 14๐‘ฆ + 15

14. lim

2๐‘Ž3 โˆ’ 5๐‘Ž2 โˆ’ 4๐‘Ž + 12 15. lim ๐‘Žโ†’2 ๐‘Ž3 โˆ’ 12๐‘Ž + 16

29

๐‘ฅ 4 + 5๐‘ฅ + 6 16. lim 4 ๐‘ฅโ†’โˆ’2 ๐‘ฅ + 5๐‘ฅ โˆ’ 6

2๐‘ฅ 4 โˆ’ 2๐‘ฅ 3 โˆ’ ๐‘ฅ 2 + 1 ๐‘ฅโ†’1 ๐‘ฅ 4 โˆ’ ๐‘ฅ 2 โˆ’ 2๐‘ฅ + 2

17. lim

1 โˆ’ cos ๐‘ฆ ๐‘ฆโ†’0 ๐‘ ๐‘–๐‘›2 ๐‘ฆ

18. lim

๐‘ ๐‘–๐‘›2 ๐‘ฆ 19. lim ๐‘ฆโ†’๐œ‹ 1 + cos ๐‘ฆ

sin ๐‘Ž sin 2๐‘Ž ๐‘Žโ†’0 1 โˆ’ cos ๐‘Ž

20. lim

๐‘ ๐‘–๐‘›3 ๐‘Ž ๐‘Žโ†’0 sin ๐‘Ž โˆ’ tan ๐‘Ž

21. lim

30

sin ๐‘Ž2 ๐‘Žโ†’0 ๐‘Ž 2

22. lim

sin ๐‘Ž2 23. lim ๐‘Žโ†’0 ๐‘Ž

๐œƒ2 ๐œƒโ†’0 sin ๐œƒ

24 lim

๐œƒ ฮธโ†’0 ๐‘ ๐‘–๐‘›2 ๐œƒ

25. lim

sin ๐‘˜๐‘ฅ ๐‘ฅโ†’0 ๐‘ฅ

26 lim

31

27. lim ๐‘ฅ csc 3๐‘ฅ ๐‘ฅโ†’0

๐‘ฅ sin ๐‘ ๐‘–๐‘›3๐‘ฅ 3๐‘ฅ = 3 sin 3๐‘ฅ 1 = 3 =

sin ๐‘Ž๐‘ฅ ๐‘ฅโ†’0 tan ๐‘๐‘ฅ

28. lim

1 โˆ’ cos 4๐‘ฅ ๐‘ฅโ†’0 1 โˆ’ cos 2๐‘ฅ

29. lim

2๐‘ฆ โˆ’ ๐œ‹ ๐œ‹ cos ๐‘ฆ

30. lim 1 ๐‘ฆโ†’ 2

31. lim 1

๐‘ฆโ†’ ๐œ‹ 2

1 (๐‘ฆ โˆ’ 2 ๐œ‹)2 1 โˆ’ sin ๐‘ฆ

32

1

32. lim

๐‘ฅโ†’1

33. lim

๐‘ฅโ†’1

(1 โˆ’ ๐‘ฅยฒ)2 1

(1 โˆ’ ๐‘ฅยณ)2

โˆš1 โˆ’ ๐‘ฅ 3 โˆš1 โˆ’ ๐‘ฅ 2

33

CONTINUITY A function ๐‘“(๐‘ฅ) is said to be continuous at ๐‘ฅ = ๐‘Ž ๐ผ๐‘“ ๐‘“(๐‘Ž) = ๐‘’๐‘ฅ๐‘–๐‘ ๐‘ก

๐น(๐‘ฅ) = โˆš๐‘ฅ

๐‘ฅ= 0

Lim f(x) exist

๐น (0) = โˆš0 = 0

๐‘ฅ๏‚ฎ๐‘Ž

Lim โˆš๐‘ฅ = 0 does not exist ๐‘ฅ๏‚ฎ0

Lim f(x) = f (a) ๐‘ฅ๏‚ฎ๐‘Ž

๐‘“ (๐‘ฅ) = โˆš๐‘ฅ right hand

continuity Ex. At x = 2; f (x) = x2 + 1 ๐‘“ (2) = 22 + 1 Lim x2 + 1 = 22 + 1 X๏‚ฎ2

=5

Missing Point Discontinuities

Consider a function f(x) which is not defined when x = a but such that Lim f (x) exist Lim f(x) = L ๐‘ฅ๏‚ฎ๐‘Ž 6 (๐‘ฅ) = ๐‘“ (๐‘ฅ)

๐‘ฅ = ๐‘Ž

6 (๐‘ฅ) = 1

๐‘ฅ = ๐‘Ž

๐ฟ๐‘–๐‘š

๐‘ฅ 3 โˆ’ 9๐‘ฅ + 10 ๐‘ฅโˆ’2

๐‘ฅ๏‚ฎ2 (๐‘ฅ โˆ’ 2)(๐‘ฅ 2 + 2๐‘ฅ โˆ’ 5) = (๐‘ฅ โˆ’ 2)

๐ฟ๐‘–๐‘š ๐‘ฅ2 + 2๐‘ฅ โˆ’ 5 ๐‘ฅ๏‚ฎ2

= 22 + 2(2) โ€“ 5 = 4 + 4โ€“ 5 = ๐Ÿ‘

34

Finite Jump

Infinite Discontinuity

๐ฟ๐‘–๐‘š๐‘“ (๐‘ฅ) = ๐ฟ1

๐‘ฆ =

๐‘ฅ๏‚ฎ๐‘Žโˆ’

๐‘ฅ = โˆ’ 2| โˆ’ 1 | 0 | 1 | 2 | 3 | 4

๐ฟ๐‘–๐‘š ๐‘“ (๐‘ฅ) = ๐ฟ2

๐‘ฆ =

1 (๐‘ฅ โˆ’ 1)2 1 1 1 1 | | 1 |๐‘ข๐‘›๐‘‘|1| | 9 4 4 9

๐‘ฅ๏‚ฎ๐‘Ž+ Function with argument approaching infinity ๐ฟ๐‘–๐‘š

๐‘ฅ2 โˆ’ 1 ๐‘ฅ2 + 1

๐‘ฅ๏‚ฎ๏‚ฅ

๏‚ฅ2 โˆ’ 2 ๏‚ฅ = 2 = = ๏‚ฅ ๏‚ฅ + 1 ๏‚ฅ

Rational Algebraic Functions

Theorem 6: a polynomial is continuous for all values of x.

Theorem 7: a rational algebraic function is continuous except for those values of x which the denominator vanishes. ๐‘ฅ2 + 3 1. ) 2 ๏‚ฎ ๐‘ฅ 2 โˆ’ 16 = 0 ๏‚ฎ โˆš๐‘ฅ 2 = โˆš16 ๏‚ฎ ๐’™ = ยฑ ๐Ÿ’ ๐‘ฅ โˆ’ 16

2. )

3๐‘ฅ + 2 ๏‚ฎ ๐‘ฅ2 โ€“ 6๐‘ฅ + 9 = 0 ๏‚ฎ (๐‘ฅ โ€“ 3)2 = 0 ๏‚ฎ ๐’™ = ๐Ÿ‘ ๐‘ฅ 2 โˆ’ 6๐‘ฅ + 9

๐‘ฅ 2 โˆ’ 3๐‘ฅ 3. ) 2 ๏‚ฎ ๐‘ฅ2 + 9 ๏‚ฎ ๐‘ฅ = โˆšโˆ’9 ๏‚ฎ 3โˆšโˆ’1 ๏‚ฎ ๐Ÿ‘๏ฉ ๐‘ฅ + 9

35

4. )

๐‘ฅ+3 ๏‚ฎ ๐‘ฅ โˆ’ ๐‘ฅ+2

4๐‘ฅ 2

=

โˆ’๐‘ ยฑ โˆš๐‘ 2 โˆ’ 4๐‘Ž๐‘ 1 ยฑ โˆš12 โˆ’ 4(4)(7) ๐Ÿ ยฑ โˆšโˆ’๐Ÿ‘๐Ÿ ๏‚ฎ ๏‚ฎ 2๐‘Ž 2(4) ๐Ÿ–

๐‘ฅ 2 โˆ’ 3๐‘ฅ 5. ) 3 ๏‚ฎ ๐‘ฅ3 + 2๐‘ฅ2 + 5๐‘ฅ = 0 ๏‚ฎ ๐‘ฅ(๐‘ฅ 2 + 2๐‘ฅ + 5) ๐‘ฅ + 2๐‘ฅ 2 + 5๐‘ฅ = 0 ๏‚ฎ

โˆ’2 ยฑ โˆš22 โˆ’ 4(1)(5) 2

๏‚ฎ

โˆ’๐Ÿ ยฑ โˆšโˆ’๐Ÿ๐Ÿ” ๐Ÿ

Intermediate Value Function Theorem

The function f (x) is said to be continuous over the closed interval a โ‰ค ๐‘ฅ โ‰ฅ b if f(a) is continuous at every pt a โ‰ค ๐‘ฅ โ‰ฅ b and f(x) has right hand continuity x = a left hand continuity at x = b.

LEMMA 1: If f(x) is continuous over the closed interval a โ‰ค ๐‘ฅ โ‰ฅ b; if f(a) < 0 and f(b) > 0, there exist a number โ€œcโ€ in the open interval a < c < b for which f(c) = 0

Theorem 8: if the single value function(x) is continuous over the closed interval a โ‰ค ๐’™ โ‰ฅ b then in that interval f(x) takes on every value between f(a) and f(b).

Theorem 9: if f(x) is continuous over the closed interval a โ‰ค ๐’™ โ‰ฅ b if (x) takes on a greatest value and the least value in the closed interval

36

DERIVATIVE ๏‚ฎ rate of change

๏‚ฎ ๐‘กโ„Ž๐‘’ ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘œ๐‘“ โ€œ๐‘ฆโ€ ๐‘ค๐‘–๐‘กโ„Ž ๐‘Ÿ๐‘’๐‘ ๐‘๐‘’๐‘๐‘ก ๐‘ก๐‘œ โ€œ๐‘ฅโ€ ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘™๐‘–๐‘š๐‘–๐‘ก ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ

โˆ†๐‘ฆ ๐‘คโ„Ž๐‘’๐‘› โˆ†๐‘ฅ โˆ†๐‘ฅ

๐‘Ž๐‘๐‘๐‘Ÿ๐‘œ๐‘Ž๐‘โ„Ž๐‘’๐‘  ๐‘ง๐‘’๐‘Ÿ๐‘œ ๐‘‘๐‘ฆ ๐‘“(๐‘ฅ + โˆ†๐‘ฅ) โˆ’ ๐‘“(๐‘ฅ) = ๐ฟ๐‘–๐‘š ๐‘‘๐‘ฅ โˆ†๐‘ฅ

Steps in to determine the derivative of a function 1. Replace x by (๐‘ฅ + โˆ†๐‘ฅ) ๐‘Ž๐‘›๐‘‘ ๐‘ฆ ๐‘๐‘ฆ (๐‘ฆ + โˆ†๐‘ฆ) 2. By subtraction, eliminate y b/n, thus obtaining a formula for โˆ†๐‘ฆ in terms of x and โˆ†x 3. By some suitable transformation throw the right member into a form which contains โˆ†๐‘ฅ explicity as factor 4. Divide through by โˆ†x 5. Determine the limit as โˆ†x approaches zero

Examples: 1. ๐‘ฆ = ๐‘ฅ 3 โ€“ 2๐‘ฅ ๐‘ฆ + โˆ†๐‘ฆ = (๐‘ฅ + โˆ†๐‘ฅ)3 โˆ’ 2 (๐‘ฅ + โˆ†๐‘ฅ) โˆ†๐‘ฆ = (๐‘ฅ + โˆ†๐‘ฅ)3 โ€“ 2 (๐‘ฅ + โˆ†๐‘ฅ) โ€“ ๐‘ฆ โˆ†๐‘ฆ = ๐‘ฅ 3 + 3๐‘ฅ 2 (โˆ†๐‘ฅ) + 3๐‘ฅ (โˆ†๐‘ฅ)2 + (โˆ†๐‘ฅ)3 โ€“ 2๐‘ฅ ๏€ญ 2(โˆ†๐‘ฅ) โ€“ (๐‘ฅ 2 โ€“ 2๐‘ฅ) โˆ†๐‘ฆ = 3๐‘ฅ 2 (โˆ†๐‘ฅ) + 3๐‘ฅ (โˆ†๐‘ฅ)2 + (โˆ†๐‘ฅ)3 ๏€ญ 2(โˆ†๐‘ฅ) โˆ†๐‘ฆ = โˆ†๐‘ฅ [3๐‘ฅ 2 + 3๐‘ฅ (โˆ†๐‘ฅ) + (โˆ†๐‘ฅ)3 ๏€ญ 2] โˆ†๐‘ฆ = 3๐‘ฅ 2 + 3๐‘ฅ (โˆ†๐‘ฅ) + (โˆ†๐‘ฅ) 2 ๏€ญ 2 โˆ†๐‘ฅ โˆ†๐‘ฆ = 3๐‘ฅ 2 ๏€ญ 2 โˆ†๐‘ฅ 2. ๐‘ฅ =

1 ๐‘ก

37

๐‘ฅ + โˆ†๐‘ฅ =

1 ๐‘ก + โˆ†๐‘ก

1 โˆ’ ๐‘ฅ ๐‘ก + โˆ†๐‘ก 1 1 โˆ†๐‘ฅ = โˆ’ ๐‘ก + โˆ†๐‘ก ๐‘ก ๐‘ก โˆ’ (๐‘ก + โˆ†๐‘ก) โˆ†๐‘ฅ = (๐‘ก โˆ’ โˆ†๐‘ก) ๐‘ก โˆ†๐‘ฅ =

โˆ†๐‘ฅ = โˆ†๐‘ฅ =

๐‘ก โˆ’ ๐‘ก โˆ’ โˆ†๐‘ก (๐‘ก)2 + (โˆ†๐‘ก)๐‘ก ๐‘ก2

โˆ†๐‘ก + ๐‘ก (โˆ†๐‘ก)

โˆ†๐‘ฅ โˆ’1 = 2 โˆ†๐‘ก ๐‘ก + ๐‘ก (โˆ†๐‘ก) โˆ†๐‘ฅ โˆ’1 = 2 โˆ†๐‘ก ๐‘ก 3.

๐‘ฆ = โˆš๐‘ฅ

๐‘ฆ + โˆ†๐‘ฆ = โˆš๐‘ฅ + โˆ†๐‘ฅ โˆ’๐‘ฆ + (๐‘ฆ + โˆ†๐‘ฆ) = โˆš๐‘ฅ + โˆ†๐‘ฆ โˆ’ ๐‘ฆ โˆ†๐‘ฆ = โˆš๐‘ฅ + โˆ†๐‘ฅ โˆ’ โˆš๐‘ฅ โˆ†๐‘ฆ = (โˆš๐‘ฅ + โˆ†๐‘ฅ โˆ’ โˆš๐‘ฅ ) . โˆš๐‘ฅ + โˆ†๐‘ฅ + โˆš๐‘ฅ โˆš๐‘ฅ + โˆ†๐‘ฅ + โˆš๐‘ฅ โˆ†๐‘ฆ =

โˆ†๐‘ฅ โˆš๐‘ฅ + โˆ†๐‘ฅ + โˆš๐‘ฅ 1

โˆ†๐‘ฆ = โˆ†๐‘ฅ โˆš๐‘ฅ + โˆ†๐‘ฅ + โˆš๐‘ฅ โˆ†๐‘ฅ โ†’ 0 โˆ†๐‘ฆ 1 = โˆ†๐‘ฅ 2โˆš๐‘ฅ

38

4. ๐‘ฆ = ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ฆ + โˆ†๐‘ฆ = ๐‘ ๐‘–๐‘› (๐‘ฅ + โˆ†๐‘ฅ) โˆ’๐‘ฆ + (๐‘ฆ + โˆ†๐‘ฆ) = ๐‘ ๐‘–๐‘› (๐‘ฅ + โˆ†๐‘ฅ) โ€“ ๐‘ฆ โˆ†๐‘ฆ = ๐‘ ๐‘–๐‘› (๐‘ฅ + โˆ†๐‘ฅ) โˆ’ ๐‘ ๐‘–๐‘› ๐‘ฅ โˆ†๐‘ฆ = ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘๐‘œ๐‘  โˆ†๐‘ฅ + ๐‘๐‘œ๐‘  ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ โ€“ ๐‘ ๐‘–๐‘› ๐‘ฅ โˆ†๐‘ฆ = ๐‘๐‘œ๐‘  ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ โ€“ ๐‘ ๐‘–๐‘› ๐‘ฅ (1 โ€“ ๐‘๐‘œ๐‘  โˆ†๐‘ฅ) โˆ†๐‘ฅ ๐‘๐‘œ๐‘  ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ โˆ’ 2๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ ๐‘–๐‘›2 2 โˆ†๐‘ฆ = โˆ†๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ ๐‘๐‘œ๐‘  ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ โˆ†๐‘ฅ = โ€“ ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ ๐‘–๐‘›2 โˆ†๐‘ฅ โˆ†๐‘ฅ 2 โˆ†๐‘ฅ ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ ๐‘–๐‘›2 2 โˆ†๐‘ฆ = ๐‘๐‘œ๐‘  ๐‘ฅ โ€“ โˆ†๐‘ฅ โˆ†๐‘ฅ 2 โˆ†๐‘ฆ โˆ†๐‘ฅ = ๐‘๐‘œ๐‘  ๐‘ฅ โ€“ ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ 2 โˆ†๐‘ฅ โ†’ 0 โˆ†๐‘ฆ = ๐‘๐‘œ๐‘  ๐‘ฅ โˆ†๐‘ฅ 5. ๐‘ฆ = ๐‘๐‘œ๐‘  ๐‘ฅ ๐‘ฆ + โˆ†๐‘ฆ = ๐‘๐‘œ๐‘  (๐‘ฅ + โˆ†๐‘ฅ) โˆ’๐‘ฆ + (๐‘ฆ + โˆ†๐‘ฆ) = ๐‘๐‘œ๐‘  (๐‘ฅ + โˆ†๐‘ฅ) โ€“ ๐‘ฆ โˆ†๐‘ฆ = ๐‘๐‘œ๐‘  (๐‘ฅ + โˆ†๐‘ฅ) โ€“ ๐‘๐‘œ๐‘ ๐‘ฅ

โˆ†๐‘ฅ โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ ๐‘ ๐‘–๐‘›2 2 โˆ†๐‘ฆ ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ = โ€“ โˆ†๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฅ 2

โˆ†๐‘ฆ

โˆ†๐‘ฆ โˆ†๐‘ฅ = โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ ๐‘ ๐‘–๐‘› โ€“ ๐‘ ๐‘–๐‘› ๐‘ฅ โˆ†๐‘ฅ 2

= ๐‘๐‘œ๐‘  ๐‘ฅ ๐‘๐‘œ๐‘  โˆ†๐‘ฅ โ€“ ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ โ€“ ๐‘๐‘œ๐‘  ๐‘ฅ

โˆ†๐‘ฅ ๏‚ฎ 0

โˆ†๐‘ฆ

โˆ†๐‘ฆ = โˆ’ ๐‘๐‘œ๐‘ ๐‘ฅ (0) โ€“ ๐‘ ๐‘–๐‘› ๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ = โˆ’ ๐‘ ๐‘–๐‘› ๐‘ฅ โˆ†๐‘ฅ

= โ€“ ๐‘๐‘œ๐‘  ๐‘ฅ (1 โ€“ ๐‘๐‘œ๐‘  โˆ†๐‘ฅ) โ€“ ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ

โˆ†๐‘ฆ โˆ’ ๐‘๐‘œ๐‘  ๐‘ฅ (2 ๐‘ ๐‘–๐‘›2 โˆ†๐‘ฅ) โˆ’ ๐‘ ๐‘–๐‘› ๐‘ฅ ๐‘ ๐‘–๐‘› โˆ†๐‘ฅ = โˆ†๐‘ฅ 2 โˆ’๐‘๐‘œ๐‘ ๐‘ฅ(1 โˆ’ ๐‘๐‘œ๐‘ โˆ†๐‘ฅ) โˆ’ ๐‘ ๐‘–๐‘›๐‘ฅ๐‘ ๐‘–๐‘›โˆ†๐‘ฅ โˆ†๐‘ฆ = โˆ†๐‘ฅ

39

Name: Course/Year & Section:

ASSIGNMENT no.3: DERIVATIVES 1. ) ๐‘ฅ = ๐‘ฆ 4 โˆ’ 2๐‘ฆ 3

1 2. ) ๐‘ฆ = (3๐‘ฅ 2 + 1)ยฒ 2

40

3. )๐‘ฆ =

1 ๐‘ฅ+7

4. ) ๐‘ฆ =

2๐‘ฅ ๐‘ฅโˆ’1

41

5. ) ๐‘ฆ = 2 โˆ’ 3๐‘ฅ โˆ’

6. ) ๐‘ฅ =

1 ๐‘ฅ

1 ๐‘ก2

42

7. ) ๐‘ฆ = โˆš2 โˆ’ 3๐‘ฅ

8. ) ๐‘ฆ =

1 โˆš๐‘ฅ

43

9. ) ๐‘ฆ =

1 โˆš๐‘ฅ โˆ’ 2

10. ) ๐‘ฆ = ๐‘ฅโˆš๐‘ฅ โˆ’ 1

44

Tangent to Plane Curves 1. ) ๐‘ฆ = 2โˆ’ ๐‘ฅ 2 (3, โˆ’7) ๐‘ฆ + ๏„๐‘ฆ = 2 โ€“ (๐‘ฅ + ๏„๐‘ฅ)2

๏„๐‘ฆ = 2 โˆ’ (๐‘ฅ 2 + 2๐‘ฅ๏„๐‘ฅ + (๏„๐‘ฅ) 2) ๏€ญ(2 โ€“ ๐‘ฅ2) ๏„๐‘ฆ = 2 โˆ’ ๐‘ฅ 2 โˆ’ 2 ๐‘ฅ๏„๐‘ฅ โˆ’ (๏„๐‘ฅ)2 โˆ’ 2 + ๐‘ฅ 2 ๏„๐‘ฆ = ๏„๐‘ฅ(โˆ’2๐‘ฅ โˆ’ ๏„๐‘ฅ) ๏„๐‘ฆ = โˆ’2๐‘ฅ โˆ’ ๏„๐‘ฅ ๏„๐‘ฅ ๏„๐‘ฅ = 0 ๐‘‘๐‘ฆ = โˆ’2๐‘ฅ ๐‘‘๐‘ฅ ๐‘š = โˆ’6 ๐‘ฆ โˆ’ ๐‘ฆ1 = ๐‘š(๐‘ฅ โˆ’ ๐‘ฅ1 ) ๐‘ฆ ๏€ญ ( ๏€ญ7) = โˆ’6(๐‘ฅ โˆ’ 3) ๐‘ฆ + 7 = โˆ’6๐‘ฅ + 18 ๐‘ฆ = โˆ’6๐‘ฅ + 11 ๏‚ฎ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก

2. ) ๐‘ฆ 2 = 3๐‘ฅ + 1 (

โˆ’1 , 0) 3

(๐‘ฆ + ๏„๐‘ฆ)2 = 3(๐‘ฅ + ๏„๐‘ฅ) + 1 ๐‘ฆ 2 + 2๐‘ฆ๏„๐‘ฆ + (๏„๐‘ฆ)2 = 3๐‘ฅ + 3๏„๐‘ฅ + 1 2๐‘ฆ๏„๐‘ฆ + (๏„๐‘ฅ)2 = 3๐‘ฅ + 3๏„๐‘ฅ + 1 โ€“ (3๐‘ฅ + 1) 2๐‘ฆ๏„๐‘ฆ + (๏„๐‘ฆ)2 = 3๏„๐‘ฅ

๏„๐‘ฆ(2๐‘ฆ + ๏„๐‘ฆ) = 3๏„๐‘ฅ ๏„๐‘ฆ 2 3 โˆ’1 = = ( , 0) ๏„๐‘ฅ 2๐‘ฆ + ๏„๐‘ฆ 2๐‘ฆ 3 ๐‘ฆ๏‚ฎ 0

๏„๐‘ฆ 3 = ๏„๐‘ฅ 2(0) ๏„๐‘ฆ = ๐’–๐’๐’…๐’†๐’‡๐’Š๐’๐’†๐’… ๏„๐‘ฅ 45

3.) Find how fast a.) the circumference b.) the area of a circle increases when the radius increases. ๐‘Ž. )๐‘ = 2๏ฐ๐‘Ÿ

๐‘. ) ๐ด = ๏ฐ๐‘Ÿ2

๐‘ + ๏„๐‘ = 2๏ฐ(๐‘Ÿ + ๏„๐‘Ÿ)

๐‘Ž + ๏„๐‘Ž = ๏ฐ(๐‘Ÿ + ๏„๐‘Ÿ)2

๏„๐‘ = 2๏ฐ๐‘Ÿ + 2๏ฐ๏„๐‘Ÿ โ€“ ๐ถ

๏„๐‘Ž

= ๏ฐ[๐‘Ÿ2 + 2๐‘Ÿ๏„๐‘Ÿ + (๏„๐‘Ÿ)2] โˆ’ ๐ด

๏„๐‘ = 2๏ฐ๐‘Ÿ + 2๏ฐ๏„๐‘Ÿ โˆ’ 2๏ฐ๐‘Ÿ

๏„๐‘Ž

= ๏ฐ๐‘Ÿ2 + 2๏ฐ๐‘Ÿ๏„๐‘Ÿ + ๏ฐ(๏„๐‘Ÿ)2 โˆ’ ๏ฐ๐‘Ÿ2

๏„๐‘ = 2๏ฐ๏„๐‘Ÿ

๏„๐‘Ž = 2๏ฐ๐‘Ÿ + ๏ฐ๏„๐‘Ÿ ๏„๐‘Ÿ

๏„๐‘Ž = 2๏ฐ๐‘Ÿ ๏„๐‘Ÿ

๏„๐‘Ÿ๏‚ฎ 0 ๏„๐‘ = 2๏ฐ ๏„๐‘Ÿ

4.) The dimension of a box , ๐‘, ๐‘ + 1, ๐‘ + 4.Find how fast the total surface area A increases as b increases. ๐ด = 2(๐‘) (๐‘ + 1) + 2๐‘ (๐‘ + 4) + 2 (๐‘ + 1) (๐‘ + 4) ๐ด = 2๐‘2 + 2๐‘ + 2๐‘2 + 8๐‘ + 2๐‘ + 10๐‘ + 8

b

b+4 b+1

๐ด = 6๐‘2 + 20๐‘ + 8 ๐ด + ๏„๐ด = 6(๐‘ + ๏„๐‘)2 + 20 (๐‘ + ๏„๐‘) + 8

๏„๐ด = 6(๐‘2 + 2๐‘๏„๐‘ + (๏„๐‘)2 + 20๐‘ + 20๏„๐‘ + 8 โ€“ (6๐‘2 + 20๐‘ + 8) ๏„๐ด = (6๐‘2 + 12๐‘๏„๐‘ + 6(๏„๐‘) 2 + 20๐‘ + 20๏„๐‘ + 8 โ€“ 6๐‘2 โ€“ 20๐‘ โ€“ 8 ๏„๐ด = 12๐‘๏„๐‘ + 6(๏„๐‘) 2 + 20๏„๐‘ ๏„๐ด = ๏„๐‘(12๐‘ + 6๏„๐‘ + 20) ๏„๐ด = 12๐‘ + 6๏„๐‘ + 20 ๏„๐ต ๏„๐‘๏‚ฎ0 ๏„๐ด = 12๐‘ + 20 ๏„๐ต

46

5. ) ๐‘Ž. )๐ด = 6๐‘  2 ๐ด + ๏„๐ด = 6(๐‘  + ๏„๐‘ )2

๏„๐ด = 6[๐‘ 2 + 2๐‘ (๏„๐‘ ) + (๏„๐‘ )2] ๏€ญ ๐ด ๏„๐ด = 6๐‘ 2 + 12๐‘ (๏„๐‘ ) + 6(๏„๐‘ )2 ๏€ญ 6๐‘ 2 ๏„๐ด = ๏„๐‘ [12๐‘  + 6(๏„๐‘ )] ๏„๐‘  = 0 ๏„๐ด = 12๐‘  ๏„๐‘  ๏„๐ด ๏„๐‘  = 12๐‘  ๏„๐‘ก ๏„๐‘ก

= 12(6)(2)

๐‘š ๐‘š2 = 144 ๐‘  ๐‘ 

๐‘) ๐‘ฃ = ๐‘  3 ๐‘‘๐‘ฃ ๐‘‘๐‘  = 3๐‘  2 ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฃ = 3(6)2 (2) ๐‘‘๐‘ก ๐‘‘๐‘ฃ = 63 ๐‘‘๐‘ก ๐‘‘๐‘ฃ ๐‘š3 = 216 ๐‘‘๐‘ก ๐‘  6. ) ๐‘Ž. )๐ด = 4๐œ‹๐‘Ÿ 2 ๐ด + ๏„๐ด = 4๏ฐ(๐‘Ÿ + ๏„๐‘Ÿ)2

๏„๐ด = 4๏ฐ[๐‘Ÿ 2 + 2๐‘Ÿ(๏„๐‘Ÿ) + (๏„๐‘Ÿ)2 ] ๏€ญ ๐ด ๏„๐ด = 4๏ฐ๐‘Ÿ 2 + 8๏ฐ๐‘Ÿ(๏„๐‘Ÿ) + 4๏ฐ(๏„๐‘Ÿ)2 ] ๏€ญ 4๏ฐ๐‘Ÿ 2 ๏„๐ด = ๏„๐‘Ÿ[8๏ฐ๐‘Ÿ + (๏„๐‘Ÿ)] ๏„๐‘Ÿ = 0 ๏„๐ด = 8๐œ‹๐‘Ÿ ๏„๐‘Ÿ

47

4๐œ‹๐‘Ÿ 3 ๐‘)๐‘ฃ = 3 4๐œ‹ ๏„๐‘ฃ + ๐‘ฃ = (๐‘Ÿ + ๏„๐‘Ÿ)3 3 4๐œ‹ 3 ๏„๐‘ฃ = (๐‘Ÿ + 3(๏„๐‘Ÿ)๐‘Ÿ 2 + 3๐‘Ÿ(๏„๐‘Ÿ)2 + (๏„๐‘Ÿ)3 ) โˆ’ ๐‘ฃ 3 4๐œ‹๐‘Ÿ 3 4๐œ‹(๏„๐‘Ÿ)3 2 2 ๏„๐‘ฃ = + 4๐œ‹(๏„๐‘Ÿ)๐‘Ÿ + 4๐œ‹๐‘Ÿ(๏„๐‘Ÿ) + 3 3 ๏„๐‘ฃ ๏„๐‘Ÿ 4๐œ‹ = [4๐œ‹๐‘Ÿ 2 + 4๐œ‹(๏„๐‘Ÿ)๐‘Ÿ + (๏„๐‘Ÿ)2 ] ๏„๐‘ก ๏„๐‘ก 3

๏„๐‘Ÿ = 0 ๏„๐‘ฃ ๏„๐‘Ÿ [4๐œ‹๐‘Ÿ 2 ] = ๏„๐‘ก ๏„๐‘ก ๏„๐‘ฃ ๐‘š = (2 )(4๐œ‹)(6๐‘š)2 ๏„๐‘ก ๐‘  ๏„๐‘ฃ ๐‘š3 = 288๐œ‹ ๏„๐‘ก ๐‘  ๐‘. ) ๐‘ฆ = 3 + 4๐‘ฅ๏€ญ๐‘ฅ 2 ๏„๐‘ฆ + ๐‘ฆ = 3 + 4(๏„๐‘ฅ + ๐‘ฅ) โˆ’ (๏„๐‘ฅ + ๐‘ฅ)2 ๏„๐‘ฆ = 3 + 4๏„๐‘ฅ + 4๐‘ฅ โˆ’ (๏„๐‘ฅ)2 โˆ’ 2๐‘ฅ๏„๐‘ฅ โˆ’ ๐‘ฅ 2 โˆ’ ๐‘ฆ ๏„๐‘ฆ = 3 + 4๏„๐‘ฅ + 4๐‘ฅ โˆ’ (๏„๐‘ฅ)2 โˆ’ 2๐‘ฅ๏„๐‘ฅ โˆ’ ๐‘ฅ 2 โˆ’ (3 + 4๐‘ฅ โˆ’ ๐‘ฅ2) ๏„๐‘ฆ = 4๏„๐‘ฅ โˆ’ (๏„๐‘ฅ)2 โˆ’ 2๐‘ฅ๏„๐‘ฅ ๏„๐‘ฆ = ๏„๐‘ฅ(4๏„๐‘ฅ โˆ’ 2๐‘ฅ) ๏„๐‘ฆ = 4 โˆ’ ๏„๐‘ฅ โˆ’ 2๐‘ฅ ๏„๐‘ฅ ๏„๐‘ฅ๏‚ฎ0 ๐’=

๏„๐’š = ๐Ÿ’ โˆ’ ๐Ÿ๐’™ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๏„๐’™

๐‘ = 4 โˆ’ 2๐‘ฅ

๏„๐‘ง + ๐‘ง = 4 โˆ’ 2(๏„๐‘ฅ + ๐‘ฅ) ๏„๐‘ง = 4 โˆ’ 2๏„๐‘ฅ โˆ’ 2๐‘ฅ โˆ’ ๐‘ง ๏„๐‘ง = 4 โˆ’ 2๏„๐‘ฅ โˆ’ 2๐‘ฅ โˆ’ (4 โˆ’ 2๐‘ฅ) ๏„๐‘ง = โˆ’2๏„๐‘ฅ ๏„๐’› = โˆ’๐Ÿ ๏„๐’™

๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘ ๐‘‘๐‘’๐‘Ÿ๐‘–๐‘ฃ๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ 48

๐‘ฆ = 3๐‘ฅ 2 โˆ’ 2๐‘ฅ(2,8) ๐‘ฆ + ๏„๐‘ฆ = 3(๏„๐‘ฅ + ๐‘ฅ)2 โˆ’ 2(๏„๐‘ฅ + ๐‘ฅ)

๏„๐‘ฆ = 3((๏„๐‘ฅ)2 + 2๐‘ฅ๏„๐‘ฅ + ๐‘ฅ 2 ) โˆ’ 2๏„๐‘ฅ โˆ’ 2๐‘ฅ โˆ’ ๐‘ฆ ๏„๐‘ฆ = 3(๏„๐‘ฅ)2 + 6๐‘ฅ๏„๐‘ฅ + 3๐‘ฅ 2 โˆ’ 2๏„๐‘ฅ โˆ’ 2๐‘ฅ โˆ’ (3๐‘ฅ2 โˆ’ 2๐‘ฅ) ๏„๐‘ฆ = 3(๏„๐‘ฅ)2 + 6๐‘ฅ๏„๐‘ฅ โˆ’ 2๏„๐‘ฅ ๏„๐‘ฆ = ๏„๐‘ฅ(3๏„๐‘ฅ + 6๐‘ฅ โˆ’ 2)

๏„๐‘ฆ = 3๏„๐‘ฅ + 6๐‘ฅ โˆ’ 2 ๏„๐‘ฅ ๏„๐‘ฅ๏‚ฎ0

๏„๐‘ฆ = 6(2) โˆ’ 2 (2,8) ๏„๐‘ฅ ๏„๐‘ฆ = 12 โˆ’ 2 ๏„๐‘ฅ ๏„๐‘ฆ = 10 ๏„๐‘ฅ 7.) Find the vertex of the parabola 4๐‘ฅ 2 + 2๐‘ฅ โˆ’ 6๐‘ฆ + 100 = 0 4(๏„๐‘ฅ + ๐‘ฅ)2 + 2๐‘ฅ๏„๐‘ฅ + ๐‘ฅ2 + 2๏„๐‘ฅ + 2๐‘ฅ โˆ’ 6๏„๐‘ฆ โˆ’ 6๐‘ฆ + 100 = 0 ๐‘ฆ =

4๐‘ฅ 2 + 2๐‘ฅ + 100 6

2๐‘ฅ 2 ๐‘ฅ 50 + + 3 3 3 2 1 50 ๏„๐‘ฆ + ๐‘ฆ = (๏„๐‘ฅ + ๐‘ฅ)2 + (๏„๐‘ฅ + ๐‘ฅ) + 3 3 3 2 ๏„๐‘ฅ ๐‘ฅ 50 ๏„๐‘ฆ = ((๏„๐‘ฅ)2 + 2๐‘ฅ๏„๐‘ฅ + ๐‘ฅ2) + + + โˆ’๐‘ฆ 3 3 3 3 ๐‘ฆ =

๏„๐‘ฆ =

2(๏„๐‘ฅ)2 4๐‘ฅ๏„๐‘ฅ 2๐‘ฅ 2 ๏„๐‘ฅ ๐‘ฅ 50 2๐‘ฅ 2 ๐‘ฅ 50 + + + + + โˆ’( + + ) 3 3 3 3 3 3 3 3 3

2(๏„๐‘ฅ)2 4๐‘ฅ๏„๐‘ฅ ๏„๐‘ฅ + + 3 3 3 2๏„๐‘ฅ 4๐‘ฅ 1 = ๏„๐‘ฅ [ + + ] 3 3 3 =

49

๐›ฅ๐‘ฆ 2๏„๐‘ฅ 4๐‘ฅ 1 = + + ๐›ฅ๐‘ฅ 3 3 3

๏„๐‘ฅ = 0 4๐‘ฅ 1 + 3 3 4๐‘ฅ โˆ’1 = 3 3 0=

12๐‘ฅ = โˆ’3

๐‘ฅ = โˆ’

1 4

โˆ’1 2 โˆ’1 4 ( ) + 2 ( ) โ€“ 6๐‘ฆ = โ€“ 100 4 4 4 1 โˆ’ โ€“ 6๐‘ฆ = โ€“ 100 16 2 1 1 โˆ’ โ€“ 6๐‘ฆ = โ€“ 100 4 2 โˆ’400 + 1 โ€“ 6๐‘ฆ = 4(โˆ’6) ๐‘ฆ=

โˆ’399 4(+6)

๐‘‰ (โˆ’

1 133 ) 4, 8

50

8.) Find the points where the tangent is parallel to the x-axis ๐‘ฆ = 12๐‘ฅ 2 + 6๐‘ฅ โˆ’ 18 ๐‘ฆ โˆ’ ๏„๐‘ฆ = 12(๏„๐‘ฅ + ๐‘ฅ)2 + 6(๏„๐‘ฅ + ๐‘ฅ) โˆ’ 18

๏„๐‘ฆ = 12((๏„๐‘ฅ)2 + 2๐‘ฅ๏„๐‘ฅ + ๐‘ฅ 2 ) + 6๏„๐‘ฅ + 6๐‘ฅ โˆ’ 18 โˆ’ ๐‘ฆ ๏„๐‘ฆ = 12(๏„๐‘ฅ)2 + 24๐‘ฅ๏„๐‘ฅ + 12๐‘ฅ 2 + 6๏„๐‘ฅ + 6๐‘ฅ โˆ’ 18 โˆ’ ๐‘ฆ ๏„๐‘ฆ = ๏„๐‘ฅ(12๏„๐‘ฅ + 24๐‘ฅ + 6) ๏„๐‘ฅ = 0 ๏„๐‘ฆ = 24๐‘ฅ + 6 ๏„๐‘ฅ 24๐‘ฅ + 6 = 0 โˆ’6 24 โˆ’1 ๐‘ฅ= 4 ๐‘ฅ =

โˆ’1 2 โˆ’1 ๐‘ฆ = 12 ( ) + 6 ( ) โˆ’ 18 4 4 12 3 = โˆ’ โ€“ 18 6 2 12 โˆ’ 24 โˆ’ 18 (16) = 16 โˆ’12 โˆ’ 288 = 16 โˆ’300 = 16 โˆ’150 = 8 โˆ’75 = 4 โˆ’1 โˆ’75 , 4 4

51

Derivative of Constant ๐‘ฆ = 7๐‘ฅ 0 7(0)๐‘ฅ โˆ’1 0 General Power Formula ๐‘ฆ = ๐‘๐‘ฅ ๐‘› ๐๐ฒ = ๐ฒ โ€ฒ = ๐œ๐ง(๐ฑ)๐งโˆ’๐Ÿ ๐๐ฑ Derivative of Sum ๐’…(๐’– + ๐’—) =

๐’…๐’– ๐’…๐’— + ๐’…๐’™ ๐’…๐’™

1. ๐‘ฆ = 2๐‘ฅ 3 โˆ’ 7๐‘ฅ + 1 ๐’…๐’š = (๐Ÿ”๐’™๐Ÿ โˆ’ ๐Ÿ•) ๐’…๐’™ 2. ๐‘ฆ = 3๐‘ฅ โˆ’1 โˆ’ 4๐‘ฅ โˆ’2 ๐‘‘๐‘ฆ = 3(โˆ’1)x โˆ’2 โˆ’ 4(โˆ’2)๐‘ฅ โˆ’3 ๐‘‘๐‘ฅ ๐๐ฒ โˆ’๐Ÿ‘ ๐Ÿ– = ๐Ÿ + ๐Ÿ‘ ๐๐ฑ ๐’™ ๐’™

3. ๐‘ฆ =

3 5 โˆ’ ๐‘ฅ ๐‘ฅ2

๐‘‘๐‘ฆ = 3๐‘ฅ โˆ’1 โˆ’ 5๐‘ฅ โˆ’2 ๐‘‘๐‘ฅ ๐‘‘๐‘ฆ = 3(โˆ’1)x โˆ’2 โˆ’ 5(โˆ’2)x โˆ’3 ๐‘‘๐‘ฅ ๐’…๐’š โˆ’๐Ÿ‘ ๐Ÿ๐ŸŽ = + ๐’…๐’™ ๐’™๐Ÿ ๐’™๐Ÿ‘ 1

1

4. ๐‘ฆ = ๐‘ฅ 2 โˆ’ 4๐‘ฅ โˆ’2

52

1 1 1โˆ’1 1 x 2 โˆ’ 4 (โˆ’ ) x โˆ’2โˆ’1 2 2 ๐Ÿ‘ ๐Ÿ ๐Ÿ ๐Ÿ ๐Ÿ ๐’šโ€ฒ = ๐’™โˆ’๐Ÿ + ๐Ÿ๐’™โˆ’๐Ÿ = + ๐Ÿ‘/๐Ÿ ๐Ÿ/๐Ÿ ๐Ÿ ๐Ÿ๐’™ ๐’™

๐‘ฆโ€ฒ =

5. ๐‘ฅ = โˆš๐‘ก โˆ’

1 โˆš๐‘ก

= [๐‘ก โˆ’

1 โˆ’1 2 ๐‘ก2]

1 1 1 + 3/2 โˆ’1 2โˆ’1 1 1 โˆ’1โˆ’1 2t ๐‘ฅโ€™ = [๐‘ก โˆ’ ๐‘ก 2 ] [1 + ๐‘ก 2 ] = 1 2 2 1 2 2 [๐‘ก โˆ’ 1 ] ๐‘ก2 1

1 2

2t 3/2 + 1 [๐‘ก โˆ’ 1 ] ๐‘ก2 2t 3/2 ๐‘ฅโ€™ = 1โˆ™ 1 1 2 1 2 2 [๐‘ก โˆ’ 1 ] [๐‘ก โˆ’ 1 ] ๐‘ก2 ๐‘ก2 ๐Ÿ/๐Ÿ

๐’™โ€™ =

๐Ÿ๐ญ ๐Ÿ‘/๐Ÿ + ๐Ÿ ๐ญ ๐Ÿ‘/๐Ÿ โˆ’ ๐Ÿ โˆ™ ( ๐Ÿ/๐Ÿ ) ๐Ÿ๐ญ ๐Ÿ‘/๐Ÿ ๐’• ๐Ÿ [๐’• โˆ’

๐Ÿ

๐Ÿ] ๐’•๐Ÿ

Derivative of Product ๐’…(๐’–๐’—) =

1.

๐’…๐’– ๐’…๐’— ๐’—+๐’– ๐’…๐’™ ๐’…๐’™

๐‘ฆ = (1 + ๐‘ฅ 2 )(3 โˆ’ 2๐‘ฅ)

๐‘ฆโ€™ = (2๐‘ฅ)(3 โˆ’ 2๐‘ฅ) + (1 + ๐‘ฅ 2 )(โˆ’2) ๐‘ฆ โ€ฒ = 6๐‘ฅ โˆ’ 4๐‘ฅ 2 โˆ’ 2 โˆ’ 2๐‘ฅ 2 ๐’šโ€ฒ = โˆ’๐Ÿ”๐’™๐Ÿ + ๐Ÿ”๐’™ โˆ’ ๐Ÿ = โˆ’(๐Ÿ”๐’™๐Ÿ โˆ’ ๐Ÿ”๐ฑ + ๐Ÿ) 2. ๐‘ฆ = (๐‘ฃ 2 + 3)( ๐‘ฃ 2 + ๐‘ฃ + 1) y โ€ฒ = (2๐‘ฃ) (๐‘ฃ 2 + ๐‘ฃ + 1) + (๐‘ฃ 2 + 3) (2๐‘ฃ + 1) y โ€ฒ = 2๐‘ฃ 3 + 2๐‘ฃ 2 + 2๐‘ฃ + 2๐‘ฃ 3 + ๐‘ฃ 2 + 6๐‘ฃ + 3 53

๐’šโ€ฒ = ๐Ÿ’๐’—๐Ÿ‘ + ๐Ÿ‘๐’—๐Ÿ + ๐Ÿ–๐’— + ๐Ÿ‘

Derivative of a Quotient (๐๐ฎ) ๐ฏ โˆ’ ๐ฎ (๐๐ฏ) ๐ฎ ๐ ( )= ๐ฏ ๐ฏ๐Ÿ 1. ๐‘ฆ = ๐‘ฆโ€ฒ =

๐‘ฅ2

๐‘ฅ โˆ’1

1(๐‘ฅ 2 โˆ’ 1) โ€“ ๐‘ฅ (2๐‘ฅ) (๐‘ฅ 2 โˆ’ 1)2

๐‘ฅ 2 โˆ’ 1 โˆ’ 2๐‘ฅ 2 y = (๐‘ฅ 2 โˆ’ 1)2 โ€ฒ

yโ€ฒ =

โˆ’๐‘ฅ 2 โˆ’ 1 (๐‘ฅ 2 โˆ’ 1)2

โˆ’๐Ÿ(๐’™๐Ÿ + ๐Ÿ) ๐’š = (๐’™๐Ÿ โˆ’ ๐Ÿ)๐Ÿ โ€ฒ

๐‘ฅ2 2. ๐‘ฆ = 2 ๐‘ฅ โˆ’1 2๐‘ฅ(๐‘ฅ 2 โˆ’ 1) โˆ’ ๐‘ฅ 2 (2๐‘ฅ) y = (๐‘ฅ 2 โˆ’ 1)2 โ€ฒ

yโ€ฒ = ๐’šโ€ฒ =

2๐‘ฅ 3 โˆ’ 2๐‘ฅ โˆ’ 2๐‘ฅ 3 (๐‘ฅ 2 โˆ’ 1)2 โˆ’๐Ÿ๐’™ โˆ’ ๐Ÿ)๐Ÿ

(๐’™๐Ÿ

1 3๐‘ฅ โˆ’ 2 0(3๐‘ฅ โˆ’ 2) โˆ’ (3)(1) ๐‘ฆโ€ฒ = (3๐‘ฅ โˆ’ 2)2

3. ๐‘ฆ =

๐ฒโ€ฒ =

โˆ’๐Ÿ‘ (๐Ÿ‘๐’™ โˆ’ ๐Ÿ)๐Ÿ

yโ€ฒ =

โˆ’๐‘‘(๐‘ฃ)๐‘ ๐‘–๐‘“ ๐‘›๐‘ข๐‘š๐‘’๐‘Ÿ๐‘Ž๐‘ก๐‘œ๐‘Ÿ ๐‘–๐‘  ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ฃ2 54

๐‘ฆโ€ฒ =

3๐‘ฅ โˆ’ 2 4

๐‘ฆโ€ฒ =

3(4) โˆ’ (3๐‘ฅ โˆ’ 2)0 42

=

12 ๐Ÿ‘ = 16 ๐Ÿ’

MORE PROBLEMS 1. ๐‘ฆ = ๐‘ฅ 2 ๐’šโ€ฒ = ๐Ÿ๐’™ 2. ๐‘ฆ = (๐‘ฅ 2 + 1) (๐‘ฅ 2 + 1) ๐‘ฆ โ€ฒ = (2๐‘ฅ) (๐‘ฅ 2 + 1) + (๐‘ฅ 2 + 1) (2๐‘ฅ) ๐‘ฆ โ€ฒ = 2๐‘ฅ 3 + 2๐‘ฅ + 2๐‘ฅ 3 + 2๐‘ฅ ๐‘ฆ โ€ฒ = 4๐‘ฅ 3 + 4๐‘ฅ ๐’šโ€ฒ = ๐Ÿ’๐’™(๐’™๐Ÿ + ๐Ÿ)

3. ๐‘ฆ = 4๐‘ฅ(๐‘ฅ 2 + 1) ๐‘ฆโ€ฒ =

๐‘‘๐‘ฆ = 4(๐‘ฅ 2 + 1) + 4๐‘ฅ(2๐‘ฅ) ๐‘‘๐‘ฅ

๐‘ฆ โ€ฒ = 4๐‘ฅ 2 + 4 + 8๐‘ฅ 2 ๐‘ฆ โ€ฒ = 12๐‘ฅ 2 + 4 ๐’š = ๐Ÿ’(๐Ÿ‘๐’™๐Ÿ + ๐Ÿ) 4. ๐‘ฆ = (3๐‘ฅ 2 + 4๐‘ฅ โˆ’ 1)3 ๐‘ฆ โ€ฒ = 3(3๐‘ฅ 2 + 4๐‘ฅ โˆ’ 1)2 (6๐‘ฅ + 4) ๐’šโ€ฒ = ๐Ÿ”(๐Ÿ‘๐’™ + ๐Ÿ) (๐Ÿ‘๐’™๐Ÿ + ๐Ÿ’๐’™ โˆ’ ๐Ÿ)๐Ÿ D((๐ฎ)๐ง ) = n(๐ฎ๐งโˆ’๐Ÿ ) du

1. ๐‘ฆ = 6โˆš4 + ๐‘ฅ 1 1 1 ๐‘ฆ = 6(4 + ๐‘ฅ)2 = 6 ( ) (4 + ๐‘ฅ)2โˆ’1 2

55

1

๐‘ฆ โ€ฒ = 3(4 + ๐‘ฅ)โˆ’2 (1) ๐’šโ€ฒ =

๐Ÿ‘ โˆš๐Ÿ’ + ๐’™

Name: Course/Year & Section: Assignment no. 4 Derive

1. )๐‘ฆ = 7๐‘ฅ 4 โˆ’ 3๐‘ฅ 3 โˆ’ 5๐‘ฅ + 1000 ๐’šโ€ฒ = ๐Ÿ๐Ÿ–๐’™๐Ÿ‘ โˆ’ ๐Ÿ—๐’™๐Ÿ โˆ’ ๐Ÿ“ 2. )2๐‘ฆ = 8๐‘ฅ 3 โˆ’ 10๐‘ฅ + 4 ๐‘ฆ = 4๐‘ฅ 3 โˆ’ 5๐‘ฅ + 2 ๐’šโ€ฒ = ๐Ÿ๐Ÿ๐’™๐Ÿ โˆ’ ๐Ÿ“ 3. )๐‘ฆ = (4๐‘ฅ 2 + 3๐‘ฅ + 1) (2๐‘ฅ 2 + 7) ๐‘ฆ โ€ฒ = (8๐‘ฅ + 3)( 2๐‘ฅ 2 + 7) + (4๐‘ฅ 2 + 3๐‘ฅ + 1)(4๐‘ฅ) ๐‘ฆ โ€ฒ = 16๐‘ฅ 3 + 56๐‘ฅ + 6๐‘ฅ 2 + 21 + 16๐‘ฅ 3 + 12๐‘ฅ 2 + 4๐‘ฅ ๐’šโ€ฒ = ๐Ÿ‘๐Ÿ๐’™๐Ÿ‘ + ๐Ÿ๐Ÿ–๐’™๐Ÿ + ๐Ÿ”๐ŸŽ๐’™ + ๐Ÿ๐Ÿ 4. )๐‘ฆ = ๐‘ฅ(๐‘ฅ โˆ’ 1) (๐‘ฅ + 1) ๐‘ฆโ€™ = ๐‘ฅ(๐‘ฅ 2 โˆ’ 1) 56

๐‘ฆ โ€ฒ = 1(๐‘ฅ 2 โˆ’ 1) + ๐‘ฅ(2๐‘ฅ) ๐’šโ€™ = ๐’™๐Ÿ โˆ’ ๐Ÿ + ๐Ÿ๐’™๐Ÿ = ๐Ÿ‘๐’™๐Ÿ โˆ’ ๐Ÿ 5. )๐‘ฆ =

3๐‘ฅ 2 โˆ’ 2๐‘ฅ + 5 2๐‘ฅ โˆ’ 5

(6๐‘ฅ โˆ’ 2)(2๐‘ฅ โˆ’ 5) โˆ’ (2)(3๐‘ฅ 2 โˆ’ 2๐‘ฅ + 5) (2๐‘ฅ โˆ’ 5)2 2 12๐‘ฅ โˆ’ 30๐‘ฅ โˆ’ 4๐‘ฅ + 10 โˆ’ 6๐‘ฅ 2 + 4๐‘ฅ โˆ’ 10 โ€ฒ ๐‘ฆ = (2๐‘ฅ โˆ’ 5)2 2 6๐‘ฅ โˆ’ 30๐‘ฅ ๐‘ฆโ€ฒ = (2๐‘ฅ โˆ’ 5)2 ๐Ÿ”๐’™(๐’™ โˆ’ ๐Ÿ“) ๐’šโ€ฒ = (๐Ÿ๐’™ โˆ’ ๐Ÿ“)๐Ÿ ๐‘ฆโ€ฒ =

๐‘ฅ2 โˆ’ 4 6. )๐‘ฆ = 2 ๐‘ฅ + 4๐‘ฅ + 4 2๐‘ฅ(๐‘ฅ 2 + 4๐‘ฅ + 4) โˆ’ (๐‘ฅ 2 โˆ’ 4)(2๐‘ฅ + 4) (๐‘ฅ 2 + 4๐‘ฅ + 4)2 3 2 2๐‘ฅ + 8๐‘ฅ + 8๐‘ฅ โˆ’ 2๐‘ฅ 3 โˆ’ 4๐‘ฅ 2 + 8๐‘ฅ + 16 ๐‘ฆโ€™ = (๐‘ฅ 2 + 4๐‘ฅ + 4)2 4๐‘ฅ 2 + 16๐‘ฅ + 16 4(๐‘ฅ + 2)2 ๐‘ฆโ€ฒ = 2 = (๐‘ฅ + 4๐‘ฅ + 4)2 (๐‘ฅ + 2)4 ๐Ÿ’ ๐’šโ€™ = (๐’™ + ๐Ÿ)๐Ÿ ๐‘ฆโ€™ =

7. ) ๐‘ฆ = โˆš4๐‘ฅ 2 + 9 (2๐‘ฅ + 3)6 1

๐‘ฆ = (4๐‘ฅ 2 + 9)2 (2๐‘ฅ + 3)6 ๐‘ฆโ€ฒ = ๐‘ฆโ€ฒ =

1 1 (4๐‘ฅ 2 + 9)โˆ’2 (8๐‘ฅ) (2๐‘ฅ + 3)6 + 6(2๐‘ฅ + 3)5 (4๐‘ฅ 2 + 9)1/2 (2) 2

8๐‘ฅ(2๐‘ฅ + 3)6 1

1

+ 12(4๐‘ฅ 2 + 9 )2 (2๐‘ฅ + 3)5

2(4๐‘ฅ 2 + 9)2 ๐‘ฆ โ€ฒ = (2๐‘ฅ + 3)5 [

5[

๐‘ฆโ€™ = (2๐‘ฅ + 3)

4๐‘ฅ(2๐‘ฅ + 3)

1

2 2 1 + 12(4๐‘ฅ + 9) ] 2 (4๐‘ฅ + 9 )2

8๐‘ฅ 2 + 12๐‘ฅ + 12 (4๐‘ฅ 2 +9) ] 1 (4๐‘ฅ 2 + 9)2

57

=

(2๐‘ฅ + 3)5 (4๐‘ฅ 2

8. ) ๐‘ฆ =

๐‘ฆโ€ฒ =

1 9)2

+

(56๐‘ฅ 2

+ 12๐‘ฅ + 108) =

(๐Ÿ’๐’™๐Ÿ +

4๐‘ฅ 2 + 9

๐‘ฆ=

โˆš2๐‘ฅ โˆ’ 3

(8๐‘ฅ)(2๐‘ฅ โˆ’

1 3)2

4๐‘ฅ 2 + 9 1

โˆ’1

4๐‘ฅ 2 + 9 1

(2๐‘ฅ โˆ’ 3)2 (2๐‘ฅ โˆ’ 3)

๐‘ฆโ€ฒ =

8๐‘ฅ(2๐‘ฅ โˆ’ 3) โˆ’ (4๐‘ฅ 2 + 9) 3

=

16๐‘ฅ 2 โˆ’ 24๐‘ฅ โˆ’ 4๐‘ฅ 2 โˆ’ 9

(2๐‘ฅ โˆ’ 3)2 ๐‘ฆโ€ฒ =

(๐Ÿ๐Ÿ’๐’™๐Ÿ + ๐Ÿ‘๐’™ + ๐Ÿ๐Ÿ•)

(4๐‘ฅ 2 + 9 )(2๐‘ฅ โˆ’ 3) 2 (2) โˆ’ 2 (2๐‘ฅ โˆ’ 3)

1

๐‘ฆ =

๐Ÿ ๐Ÿ—)๐Ÿ

(2๐‘ฅ โˆ’ 3)2

8๐‘ฅ(2๐‘ฅ โˆ’ 3 )2 โˆ’

โ€ฒ

๐Ÿ’(๐Ÿ๐’™ + ๐Ÿ‘)๐Ÿ“

3

(2๐‘ฅ โˆ’ 3)2

12๐‘ฅ 2 โˆ’ 24๐‘ฅ โˆ’ 9 3

(2๐‘ฅ โˆ’ 3)2 โ€ฒ

๐’š =

๐Ÿ‘(๐Ÿ’๐’™๐Ÿ โˆ’ ๐Ÿ–๐’™ โˆ’ ๐Ÿ‘) ๐Ÿ‘

(๐Ÿ๐’™ โˆ’ ๐Ÿ‘)๐Ÿ

9. ) ๐‘ฆ =

โˆ’100 โˆš5๐‘ฅ 2 โˆ’ 3

1

๐‘ฆโ€ฒ = โˆ’100 (5๐‘ฅ 2 โˆ’ 3)โˆ’2 3 โˆ’1 ๐‘ฆโ€ฒ = โˆ’100 ( ) (5๐‘ฅ 2 โˆ’ 3 )โˆ’2 (10๐‘ฅ) 2 ๐Ÿ“๐ŸŽ๐ŸŽ๐’™ ๐’šโ€ฒ = ๐Ÿ‘ (๐Ÿ“๐’™๐Ÿ โˆ’ ๐Ÿ‘)๐Ÿ

3

10. ) ๐‘ฆ = โˆš7๐‘ฅ 2 + 5 โˆš5๐‘ฅ โˆ’ 3 ๐‘ฆ = (7๐‘ฅ 2 + 5)1/3 (5๐‘ฅ โˆ’ 3)1/2

58

๐‘ฆโ€ฒ = ๐‘ฆโ€ฒ =

2 1 1 1 (7๐‘ฅ 2 + 5)โˆ’3 (14๐‘ฅ) (5๐‘ฅ โˆ’ 3)2 + (7๐‘ฅ 2 + 5)1/3 ( ) (5๐‘ฅ โˆ’ 3)โˆ’1/2 (5) 3 2

14๐‘ฅ(5๐‘ฅ โˆ’ 3)1/2 2

+

3(7๐‘ฅ 2 + 5)3

5(7๐‘ฅ 2 + 5)1/3 2(5๐‘ฅ โˆ’ 3)1/2

28๐‘ฅ(5๐‘ฅ โ€“ 3) + 15(7๐‘ฅ 2 + 5) ๐‘ฆโ€ฒ = 6(7๐‘ฅ 2 + 5)2/3 (5๐‘ฅ โˆ’ 3)1/2 ๐‘ฆโ€ฒ =

140๐‘ฅ 2 โˆ’ 84๐‘ฅ + 105๐‘ฅ 2 + 75 2

1

6(7๐‘ฅ 2 + 5 )3 (5๐‘ฅ โˆ’ 3)2 ๐’šโ€™ =

๐Ÿ๐Ÿ’๐Ÿ“๐’™๐Ÿ โˆ’ ๐Ÿ–๐Ÿ’๐’™ + ๐Ÿ•๐Ÿ“ ๐Ÿ”(๐Ÿ•๐’™๐Ÿ + ๐Ÿ“)๐Ÿ/๐Ÿ‘ (๐Ÿ“๐’™ โˆ’ ๐Ÿ‘)๐Ÿ/๐Ÿ

Examples: 1. y = 2 โˆ’ x 2 (3, โˆ’ 7) y โ€ฒ = โˆ’2x = โˆ’2(3) = โˆ’๐Ÿ”

Tangent

2. y = 3x 2 โˆ’ 2x(2, 8) y โ€ฒ = 6x โˆ’ 2 = 6(2) โˆ’ 2 = ๐Ÿ๐ŸŽ

59

4 3. ๐‘ฃ = ๐œ‹๐‘Ÿ 3 3 ๐‘‘๐‘ฃ 4๐œ‹ ๐‘‘๐‘Ÿ (3)๐‘Ÿ 2 = ๐‘‘๐‘ก 3 ๐‘‘๐‘ก ๐‘‘๐‘ฃ 6๐‘“๐‘ก = 4๐œ‹๐‘Ÿ 2 ( ) ๐‘‘๐‘ก ๐‘ 

๐‘‘๐‘Ÿ ๐‘“๐‘ก ๐‘Ÿ =6 = ๐‘‘๐‘ก ๐‘  ๐‘ก 6=

๐‘Ÿ ; 0.25

๐‘ก = 0.25

๐‘Ÿ = 1.5

๐‘‘๐‘ฃ = 24๐œ‹๐‘Ÿ 2 = 24๐œ‹(1.5)2 = ๐Ÿ“๐Ÿ’๐… ๐‘‘๐‘ก ๐‘†=

d t

๐ฏ ๐จ๐Ÿ ๐ฌ๐ฉ๐ก๐ž๐ซ๐ž P of circle rectangle dr r =6 = 1 dt 4 1 6( ) = ๐‘Ÿ 4 1.5=r ๐‘‰ ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ = ๐œ‹๐‘Ÿ 2 โ„Ž;

๐‘–๐‘“ โ„Ž = 6

๐‘ฃ = 6๐œ‹๐‘Ÿ 2 ๐‘‘๐‘ฃ ๐‘‘๐‘Ÿ = 12๐œ‹๐‘Ÿ ๐‘‘๐‘ก ๐‘‘๐‘ก ๐‘‘๐‘ฃ = 12๐œ‹(1.5)(6) ๐‘‘๐‘ก ๐‘‘๐‘ฃ = ๐Ÿ๐ŸŽ๐Ÿ–๐›‘ ๐‘‘๐‘ก

SLOPE 1. ๐‘ฆ 2 =

๐‘ฅ3 @ (๐‘Ž, ๐‘Ž) 2๐‘Ž โˆ’ ๐‘ฅ

3๐‘ฅ 2 ๐‘‘๐‘ฅ (2๐‘Ž โˆ’ ๐‘ฅ ) โˆ’ ๐‘ฅ 3 (โˆ’1)๐‘‘๐‘ฅ 2๐‘ฆ๐‘‘๐‘ฆ = (2๐‘Ž โˆ’ ๐‘ฅ)2 60

6๐‘Ž๐‘ฅ 2 โˆ’ 3๐‘ฅ 3 + ๐‘ฅ 3 2๐‘ฆ๐‘ฆโ€™ = (2๐‘Ž โˆ’ ๐‘ฅ)2 ๐‘ฆโ€™ =

6๐‘Ž๐‘ฅ 2 โˆ’ 2๐‘ฅ 3 ๐’…๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’—๐’† 2๐‘ฆ(2๐‘Ž โˆ’ ๐‘ฅ)2

๐‘ฆโ€ฒ =

6aa2 โˆ’ 2a3 2a(2a โˆ’ a)2

4a3 ๐‘ฆโ€ฒ = 3 2a ๐ฒโ€™ = ๐Ÿ

๐‘ฆ3 =

2.

2๐‘Ž๐‘ฅ 3 @ (๐‘Ž, ๐‘Ž) ๐‘ฅ+๐‘Ž

6ax 2 (x + a) โˆ’ 2ax 3 (1) (x + a)2 3 6ax + 6a2 x 2 โˆ’ 2ax 3 โ€ฒ y = 3y 2 (x + a)2 3 4๐‘Ž๐‘ฅ + 6๐‘Ž2 ๐‘ฅ 2 โ€ฒ ๐‘ฆ = ๐’…๐’†๐’“๐’Š๐’—๐’‚๐’•๐’Š๐’—๐’† 3๐‘ฆ 2 (๐‘ฅ + ๐‘Ž)2

3y 2 y โ€ฒ =

yโ€ฒ =

4aa3 + 6a2 a2 3a2 (a + a)2

yโ€ฒ =

10a4 12a4

๐’šโ€ฒ =

๐Ÿ“ ๐Ÿ”

POLYNOMIAL OF A TERM 1. ๐‘ฆ = 3๐‘ฅ 2 โˆ’ 2๐‘ฅ = 1 @ (1 ,2) y โ€ฒ = 6x โˆ’ 2 Derivative y โ€ฒ = 6(1) โ€“ 2 ๐ฒ โ€ฒ = ๐Ÿ’ Slope ๐‘š=

๐‘ฆ โˆ’ ๐‘ฆ1 ๐‘ฅ โˆ’ ๐‘ฅ1

๐‘บ๐’๐’๐’‘๐’† ๐‘ญ๐’๐’“๐’Ž๐’–๐’๐’‚ 61

4=

yโˆ’2 xโˆ’1

4x โˆ’ 4 = y โ€“ 2 ๐Ÿ’๐’™ โˆ’ ๐’š = ๐Ÿ

๐‘ป๐’‚๐’๐’ˆ๐’†๐’๐’• ๐‘ณ๐’Š๐’๐’†

โˆ’1 y โˆ’ y1 = 4 x โˆ’ x1 โˆ’1 y โˆ’ 2 = 4 xโˆ’1 โˆ’x + 1 = 4y โˆ’ 8 ๐ฑ + ๐Ÿ’๐ฒ = ๐Ÿ—

2.

Normal Line

y = x 2 โˆ’ 2x @ its pt. of intersection w/ the line ๐‘ฆ = 3

y + 1 = x 2 โˆ’ 2x + 1 (-1, 3)

(3, 3)

y + 1 = (x โˆ’ 1)2 V (1, -1) up P.I (-1, 3) (3, 3) y = x 2 โˆ’ 2x 3 = x 2 โˆ’ 2x 0 = x 2 โˆ’ 2x โˆ’ 3

FACTOR

(x โ€“ 3) (x + 1) = 0 x = 3 x = โˆ’1 y = x 2 โˆ’ 2x ๐ฒ โ€ฒ = ๐Ÿ๐ฑ โˆ’ ๐Ÿ @ (-1, 3) yโ€™ = 2 (โˆ’1) โˆ’ 2 = โˆ’๐Ÿ’ 62

yโ€™ = 2 (3) โ€“ 2 = ๐Ÿ’

โˆ’4 =

y โˆ’ 3 x + 1

โˆ’4x โ€“ 4 = y โ€“ 3 ๐Ÿ’๐ฑ + ๐ฒ = โˆ’ ๐Ÿ 4 =

yโˆ’ 3 x โˆ’ 3

๐Ÿ’๐ฑ โ€“ ๐Ÿ๐Ÿ = ๐ฒ โ€“ ๐Ÿ‘

๐Ÿ’๐’™ โ€“ ๐’š = ๐Ÿ— Parabola x 2 = y + c Circle

x 2 + y 2 = a2

Ellipse ax 2 + by 2 = c Hyperbola ax 2 โˆ’ by 2 = c

1. To the ellipse x 2 + 4y 2 = 8 || to the line ๐‘ฅ + 2๐‘ฆ = 6 x 2 + 4y 2 = 8 8 x2 y2 + =1 8 2 x2 y2 + =1 a2 b2 x + 2y = 6 2y = โˆ’x + 6 2 y = โˆ’

1x + 3; 2

m=โˆ’

1 2

slope of line 63

x 2 + 4y 2 = 8 2x + 8yyโ€™ = 0 yโ€™ =

โˆ’2x โˆ’x 1 = = โˆ’ 8y 4y 2

x =1 2y x =2y x 2 + 4y 2 = 8 (2y)2 + 4y 2 = 8 4y 2 + 4y 2 = 8 8y 2 = 8 8 y2 = 1 ๐ฒ =ยฑ๐Ÿ y=1

y = -1

x= 2 x = - 2 (-2 , -1)

โˆ’1 y+1 = 2 x+2 -x -2 = 2y + 2 x + 2y = -4 โˆ’1 yโˆ’1 = 2 xโˆ’2 โˆ’x + 2 = 2y โ€“ 2 x + 2y = 4

2. To the parabola y 2 = 6x โˆ’ 3 โˆŸ to the line x + 3y = 7 ๐‘ฆ 2 = 6(๐‘ฅ โˆ’ 1โ„2) 64

๐‘ฃ(1โ„2 , 0 ) ๐‘ฅ ๐‘–๐‘›๐‘ก ๐‘ฅ โ€“ ๐‘–๐‘›๐‘ก

1 2 3 4 5 6 7 8

๐‘ฅ = 0 ๐‘ฆ = 0 ๐‘›๐‘œ๐‘›๐‘’

(1/2 , 0)

(2๐‘ฆ๐‘ฆโ€ฒ = 6) 2๐‘ฆ ๐‘ฆโ€™ =

3 ๐‘ฆ

3 =

3 ๐‘ฆ

y=1 3y = โˆ’x + 7 y =

โˆ’1 7 x+ 3 3

m =

โˆ’1 3

m โฅ•= 3 ๐‘ฆ 2 = 6๐‘ฅ โˆ’ 3 12 = 6๐‘ฅ โˆ’ 3 4 2 =๐‘ฅ= 6 3 2 ( , 1) 3 3=

๐‘ฆโˆ’1 2 ๐‘ฅโˆ’3

๐Ÿ‘๐’™ โˆ’ ๐Ÿ = ๐’š โˆ’ ๐Ÿ ๐Ÿ‘๐’™ โˆ’ ๐’š = ๐Ÿ

65

3. To the cubic y = x 3 โˆ’ 2x + 3 || to 10๐‘ฅ โ€“ ๐‘ฆ = 3 ๐‘ฆ = 10๐‘ฅ โˆ’ 3 ๐‘š = 10 yโ€™ = 3x 2 โˆ’ 2 = 10 yโ€ฒ =

3x 2 = 12 3

x2 = 4 ๐ฑ ๐Ÿ = +๐Ÿ ๐ฑ ๐Ÿ = โˆ’๐Ÿ If x = + 2 y = 23 โˆ’ 2(2) + 3 = 8 -4 + 3 y=7

(2, 7)

If x = - 2 y = โˆ’23 โˆ’ 2(โˆ’2) + 3 = -8 + 4 + 3 y= -1 (-2, -1) 10 =

yโˆ’7 xโˆ’2

10x -20 = y -7 10x โ€“y = 13 10 โˆ’

y +1 x+2

10x + 20x = y + 1 10x โ€“ y = -19

4. Make the parabola y = ax 2 + bx + c pass thru (2, 1) to be tangent to the line y = 2x + 4 @ (1, 6) @ (2, 1) 66

1 = a(2)2 + b(2) + c 1 = 4a + 2b +c

1 equation

@ (1 , 6) 6 = a(1)2 + b(1) +c 6= a + b + c

2 equation

y = ax 2 + bx + c yโ€™ = 2ax + b 2 = 2a (1) + b y = 2x + 4 yโ€™= 2

2 = 2a + b

3equation

1equation - 2equation 1 = 4a + 2b + c -(6 = a + b + c)

-5 = 3a + b

4equation

3equation to 4equation -5 = 3a + b -(2 = 2a + b) -7 = a a = - 7 5 equation

5equation in 4equation -5 = 3 (-7) + b -5+21 = b = 16 b = 16

6= a + b + c 6 = -7 + 16 + c C = -3 67

y = โˆ’7x 2 + 16x โˆ’ 3

5. Make the cube y = ax 3 + bx 2 + cx + d be tangent to y = 12x + 13 @ (-1 , 1) to have a horizontal tangent line @ (1 , 5). @ (-1 , 1) 1 = -a + b โ€“ c + d

equation 1

@(1 , 5) 5= a + b + c + d

equation 2

y โ€ฒ = 3ax 2 + 2bx + c 12 = 3a(โˆ’1)2 + 2b(1) + c 12 = 3a โ€“ 2b + c

3equation

0 = 3a(1)2 + 2b(1) + c 0 = 3a + 2b + c

4 equation

1equation to 2equation 1=-a+bโ€“c+d -(5 = a + b +c +d) -4 = -2a โ€“ 2c 2=a+c

5equation

y = 12x + 13 yโ€™ = 12 3equation to 4equation 12 = 3a โ€“ 2b + c 0 = 3a + 2b + c 12 = 6a + 2c 2

68

6 = 3a+c

6 equation

6=3a+c -(2 = a + c) 4=2a a=2

7equation

c=0

8 equation

7 equation to 8 equation in 4 equation 0=3a+2b+c 0=3(2)+2b -6=2b b=-3 9 equation 7equation, 8 equation to 9 equation in 4 equation 1=-a+b-c+d 1=-2-3+d d=6 y = ax 3 + bx 2 + cx + d y=๐Ÿ๐’™๐Ÿ‘ โˆ’ ๐Ÿ‘๐’™๐Ÿ + ๐Ÿ” MAXIMA AND MINIMA 1. y = 2 + 12x โˆ’ x 3 yโ€™ = 12 โˆ’ 3x 2 = 0 =

12 = 3x 2 3

4 = x2 x = ยฑ2 y = 2 + 12(2) โ€“ (2)3 = 2 + 24 โ€“ 8 =18 y = 2 + 12(โˆ’2) โ€“ (โˆ’2)3 69

= 2 โ€“ 24 + 8 = -14

(2, 18) (-2 , -14) (2, 18) max

(-2, -14) min

x= 1

2 3 -1 -2 -3

y = 13 18 11 -9 -14 -7

๏‚ท ๏‚ท ๏‚ท

y = 0 if y changes from + to โ€“ as x- increase y is a maximum if yโ€™ changes from โ€“ to + y is minimum yโ€™ + to โ€“ y is maximum yโ€™ does not change sign y โ„ต neither maximum or minimum if yโ€™ > 0 y increases yโ€™ < 0 y decreases Name: Course/Year & Section: Assignment no.5: maxima and minima Answers:

1. y = โˆ’ 6x + x 2 ๐‘ฆโ€™ = 0 = โˆ’ 6 + 2๐‘ฅ 6 = 2๐‘ฅ ๐’™ = ๐Ÿ‘ y = โˆ’ 6 (3) + (3)2 ๐‘ฆ = โˆ’ 18 + 9 ๐’š = โˆ’๐Ÿ— C. P (3 , -9) ,minimum @ (2 ๐‘ฆโ€™ = โˆ’6 + 2๐‘ฅ ๐‘ฆโ€ฒ = โˆ’ 6 + 2(2) 70

๐’šโ€ฒ = โˆ’๐Ÿ @ (4) ๐‘ฆโ€™ = โˆ’ 6 + (2)(4) yโ€ฒ = +2

2. y = 4x 2 + 16x + 9 ๐‘ฆโ€™ = 8๐‘ฅ + 16 = 0 ๐’™= โˆ’๐Ÿ y = 4(โˆ’2)2 + 16(โˆ’2) + 9 ๐‘ฆ = 16 โ€“ 32 + 9 ๐’š = โˆ’๐Ÿ• C.P (-2 , -7) minimum ๐ผ๐‘“ ๐‘ฅ = โˆ’3 ๐‘ฆโ€™ = 8 (โˆ’3) + 16 ๐‘ฆโ€ฒ = โˆ’24 + 16 ๐’šโ€ฒ = โˆ’๐Ÿ– @ ๐‘ฅ = โˆ’1 ๐‘ฆโ€™ = 8(โˆ’1) + 16 ๐‘ฆโ€ฒ = โˆ’8 + 16 ๐’šโ€ฒ = ๐Ÿ– 3. y = (2x โˆ’ 1)2 = 4(2x - 1) = 0 x=ยฝ 1 y = (2 ( ) โˆ’ 1)2 2 =0 C.P (1/2 , 0) minima y โ€ฒ = 4(2(0) โˆ’ 1) y=4 yโ€™ = 4(2(1) โˆ’ 1) = 4(2-1) =4 4. y = โˆ’4(x + 2)2 yโ€™ โˆ’ 8(x + 2)1 (1) ๐‘ฆโ€™ = โˆ’ 8(๐‘ฅ + 2) = 0 ๐‘ฅ + 2 = 0โ„8 71

๐‘ฅ + 2 = 0 ๐’™ = โˆ’๐Ÿ y = โˆ’4(โˆ’2 + 2)2 ๐‘ฆ= 0 C.P (โˆ’2 , 0) max ๐‘ฆโ€™ = โˆ’8 (โˆ’3 + 2) ๐’šโ€ฒ = +๐Ÿ– ๐‘ฅ = โˆ’1 ๐‘ฆโ€™ = โˆ’8 (โˆ’1 + 2) ๐’šโ€ฒ = โˆ’๐Ÿ–

๏‚ท

yโ€ is + yโ€™ is increasing as x- increases the tangent turns in a ccw sense to the curve is concave upward.

x

CCW

CW

yโ€ < 0 y is maximum yโ€ > 0 y is minimum yโ€œ = 0 test fails

E.G. y =

1 3 1 2 x โˆ’ x โˆ’ 2x + 2 3 2

๐‘ฆโ€ฒ = ๐‘ฅ2 โˆ’ ๐‘ฅ โˆ’ 2 = 0 (๐‘ฅ โˆ’ 2)(๐‘ฅ + 1) = 0 72

๐‘ฅ=2

๐‘ฅ = โˆ’1

If ๐‘ฅ = 2 1 1 (2)3 โˆ’ (2)2 โˆ’ 2(2) + 2 3 2 8 ๐‘ฆ = โˆ’2โˆ’4+2 3 ๐‘ฆ=

๐‘ฆ=

8 4 โˆ’ 3 1

๐‘ฆ =

8 โˆ’ 12 3

โˆ’4 3 โˆ’4 C. P(2 ) 3 ๐‘ฆ=

If x = 1 1 1 (โˆ’1)3 โˆ’ (โˆ’1)2 โˆ’ 2(โˆ’1) + 2 3 2 ๐‘ฆ = โˆ’ 1โ„3 โˆ’ 1โ„2 + 2 + 2 4 ๐‘ฆ = โˆ’ 1โ„3 โˆ’ 1โ„2 + 1 ๐‘ฆ = โˆ’2 โˆ’ 2 + 24โ„6 = 19โ„6 ๐‘ฆ=

๐Œ๐š๐ฑ๐ข๐ฆ๐š

19

C.P (โˆ’1, 6 ) Minima (2, -4/3) ๐‘ฅ = โˆ’2 ๐‘ฆโ€ฒ = ๐‘ฅ2 โˆ’ ๐‘ฅ โˆ’ 2 ๐‘ฆโ€™ = (โˆ’2)2 โˆ’ (โˆ’2) โˆ’ 2 ๐‘ฆโ€™ = 4 + 2 โˆ’ 2 ๐’šโ€™ = ๐Ÿ’ ๐‘ฅ = 0 ๐‘ฆ โ€ฒ = 12 โˆ’ 1 โˆ’ 2 ๐‘ฆโ€™ = 1 โˆ’ 1 โˆ’ 2 ๐’š = โˆ’๐Ÿ ๐‘ฅ = 3 ๐‘ฆโ€™ = 32 โˆ’ 3 โˆ’ 2 ๐‘ฆโ€™ = 9 โˆ’ 5 ๐’š = ๐Ÿ’ ๐‘ฆโ€ฒ = ๐‘ฅ2 โˆ’ ๐‘ฅ โˆ’ 2 = 0 ๐‘ฆโ€ = 2๐‘ฅ โˆ’ 1 ๐‘ฆโ€™โ€™ = 2(โˆ’1) โˆ’ 1 73

๐’šโ€ = โˆ’๐Ÿ‘ ๐‘ฆโ€ = 2(2) โˆ’ 1 ๐‘ฆโ€ = 4 โˆ’ 1 ๐’šโ€ = ๐Ÿ‘ ๐‘ฆโ€ = 2๐‘ฅ โˆ’ 1 = 0 1 ๐‘ฅ= 2 1 1 3 1 1 2 1 ๐‘ฆ = ( ) โˆ’ ( ) โˆ’ 2( ) + 2 3 2 2 2 2 1 1 1 1 1 1 โˆ’ 3 + 24 ๐‘ฆ = ( )โˆ’ โˆ’1+2 ๐‘ฆ= โˆ’ +1= 3 8 8 24 8 24

๐‘ฆ=

22 11 = 24 12

Point of Inflection A point @ which the curve changes from concave upward to concave downward or vice versa. Sketching Polynomial Curve 1. Find the points of intersection with the axes. 2. Determine the behavior of y for large values of x. 3. Locate points where ๐‘ฆ โ€ฒ = 0 to determine max or min. 4. Locate points where ๐‘ฆ " = 0. 5. Plot additional points. ๐‘ฆ = ๐‘ฅ 3 โˆ’ 3๐‘ฅ y = x(๐‘ฅ 2 โˆ’ 3) Intercepts y=0 0 = x (๐‘ฅ 2 โˆ’ 3) x = 0 + โˆš3โˆš3 (0 , 0) (โˆš3, 0)(โˆ’โˆš3, 0) x=0 y=0 ๐‘ฆ = ๐‘ฅ 3 โˆ’ 3๐‘ฅ ๐‘ฆ โ€ฒ = 3๐‘ฅ 2 โˆ’ 3 = 0 ๐‘ฅ2 = 1 ๐‘ฆ = (1)3 โˆ’ 3(1) y= 1 โ€“ 3 y= -2 ๐‘ฆ = (โˆ’1)3 โˆ’ 3(โˆ’1) 74

๐‘ฆ = โˆ’1 + 3 ๐‘ฆ= 2 ๐ถ๐‘ƒ (1 , โˆ’2) (โˆ’1 , 2) ๐‘ฆ " = 6๐‘ฅ ๐‘ฆโ€ = 6(1) ๐‘ฆโ€ = 6 ๐‘ฆ " = 6(โˆ’1) = โˆ’6 ๐‘ฆ " = 6๐‘ฅ = 0 ๐‘ฅ= 0 ๐‘ฆ= 0

Name: Course/Year & Section:

Assignment no.6: Point of Inflection 1. )y = xยณ โˆ’ 3xยฒ ๐‘ฆโ€™ = 3๐‘ฅ 2 โˆ’ 6๐‘ฅ 0 = 3๐‘ฅ (๐‘ฅ โˆ’ 2) ๐‘ฅ = 0

๐‘ฅ = 2

๐‘ฆ = 03 โˆ’ 3(0)2 = 0 ๐‘ฆ = 23 โˆ’ 3(2)2 = 8 โˆ’ 12 = โˆ’4 0 = ๐‘ฅ 2 (๐‘ฅ โˆ’ 3) ๐‘ฅ =0

๐‘ฅ =3

C.P Maxima(0,0) Minima(2, โˆ’4) ๐‘ฆโ€ = 6๐‘ฅ โˆ’ 6 = 0 ๐‘ฅ = 1 ๐‘ฆ = 13 โˆ’ 3(1)2 ๐‘ฆ= 1โˆ’ 3 75

๐‘ฆ = โˆ’2 ๐‘ƒ. 1 (1, โˆ’2) ๐‘ฆโ€ = 6(0) โˆ’ 6 = โˆ’6 ๐‘ฆโ€ = 6(2) โˆ’ 6 ๐‘ฆ" = 12 โˆ’ 6 ๐‘ฆ" = 6 2. )y = x 3 + 3x 2 + 3x ๐‘ฆ โ€ฒ = 3(๐‘ฅ 2 + 2๐‘ฅ + 1) ๐‘ฆโ€™ = 3๐‘ฅ 2 + 6๐‘ฅ + 3 = 0 0 = (3๐‘ฅ + 3)(๐‘ฅ + 1) ๐‘ฅ = โˆ’1 ๐‘ฆ = (โˆ’1) 3 + 3(โˆ’1)2 + 3(โˆ’1) ๐‘ฆ = โˆ’1 + 3 โˆ’ 3 ๐‘ฆ = โˆ’1 C.P (โˆ’1, โˆ’1) ๐‘ฆโ€ = 6๐‘ฅ + 6 ๐‘ฆโ€ = 6(โˆ’1) + 6 ๐‘ฆโ€ = 0 0 = 6๐‘ฅ + 6 ๐‘ฅ = โˆ’1 P.I (โˆ’1, โˆ’1) ๐‘ฅ = 0; ๐‘ฆ = 0 ๐‘ฆ = 0 0 = ๐‘ฅ(๐‘ฅ 2 + 3๐‘ฅ + 3)

3. )y = 36 + 12x โˆ’ xยณ ๐‘ฆโ€™ = 12 โˆ’ 3๐‘ฅ 2 = 0 0 = โˆ’3(โˆ’4 + ๐‘ฅ 2 ) ๐‘ฅ = ยฑ2 ๐‘ฆ = 36 + 12(2) โ€“ (2)3 ๐‘ฆ = 36 + 24 โˆ’ 8 76

๐‘ฆ = 20 C.P. (2,52) (โˆ’2,20) ๐‘ฆโ€ = 0 = โˆ’6๐‘ฅ ๐‘ฅ = 0๐‘ฆ = 36 P.I (0, 36) Interceps (0,36)

4. )y = 2x 3 โˆ’ 9x 2 + 12x โˆ’ 2 ๐‘ฆโ€™ = 6๐‘ฅ 2 โ€“ 18๐‘ฅ + 12 0 = 6(๐‘ฅ 2 โˆ’ 3๐‘ฅ + 2) 0 = (๐‘ฅ โ€“ 2) (๐‘ฅ โ€“ 1) ๐‘ฅ = 2๐‘ฅ = 1 ๐‘ฆ = 2(2)3 โˆ’ 9(2) 2 + 12(2) โ€“ 2 ๐‘ฆ = 16 โ€“ 36 + 24 โ€“ 2 ๐‘ฆ = 2 ๐‘ฆ = 3

C.P. (2,2) (1,3) ๐‘ฆโ€ = 12๐‘ฅ โ€“ 18 ๐‘ฆโ€ = 12(2) โ€“ 18 = 6 minima ๐‘ฆโ€ = 12(1) โ€“ 18 = โˆ’6 maxima ๐‘ฆโ€ = 0 = 6(2๐‘ฅ โˆ’ 3) ๐‘ฅ = 1.5 ๐‘ฆ = 2.5 P.I (1.5, 2.5) ๐‘ฅ = 0 ; ๐‘ฆ = โˆ’2 77

๐‘ฆ = 0; ๐‘ฅ = 5. )y = 28 โˆ’ 15x + 6xยฒ โˆ’ xยณ yโ€™ = -15 + 12x โ€“ 3x2 yโ€™ = -3(5 - 4x + x2) no. critical points yโ€ = 12 โ€“ 6x = 0 x=2 y = 14 P.I = (2,14)

x y

-1 50

0 28

1 18

2 14

3 10

4 0

5 -22

APPLICATION OF DERIVATIVES 1. A box is to be made of a piece of cardboard 16x10in by cutting equal squares out the corners and turning up the sides. Find the volume of the largest box that can be made in this way. ๐‘Ž๐‘ฃ = ๐‘ฅ(10 โˆ’ 2๐‘ฅ)(16 โˆ’ 2๐‘ฅ) ๐‘ฃ = 2(10 โˆ’ 2๐‘ฅ) (16 โ€“ 2๐‘ฅ) 2) ๐‘ฃ = ๐‘ฅ(160 โˆ’ 20๐‘ฅ โˆ’ 32๐‘ฅ + 4๐‘ฅ ๐‘ฃ = 2(10 โ€“ 4) (16 โ€“ 4) ๐‘ฃ = 160๐‘ฅ โˆ’ 52๐‘ฅยฒ + 4๐‘ฅ 3 ๐‘ฃ = 2(6) (12) ๐‘ฃ โ€ฒ = 160 โˆ’ 104๐‘ฅ + 12๐‘ฅยฒ = 0 ๐‘ฃ = 144 ๐‘–๐‘›3 โ€ฒ 2 ๐‘ฃ = 12๐‘ฅ โˆ’ 104๐‘ฅ + 160 = 0 ๐‘ฃ โ€ฒ = 6๐‘ฅ 2 โˆ’ 52๐‘ฅ + 80 = 0 ๐‘ฃ โ€ฒ = 3๐‘ฅ 2 โˆ’ 26๐‘ฅ + 40 = 0 โˆ’๐‘ ยฑ โˆš๐‘ 2 โˆ’ 4๐‘Ž๐‘ ๐‘ฅ= 2๐‘Ž 26 ยฑ โˆš262 โˆ’ 4(3)(40) ๐‘ฅ= 2(3) 26 ยฑ โˆš676 โˆ’ 480 ๐‘ฅ= 6 26 ยฑ โˆš196 ๐‘ฅ= 6 26 ยฑ 14 ๐‘ฅ= 6 40 20 ๐‘ฅ1 = = = 6.67 6 3 ๐‘ฅ2 = 2

78

2. Find the area of the largest rectangle that can be inscribed in a given circle. A = 4xy xยฒ + yยฒ = rยฒ yยฒ = rยฒ โˆ’ xยฒ y = โˆšr 2 โˆ’ x 2 A = 4xโˆšr 2 โˆ’ x 2 1 ๐ดโ€ฒ = 4โˆš๐‘Ÿ 2 โˆ’ ๐‘ฅ 2 + 4๐‘ฅ ( ) (๐‘Ÿ 2 โˆ’ ๐‘ฅยฒ)โˆ’1/2 (โˆ’2๐‘ฅ) 2 4๐‘ฅ 2 ๐ดโ€™ = 4(๐‘Ÿ 2 โ€“ ๐‘ฅ 2 )1/2 โˆ’ โˆš๐‘Ÿ 2โˆ’๐‘ฅ2 2 2) 2 4(๐‘Ÿ โˆ’ ๐‘ฅ โˆ’ 4๐‘ฅ ๐ดโ€ฒ = =0 โˆš๐‘Ÿ 2 + ๐‘ฅ 2 4๐‘Ÿ 2 8๐‘ฅ 2 = 8 8 ๐‘Ÿ2 = ๐‘ฅยฒ 2 r โˆš2r x= = 2 โˆš2 2 y = โˆšr + x 2 y = โˆšr 2 โˆ’ r

r2 2

โˆš2r =x 2 โˆš2 2x = 2y = rโˆš2 A = 4xy rโˆš2 rโˆš2 A = 4( )( ) = 2rยฒ 2 2 y=

=

3. Find the altitude of the largest circular cylinder that can be inscribed in a cone of radius r and height h. v = ฯ€x 2 y ๐‘ฃ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ = ๐œ‹๐‘ฅ 2 ๐‘ฆ x hโˆ’y = r h r(h โˆ’ y) x= h ๐œ‹๐‘Ÿ 2 (โ„Ž โˆ’ ๐‘ฆ)2 ๐‘ฆ ๐‘ฃ๐‘๐‘ฆ๐‘™๐‘–๐‘›๐‘‘๐‘’๐‘Ÿ = โ„Ž2 2 ฯ€r vโ€ฒ = [(h โˆ’ y)ยฒ + 2(h โˆ’ y)(โˆ’1) y] = 0 h 2 (h โˆ’ y) โˆ’ 2y(h โˆ’ y) = 0 (h โˆ’ y)2 = 2y(h โˆ’ y) 79

h โˆ’ y = 2y h = 3y h y= 3

x=

h r (h โˆ’ 3)

h 2 rh x=3 h 2 x= 3r 2r 2 h v = ฯ€( ) ( ) 3 3 4ฯ€r 2 h v= 27

USE OF AUXILLARY VARIABLE 1. Find the shape of the largest rectangle that can be inscribed in a given circle. ๐ด = 4๐‘ฅ๐‘ฆ ๐‘ฅยฒ + ๐‘ฆยฒ = ๐‘Ÿยฒ ๐ดโ€ฒ = 4๐‘ฅ๐‘ฆ โ€ฒ + 4๐‘ฆ ๐ด = 4(๐‘ฅ๐‘ฆ โ€ฒ + ๐‘ฆ) = 0 ๐‘ฅ๐‘ฆ โ€ฒ + ๐‘ฆ = 0 ๐‘ฆ ๐‘ฆโ€ฒ = โˆ’ ๐‘ฅ 2๐‘ฅ + 2๐‘ฆ๐‘ฆ โ€ฒ = 0 ๐‘ฅ ๐‘ฆโ€ฒ = โˆ’ ๐‘ฆ โ€ฒ โ€ฒ ๐‘ฆ =๐‘ฆ ๐‘ฆ ๐‘ฅ โˆ’ =โˆ’ ๐‘ฅ ๐‘ฆ 2 โˆš๐‘ฆ โˆ’ โˆš๐‘ฅ 2 ๐‘Ÿโˆš2 ๐‘ฅ=๐‘ฆ= 2 ๐ด = 2๐‘Ÿยฒ

2. What odd numbers added to its reciprocal gives the minimum sum? 1 ๐‘ =๐‘ฅ+ ๐‘ฅ 80

๐‘  โ€ฒ = 1 + (โˆ’ 1 0= 1โˆ’ 2 ๐‘ฅ 1 =1 ๐‘ฅ2

1 ) ๐‘ฅ2

โˆš1 = ๐‘ฅ 2 ๐‘ฅ = ยฑ1

3. What number exceeds its square by the maximum amount? ๐‘ฅ ๐‘ฅยฒ ๐‘ฆ = ๐‘ฅ โˆ’ ๐‘ฅยฒ ๐‘ฆ โ€ฒ = 1 โˆ’ 2๐‘ฅ = 0 1 = 2๐‘ฅ ๐Ÿ ๐’™= ๐Ÿ 4. The sum of two numbers is k. find the minimum value of the sum of their squares. ๐‘ฅ+๐‘ฆ =๐‘˜ ๐‘ฅ =๐‘˜โˆ’๐‘ฆ ๐‘Ÿ = ๐‘ฅ2 + ๐‘ฆ2 ๐‘Ÿ = (๐‘˜ โˆ’ ๐‘ฆ)2 + ๐‘ฆยฒ ๐‘Ÿ โ€ฒ = 2(๐‘˜ โˆ’ ๐‘ฆ)(โˆ’1) + 2๐‘ฆ = 0 ๐‘ฆ =๐‘˜โˆ’๐‘ฆ 2๐‘ฆ = ๐‘˜ ๐‘˜ ๐‘ฆ= 2 ๐‘Ÿ = ๐‘ฅ2 + ๐‘ฆ2 ๐‘˜ 2 ๐‘Ÿ = (๐‘˜ โˆ’ ๐‘ฆ) + ( ) 2 2

๐‘Ÿ = ๐‘˜ 2 โˆ’ 2๐‘˜๐‘ฆ + ๐‘ฆ 2 +

๐‘˜2 4

๐‘˜ ๐‘˜ 2 ๐‘˜2 ๐‘Ÿ = ๐‘˜ โˆ’ 2๐‘˜ ( ) + ( ) + 2 2 4 2 2 ๐‘˜ ๐‘˜ ๐‘Ÿ = ๐‘˜2 โˆ’ ๐‘˜2 + + 4 4 ๐’Œ๐Ÿ ๐’“= ๐Ÿ 2

81

5. The sum of two numbers is k. find the minimum value of their cubes. ๐‘ฅ+๐‘ฆ =๐‘˜ ๐‘ฅ =๐‘˜โˆ’๐‘ฆ ๐‘Ÿ = ๐‘ฅ3 + ๐‘ฆ3 ๐‘Ÿ = (๐‘˜ โˆ’ ๐‘ฆ)3 + ๐‘ฆยณ ๐‘Ÿ โ€ฒ = 3(๐‘˜ โˆ’ ๐‘ฆ)2 (โˆ’1) + 3๐‘ฆ 2 = 0 โˆš๐‘ฆ 2 = โˆš(๐‘˜ โˆ’ ๐‘ฆ)2 ๐‘ฆ =๐‘˜โˆ’๐‘ฆ 2๐‘ฆ = ๐‘˜ ๐‘˜ ๐‘ฆ= 2 ๐‘Ÿ = ๐‘ฅ3 + ๐‘ฆ3 ๐‘Ÿ = (๐‘˜ โˆ’ ๐‘ฆ)3 + ๐‘ฆ 3 ๐‘˜ 3 ๐‘˜ 3 ๐‘Ÿ = (๐‘˜ โˆ’ ) + ( ) 2 2 ๐‘˜ 3 ๐‘˜ 3 ๐‘˜3 ๐‘˜3 ๐‘Ÿ =( ) +( ) ๐‘Ÿ= + 2 2 8 8

๐‘˜3 ๐‘Ÿ= 4

6. The sum of two + number is 2. Find the sum of the cube of one number and the square of the other. ๐‘ฅ + ๐‘ฆ = 2 ๐‘ฅ = 2โ€“ ๐‘ฆ ๐‘Ÿ = ๐‘ฅ3 + ๐‘ฆ2 ๐‘Ÿ = (2 โˆ’ ๐‘ฆ)3 + ๐‘ฆ 3 ๐‘Ÿ โ€ฒ = 3(2 โˆ’ ๐‘ฆ)2 (โˆ’1) + 2๐‘ฆ = 0 2๐‘ฆ = 3(4 โˆ’ 4๐‘ฆ + ๐‘ฆ 2 ) ๐‘Ÿ โ€ฒ = 12 โˆ’ 12๐‘ฆ + 3๐‘ฆ 2 โˆ’ 2๐‘ฆ ๐‘Ÿโ€™ = 12 โ€“ 14๐‘ฆ + 3๐‘ฆ 2 = 0 3๐‘ฆ 2 โˆ’ 14๐‘ฆ + 12 = 0 14 ยฑ โˆš142 โˆ’ 4(3)(12) ๐‘ฆ= 2(3) 14 ยฑ โˆš196 โˆ’ 144 ๐‘ฆ= 6 14 ยฑ โˆš52 ๐‘ฆ= 6 14 ยฑ 2โˆš13 ๐‘ฆ= 6 7 + โˆš13 ๐‘ฆ1 = = 3.54 3 7 โˆ’ โˆš13 ๐‘ฆ2 = = 1.13 3 ๐‘ฅ = 2 โ€“ 1.13 = 0.87 ๐‘Ÿ = 0.873 + 1.132 ๐‘Ÿ = 1.94 82

Name: Course/Year & Section: Assignment no.7: AUXILLARY VARIABLE 1. The sum of two numbers is 4. Find the sum of the cube of one number and the square of the other.

2. A balloon leaving the ground 60ft from an observer, rises vertically at the rate of 10ft/s. how fast the balloon receding from the observer, after 8 seconds? d= vt s 2 = 602 + (10t)2 sยฒ = 3600 + 100tยฒ 83

s = โˆš3600 + 100tยฒ s = โˆš100(36 + tยฒ) s = 10โˆš36 + tยฒ s = 10(36 + tยฒ)1/2 ds dt ds dt ds dt ds

=

10 2

(36 + t 2 )-1/2(2t)

= 10t/(36 + tยฒ )1/2 = 10(8)/(36 + 8ยฒ)1/2

= 80/(100)1/2 ds 80 = dt 10 ds = 8 ft /s dt dt

2. As a man walks across a bridge at the rate of 5ft/s , a boat passes directly beneath him at 10ft/s. if the bridge is 30ft after water, how fast are the man and the boat separating 3s later? d = vts2 = x 2 + y 2 + z 2 sยฒ = (5t)2 + (30)2 + (10t)2 sยฒ = 25tยฒ + 900 + 100tยฒ โˆšs2 = โˆš125t 2 + 900 s = โˆš125t 2 + 900 ds 1 = 2 (125t 2 + 900)-1/2(250t) dt ds 125t = dt 125t 2 + 900 ds 125(3) = dt โˆš(125(3)2 + 900 ds 375 = 1 dt (1125 + 900)2 ds = 375/(2025)1/2 dt ds 375 = dt 45 ds ft = 8.33 dt s

84

4. A man on the wharf 20ft above the water pulls a rope to which the boat is attached, at the rate of 4ft/s. at what rate is the boat approaching the wharf when there is 25ft of rope out? 2 2 2 s =x +y (4t)2 = 202 + x 2 16t 2 = 400 + x 2 dx 32t= 2x dt r2 = x2 + y2 โˆšx 2 = โˆšr 2 โˆ’ y 2 x = โˆšr 2 โˆ’ y 2 =โˆšr 2 โˆ’ 202 =โˆšr 2 โˆ’ 400 1 dv 1 dr = (r 2 โˆ’ 400)โˆ’2 (2r ) dt 2 dt ๐‘Ÿ ๐‘‘๐‘Ÿ/๐‘‘๐‘ก = (๐‘Ÿ2 โˆ’ 400)1/2 4(4๐‘“๐‘ก/๐‘ ) = 1 (๐‘Ÿ 2 โˆ’ 400)2 25(4) 100 = = 2 (25 โˆ’ 400) (625 โˆ’ 400)1/2 100 = (225)1/2 ๐‘‘๐‘ฅ 100 20 = = = 6.667๐‘“๐‘ก๐‘  ๐‘‘๐‘ก 5 3

5. Water is flowing into a coined reservoir 20ft deep to 10ft across the top, at the rate of 15cu ft/min. Find how fast the surface is rising when the water is 8ft deep. ๐œ‹๐‘Ÿ 2 โ„Ž ๐‘‰= 3 ๐œ‹โ„Ž โ„Ž2 ๐‘‰= ( )2 3 4 ๐œ‹โ„Ž3 ๐‘‰= 48 5 ๐‘Ÿ โ„Ž = , ๐‘Ÿ= 204 โ„Ž 4 ๐‘‘๐‘ฃ 3๐œ‹โ„Ž2 ๐‘‘โ„Ž = ๐‘‘๐‘ก 48 ๐‘‘๐‘ก 85

๐œ‹(8)2 ๐‘‘โ„Ž 15 = 16 ๐‘‘๐‘ก ๐‘‘โ„Ž 15(16) 240 60 15 = = = = = 1.194 ๐‘“๐‘ก/๐‘š๐‘–๐‘› ๐‘‘๐‘ก ๐œ‹(64) ๐œ‹(64) ๐œ‹(16) 4๐œ‹

Name: Course/Year & Section: Assignment no.8: 1. Water is flowing into a vertical cylinder tank at the rate of 24 cu. ft/min. if the radius of the tank is 4ft., how fast is the surface rising? v = ฯ€r 2 h v = ฯ€(4)2 h v = 16ฯ€h dv 16ฯ€dh = dt dt 16ฯ€dh 24 = dt 24ft 3 dh = min 2 dt 16ฯ€ft dh = 0.48ft/min dt

2. Water flows into a vertical cylindrical tank at 12ftยณ/min., the surface rises 6in/min., find the radius of the tank.

86

dh 6in 1ft = โˆ— = 0.5ft/min dt min 12in v = ฯ€rยฒh dv ฯ€r 2 dh = dt dt 12ft 0.5ft = ฯ€r 2 ( ) min min 24 โˆš = rยฒ ฯ€ r = 2.76ft

3. A rectangular through is 10ft long and 3ft wide. Find how fast the surface rises, if the water flows in at the rate of 12ftยณ/min. v = lwh v = 10(3)(h) dv 30dh = dt dt 12ft 3 30ft 2 dh = min dt 12ft 3 dh = min2 dt 30ft dh 2ft = dt 5min dh 0.4ft = dt min 4. A triangular through is 10ft long, 4ft across the top and 4ft deep. If the water flows in at the rate of 3 cu. ft/min., find how fast the surface is rising when the water is 6 inches deep?

87

v=

lwh 2

v=

lh2 2

10 (2h)dh dv = 2 dt dt 3=

10(0.5)dh dt

dh 3 = dt 5 dh = 0.6ft/min dt

5. A triangular through is 10ft long, 6ft across the top and 3ft deep. If the water flows in at the rate of 12 cu. ft/min., find how fast the surface is rising when the water id 6in deep. 6 x = 3 h x = 2h w = 2h lwh v= 2 l(2h)(h) v= 2 v = lhยฒ dv 2hdh = 10 ( ) dt dt 20(0.5)dh 12 = dt 10dh 12 = dt dh ft = 1.2 dt min

88

Square root โˆš8.73 y = โˆšx dy = ยฝx-1/2 dx dx dy = 2โˆšx x=9 โˆ†x = 8.73 โˆ’ 9 dx = โˆ’0.27 0.27 dy = โˆ’ 2โˆš9 0.27 dy = โˆ’ 6 dy = โˆ’0.045 โˆš8.73 = y + dy โˆš8.73 = 3 โˆ’ 0.045 โˆš8.73 = 2.995 โˆš15 dx dy = 2โˆšx x = 16 โˆ†x = 15 โˆ’ 16 dx = โˆ’1 89

dy = โˆ’

1

2โˆš16 1 dy = โˆ’ 8 dy = โˆ’0.125 โˆš15 = y + dy โˆš15 = 4 โˆ’ 0.125 โˆš15 = 3.875 โˆš17 x = 16 โˆ†x = 17 โˆ’ 16 dx = 1 1 dy = 2โˆš16 1 dy = 8 dy = 0.125 โˆš17 = y + dy โˆš17 = 4 + 0.125 โˆš17 = 4.125 cube root 3

โˆš26 3 y = โˆš26 y = x1/3 dy = 1/3x-2/3dx dx dy = 3 3โˆšx 2 x = 27 dx = 26 โˆ’ 27 dx = โˆ’1 1 dy = โˆ’ 3 3 โˆš272 1 dy = โˆ’ 3(9) 1 dy = โˆ’ 27 dy = โˆ’0.037 3 โˆš26 = 3 โˆ’ 0.037 3 โˆš26 = 2.963 Fourth root

90

4โˆš17

y =4โˆšx y = x1/4 dy = 1/4x-3/4dx dx dy = 4 4โˆšx 3 x = 16 dx = 17 โˆ’ 16 dx = 1 1 dy = 4 4โˆš163 1 dy = 32 dy = 0.03125 4 โˆš17 = 2 + 0.03125 4 โˆš17 = 2.03125

Newtonโ€™s Law of Approximation y =2x 3 + 3x 2 โˆ’ 12x + 5 yโ€™ = 6๐‘ฅ 2 + 6๐‘ฅ โˆ’ 12 F(2)= 2(2)3 + 3(2)2 โˆ’ 12(2) + 5 = 9 Fโ€™(2)= 6(2)2 + 6(2) โˆ’ 12 = 24 f (x )

9

x2 = x1 - f(x 1) = 2-24 =1.625 1

F(1.625)=2.0039 Fโ€™(1.625)= 13.5937 x2 = 1.625 โˆ’

2.0039 = 1.4775 13.5937

F(1.4775)=0.0066 Fโ€™(1.4775)=9.9630 x2 = 1.4775 โˆ’

0.0066 = 1.4768 9.9630

91

F(1.4768)=0.2628 Fโ€™(1.4768)=6.9928 x2 = 1.4768 โˆ’

0.2638 = 1.4392 6.9928

F(1.4392)=0.0944 Fโ€™(1.4392)=9.0630 x2 = 1.4392 โˆ’

0.0944 = 1.446 9.0630

F(1.4496)=0.0010 Fโ€™(1.4496)=9.3056 x2 = 1.446 โˆ’

0.001 = 1.4494 9.3056

Derivatives of Trigonometric Functions d dฮธ = sin ฮธ = cos ฮธ dx dx d dฮธ = cos ฮธ = โˆ’ sin ฮธ dx dx d dฮธ = tan ฮธ = sec ยฒฮธ dx dx d dฮธ = cot ฮธ = โˆ’ csc ยฒฮธ dx dx d dฮธ = sec ฮธ = sec ฮธ tan ฮธ dx dx d dฮธ = sec ฮธ = โˆ’ csc ฮธ cot ฮธ dx dx Examples 1. )y = sin 3x

92

dy = 3 cos 3x dx 2. )x = cot 4t dx = โˆ’4 sin 4t dt 3. )w = tan 2ฮธ dw = 2 secยฒ 2ฮธ dฮธ 4. )z = sec

y 2

dz y y = 1/2 sec tan dy 2 2 5. )y = cot 5x dy = โˆ’5 csc ยฒ 5x dx 6. )y = csc 7x dy = โˆ’7 csc 7x cot 7x dx 7. )v = 3 cos 2u dv = โˆ’6 sin 2u du 8. )x = sec 3 2t dx = 6 secยฒ 2t sec 2t tan 2t dt dx = 6 secยณ 2t tan 2t dt 9. )y = x 2 sin

x 2

93

dy sin y x 2 x = 2x + cos dt 2 2 2 10. )y = cos4 t โˆ’ sin4 t dy = 4cos3 t(โˆ’ sin t) โˆ’ 4sin3 t cos t dt dy = โˆ’4cos3 t sin t โˆ’ 4cost sin3 t dt dy = โˆ’4 sin t cos t(cos2 t + sin2 t) dt dy = โˆ’4 sin t cos t dt sin(2ฮธ) = 2sinฮธcosฮธ sin(2ฮธ) = โˆ’2(2 sin t cos t) sin(2ฮธ) = โˆ’2 sin 2t

11. )y = sec 2 ฮธ โˆ’ tan2 ฮธ dy = 2 secฮธsecฮธtanฮธ โˆ’ 2 tanฮธsecฮธ dt ๐๐ฒ =๐ŸŽ ๐๐ญ 12. )r = cosฮธcotฮธ dr = โˆ’ sin ฮธcotฮธ + cosฮธ (โˆ’csc 2 ฮธ) dt dr = โˆ’sinฮธcotฮธ โˆ’ cosฮธcsc 2 ฮธ dt dr cosฮธ = sinฮธ โˆ’ cosฮธcsc 2 ฮธ dt sinฮธ

94

dr = โˆ’cosฮธ โˆ’ cosฮธcsc 2 ฮธ dt dr = โˆ’cosฮธ (1 + csc 2 ฮธ) dt Derivatives of Logarithmic Functions Exponential dv d lnv = dx dx v dv m d log10 v = dx dx v Derivatives of Exponential Functions d v dv a = av ln d dx dx d dv = ey = ev dx dx

Examples: 1. )y = ln(7 โˆ’ 3x) dy โˆ’3 = dx 7 โˆ’ 3x 2. )y = ln(2x 3 + x โˆ’ 1) dy 6x 2 + 1 = 3 dx 2x + x โˆ’ 1 3. )w = ln โˆša2 โˆ’ x 2 1

w = ln(a2 โˆ’ x 2 )2 โˆ’1 1 ln 2 (a2 โˆ’ x 2 ) 2 (โˆ’2x) w= 1

(a2 โˆ’ x 2 )2

w=

a2

โˆ’x โˆ’ x2

95

4. )y = log10

sin x a

m x dy a cos a = x dx sin a x dy m cos a = x dx a sin a dy m x = cos dx a a 5. )y = e2x

3

3

y = e2x (6x 2 ) 3 y = 6x 2 e2x y = eโˆ’3x y = eโˆ’3x (โˆ’3)

dy = โˆ’3eโˆ’3x dx ๐Ÿ”. ). x = 102t dy = 102t ln 10 (2) dx dy = 2(102t ln 10) dx

96

Name: Course/Year & Section: Assignment no.9 Newtonโ€™s Law of Approximation 1. ๐‘ฅ 3 + 5๐‘ฅ + 2 = 0

2. ๐‘ฅ = โˆ’4 tan 3๐‘ฅ

3. ๐‘ค = 2 csc(1 โˆ’ 3๐‘ฅ) 97

๐‘ฅ

4. ๐‘ฆ = 4 cot 4

5. ๐‘ฆ = 6 sec 3๐‘ฅ

๐‘ฅ

6. ๐‘ฆ = 12 sin 2

๐œ‹ ๐‘ฅ 7. ๐‘ฆ = tan( โˆ’ ) 4 3

๐œ‹ ๐‘ฅ 8. ๐‘ฆ = sin ( โˆ’ ) 4 3

9. ๐‘ง = cos ยณ 2๐‘ฅ

98

10. ๐‘ฃ = sin ยฒ 3๐‘ก

11. ๐‘ฆ = tan ยฒ 4๐‘ก

99

Related Documents


More Documents from "Corriur Ap-apid"

Untitled.pdf
May 2020 3
Questionaire '10.docx
June 2020 4
Filipino Rb.docx
May 2020 10
Filipino.docx
May 2020 13