CLASSIFICATION OF FUNCTIONS
functions
algebraic
trencendendal
rational
rational
integral
fractional
elementary
trigometric inverse trigo
higher
exponential logarithmic
Relation Is any set of one or more ordered pair.
Function Is a rule of correspondence between empty set such that two each element of the 1st set, there is corresponds one and only one element of the 2nd set.
Notation The function notation (f) (x) means the value of the function f at number x.
1
Vertical Line Test A graph of a relation is a function if any vertical line drawn passing through the graph intersects it at exactly one point. ๐(๐ฅ) = 2๐ฅ 2 + 5๐ฅ โ 3
It at exactly one point:
๐(2) = 2(2)2 + 5(2) โ 3 = 8 + 10 โ 3 ๐(2) = 15
๐ฆ = 2๐ฅ 2 + 5๐ฅ โ 3 ๐ฆ = 2๐ฅ 2 + 5๐ฅ โ 3 5 ๐ฆ + 3 = 2 (๐ฅ 2 + ๐ฅ) 2 25 5 25 + ๐ฆ + 3 = 2 (๐ฅ 2 + ๐ฅ + ) 8 2 16 49 5 2 ๐ฆ+ = 2 (๐ฅ + ) 8 4 ๐ฆ 49 5 2 โ โ + = (๐ฅ + ) 2 16 4 ๐ฆ 49 5 ๐ฅ=โ + โ 2 6 4
2
Kinds of Functions A. Constant function A constant function C is a function the range of which contain a single real number K Example: The graph shows a constant function y = 12. The value of y is 12 for any x.
For all real number in its domain C(x) =k
Domain: all real number
Y=k
Range: 12
3
B.
Identity function: ๐(๐ฑ) = ๐ฑ Evaluating any value for x will result in that same value.
For example, ๐(0) = 0 and ๐(2) = 2. The identity function is linear, ๐(๐ฅ) = 1๐ฅ + 0, with slope m=1 and y-intercept (0, 0).
๐(๐ฅ) = ๐ฅ
x
๐(๐ฅ)
0 2
0 2
The domain and range both consist of all real numbers.
4
C.
Linear function Is a function that can be written in the form of ๐(๐ฅ) = ๐๐ฅ + ๐ where m and
b are real numbers and m โ 0. Example: Graph the function f(x) = 2x โ 1.
The graph is always a line with either positive or negative slope. The domain and range both consist of all real numbers.
5
D. Absolute function The absolute value parent function, written as ๐(๐ฅ) = |๐ฅ|, is defined as To graph an absolute value function, choose several values of x and find some ordered pairs.
X
๐ฆ = |๐ฅ|
-2 -1 0 1 2
2 1 0 1 2
Plot the points on a coordinate plane and connect them.
Domain: All real Numbers Range: All real numbers greater than or equal to 0 (๐ฆ โฅ 0)
6
E.
Square Root Function: ๐(๐ฅ) = โ๐ฅ
Its domain is ๐ฅ| ๐ฅ โฅ 0 & its range is {๐ฆ|๐ฆ > 0| The parent function of the functions of the form f(x) = โx โ a + b is f(x) = โx.
Note that the domain of ๐(๐ฅ) = โ๐ฅ is ๐ฅ โฅ 0and the range is๐ฆ โฅ 0. The graph of ๐(๐ฅ) = โ๐ฅ โ ๐ + ๐ can be obtained by translating the graph of ๐(๐ฅ) = โ๐ฅ to a units to the right and then b units up.
7
๐(๐ฅ)
F. Rational Function: ๐(๐ฅ) = ๐ท(๐ฅ)
N(x) & D(x) are polynomial functioning ๐ท(๐ฅ) โ 0 Asymptotes: Is an imaginary line being approached but does not reached or intersected by a graph as it. Example: ๐(๐ฅ) = 1โ๐ฅ . X -4 -2 -1 -0.1 -0.01 0.01 0.1 1 2 4
f(x) -0.25 -0.5 -1 -10 -100 100 10 1 0.5 0.25
8
G. Greatest Integer Function: ๐บ(๐ฅ) = [๐ฅ] Domain of ๐บ(๐ฅ) = [๐ฅ] where [ ] denotes greatest integer function. Example: ๐(๐) =
๐ โ[๐] โ ๐
Domain: All real numbers Range: All real numbers
H. Piece wise Function These functions are defined compositely using several expressions on different interval domains. Example:
9
๐ฅ โ 2, ๐ฅ โค 0 ๐(๐ฅ) = { ๐ฅ + 3, ๐ฅ > 0
Domain: All real numbers Range: y > 3 & y <=-2 I. Signum Function The signum function, denoted sgn, is defined as follows: 1, ๐ ๐๐(๐ฅ) = {โ1, 0,
๐ฅ>0 ๐ฅ<0 ๐ฅ=0
Graph:
10
Domain: All real numbers Range: y = 1, -1, 0 J. Unit Step Function The Unit-step function is defined by ๐ข. (๐ก) = {0 ๐๐ ๐ โค ๐ก < ๐} That is, u is a function of time t, and u has value zero when time is negative and value one when time is positive.
Domain: All real numbers Range: 1 & 0
K. Transcendental Function Is a function that does not satisfy a polynomial equation whose coefficients are themselves roots of polynomials, in contrast to an algebraic function, which does satisfy such an equation. Example: The following functions are transcendental: ๐1 (๐ฅ) = ๐ฅ ๐ ๐2 (๐ฅ) = ๐ ๐ฅ , ๐ โ 0,1 ๐3 (๐ฅ) = ๐ฅ ๐ฅ = 2๐ฅ 11
1
๐4 = ๐ฅ 2 ๐5 (๐ฅ) = log ๐ ๐ฅ. ๐ โ 0,1 ๐6 (๐ฅ) = sin ๐ฅ
Note that in particular for ฦ2 if we set c equal to e, the base of the natural logarithm, then we get that ex is a transcendental function. Similarly, if we set
c equal to e in ฦ5, then we get that ln(x), the natural logarithm, is a transcendental function. For more information on the second notation of ฦ3, see tetration.
๐ธ๐ฅ. ๐ผ๐ ๐(0) = ๐ฅ 2 โ ๐ฅ + 3 Find ๐. ๐(0) = 02 โ 0 + 3 = 3 ๐. ๐(2) = 22 โ 2 + 3 = 4 โ 2 + 3 = 5 ๐. ๐(โ4) = (โ4)2 โ (โ4) + 3 = 16 + 4 + 3 = 23 ๐. ๐(โ2๐ฅ) = (โ2๐ฅ)2 โ (โ2๐ฅ) + 3 = 4๐ฅ 2 + 2๐ฅ + 3
12
Name: Course/Year & Section:
ASSIGNMENT no.1 One Value & Many Valued Functions 1. ๐ผ๐๐น(๐ฆ) = ๐ฆ(๐ฆ โ 3)2 , Find: ๐น(๐) = ๐(๐ โ 3)2 = ๐(๐ 2 โ 6๐ + 9) = ๐๐ โ ๐๐๐ + ๐๐
๐น(0) = 0(0 โ 3)2 = 0(9) =๐ ๐น(3) = 3(3 โ 3)2 = 3(0)2 =๐ ๐น(โ1) = โ1(โ1 โ 3)2 = ๏ญ1(๏ญ4)2 = ๏ญ1(16) = ๏ญ๐๐ ๐น(๐ฅ + 3) = (๐ฅ + 3)(x + 3 โ 3)2 = (๐ฅ + 3)(x 2 ) = ๐๐ (๐ + ๐) 2. ๐ผ๐๐(๐ฅ) = 4๐ฅ 4 โ 3๐ฅ 3 + 2๐ฅ โ 2, Find: ๐. ๐(2) = 4(2)4 โ 3(2)3 + 2(2) โ 2 = 4(16)๏ญ 3(8) + 4 ๏ญ 2 = 64 ๏ญ 24 + 4 ๏ญ 2 = ๐๐ ๐. ๐(โ2) = 4(โ2)4 โ 3(โ2)3 + 2(โ2) โ 2 13
= 4(16) โ 3(โ8) โ 4 โ 2 = 64 + 24 ๏ญ 4 ๏ญ 2 = ๐๐
1 1 4 1 3 1 ๐. ๐ ( ) = 4 ( ) โ 3 ( ) + 2 ( ) โ 2 2 2 2 2 1 1 1 3 โ๐ = 4( )๏ญ 3( ) + 1 ๏ญ 2 = ๏ญ โ 1 = 16 8 4 8 ๐
๐. ๐(โ๐ฅ) = 4(โ๐ฅ)4 โ 3(โ๐ฅ)3 + 2(โ๐ฅ) โ 2 = 4(๐ฅ 4 )๏ญ 3(โ๐ฅ 3 ) + (โ2๐ฅ) ๏ญ 2 = ๐๐๐ + ๐๐ฑ ๐ โ ๐๐ฑ โ ๐
3. ๐ผ๐๐(๐ฅ) = ๐๐๐ ๐ฅ, Find: ๐. ๐(0) = ๐๐๐ (0) = ๐
1 1 ๐. ๐ ( ๐) = ๐๐๐ ๐ 2 2 = ๐๐๐ 90 = ๐
๐. ๐(๐) = ๐๐๐ ๐ = ๐๐๐ 180 = ๏ญ๐
๐. ๐(โ๐ฅ) = ๐๐๐ (โ๐ฅ) = ๐๐๐ ๐ e. ๐(๐ โ ๐ฆ) = ๐๐๐ (๏ฐ ๏ญ ๐ฆ) = ๐๐๐ (180 ๏ญ ๐ฆ) = ๏ญ ๐๐๐ ๐
4. ๐ผ๐ ๐(๐ฅ) = ๐ก๐๐ ๐ฅ, 14
Find: ๐ ๐ ๐. ๐ ( ) = ๐ก๐๐ 6 6 = ๐ก๐๐ 30 โ๐ = ๐ 1 1 ๐. ๐ (๐ฅ โ ๐) = ๐ก๐๐ (๐ฅ โ ฯ) 2 2 = ๐ก๐๐(๐ฅ โ 90) ๐ก๐๐ ๐ฅ ๏ญ ๐ก๐๐ 90 = 1 + ๐ก๐๐๐ฅ๐ก๐๐90 = ๐๐๐
๐๐๐๐๐๐
๐. ๐(โ๐ฅ) = ๐ก๐๐(โx) = โ ๐๐๐ ๐ Express ๐(2๐ฅ) as a function of ๐(๐ฅ). ๏น(2๐ฅ) = ๐ก๐๐ 2๐ฅ = 2๐ก๐๐ ๐ฅ = ๐๏ญ ๐๐๐๐ ๐ฑ
15
Examples: 1.) The amount of $1 @ 4% simple interest, as a function of time. ๐ผ = ๐๐๐ก ๐ผ = 1(0.04)๐ก ๐ฐ = ๐. ๐๐ ๐
2.) The volume of a sphere as a function of the radius. 4๐ 3 ๐ 3 4 ๐ = ๐ ๐3 3 ๐=
3.) The radius of the sphere as a function of the volume. 3
๐ =
โ3๐ฃ 4๐
4.)The length, e of an edge of a cube as a function of the surface area, A of a cube. e A = 6e2 ๐ด = 6๐ 2
e
๐ด
e = โ6
e
e
Definition of a Limit ๏ฎLet ๐(๐ฅ) be a function of x & let โaโ be constant. If there is a number L such that, in order to make a value of ๐(๐ฅ) as close to L as many be desired, it is sufficient to choose x close enough to a , but different from a ,then we say that the limit of ๐(๐ฅ) as a x approaches a , is L.
๐ฟ๐๐๐(๐ฅ) = ๐ฟ 16
๐ฅโ๐ ๐ฟ๐๐(2๐ฅ + 1) = 7 ๐ฅโ3 ๏ผ(2๐ฅ + 1)7๏ผ๏ผ โ |2๐ฅ โ 6|๏ผ โ โ 2 โ ๐ฟ๐๐ก๐ = 2 |๐ฅ โ 3|๏ผ
(2 โ 3) <
โ ๐ฅโ 3 2
It follows that |2๐ฅ โ 6| <โ From which 1(2๐ฅ + 1) โ 7 <โ |๐ฅ โ 3| < โโ2 โ 3 < โ ๐ฅโ2 โ 3 It follows that |2๐ฅ โ 6 | <โ From which ๐(2๐ฅ + 1) โ 7 <โ ๐ฟ๐๐๐๐ก (๐ฅ 2 + 1) = 5 ๐ฅ๏ฎ2 |(๐ฅ2 + 1) ๏ญ5| <โ |๐ฅ 2 ๏ญ 4| <โ |๐ฅ ๏ญ 2| ๏ญ |๐ฅ + 2| <โ |๐ด + ๐ต| โค |๐ด| + |๐ต| Since ๐ฅ + 2 = ๐ฅ ๏ญ 2 + 4, if follows that |๐ฅ โ 2| โค |๐ฅ โ 2| + 4 Thus if we choose |๐ฅ โ 2| < 8 |๐ฅ + 2| < 8 + 4
Theorem 1: The limit of the sum of two (or more) functions is equal to the sum of their limits.
17
๐ฟ๐๐ [๐ข(๐ฅ) + ๐ฃ(๐ฅ)] = ๐ฟ๐๐ ๐ข(๐ฅ) + ๐ฟ๐๐ ๐ฃ(๐ฅ) ๐ฅ๏ฎ๐ ๐ฅ๏ฎ๐ ๐ฅ๏ฎ๐
Theorem 2: The limit of the product of two or more functions is equal to the product of their limits. ๐ฟ๐๐ [๐ข(๐ฅ) ๐ข(๐ฅ)] = [๐ฟ๐๐ ๐ข (๐ฅ)] [๐ฟ๐๐ ๐ข(๐ฅ)] ๐ฅ๏ฎ๐ ๐ฅ๏ฎ๐ ๐ฅ๏ฎ๐ Theorem 3: The limit of the quotient of two functions is equal to the quotient of the limits, provided the limit of the denominator is not zero.
๐ฟ๐๐
๐ข(๐ฅ) ๐ฟ๐๐ ๐ข(๐ฅ) ๐ฅ๏ฎ๐ = ๐ฃ(๐ฅ) ๐ฟ๐๐ ๐ฃ(๐ฅ) ๐ฅ๏ฎ๐
๐ผ๐ ๐ฟ๐๐ ๐ฃ(๐ฅ) โ 0 ๐ฅ๏ฎ ๐
Examples: Theorem 1 Evaluate ๐ฟ๐๐ (๐ฅ 3 + 4๐ฅ) = ๐ฟ๐๐ ๐ฅ 3 + ๐ฟ๐๐ 4๐ฅ
๐ฅ ๏ฎ3
๐ฅ๏ฎ3 = 33 + 4(3) = 27 + 12 = ๐๐
๐ฅ๏ฎ3
Theorem 2 ๐ฟ๐๐ (๐ฅ 3 + 4๐ฅ) = [๐ฟ๐๐ ๐ฅ][๐ฟ๐๐ ๐ฅ][๐ฟ๐๐ ๐ฅ] + [๐ฟ๐๐ 4][๐ฟ๐๐ ๐ฅ] ๐ฅ ๏ฎ3
๐ฅ๏ฎ3
๐ฅ๏ฎ3
๐ฅ๏ฎ3
๐ฅโ3
๐ฅ๏ฎ3
= (3)(3)(3) + 4(3) = 27 + 12 = ๐๐
Lim
x3 โ9x+10 x2 โ4
18
Lim (x3 ๏ญ 9x + 10) = 0 Lim (x2 ๏ญ 4) = 0 ๐ฅ๏ฎ2
๐ฅ๏ฎ2
Lim (x2 ๏ญ 4) = 0 ๐ฅ๏ฎ2 ๐ฟ๐๐
[๐ฅ 2 + 2๐ฅ โ 5][๐ฅ โ 2] (๐ฅ 2 + 2๐ฅ โ 5) = ๐ฟ๐๐ (๐ฅ + 2)(๐ฅ โ 2) ๐ฅ+2 ๐ฅ๏ฎ2
๐ฅ๏ฎ2 22 + 2(2) โ 5 2+2 4+4โ5 = 4 ๐ = ๐ =
Right hand and Left hand limits ๐ฟ๐๐ ๐(๐ฅ) = ๐ฟ ๐ฅ๏ฎ ๐+ & mean by ๐ฅ ๏ฎ ๐+ that each x involved is greater than a. Right hand limit - the independent variable x approaches โaโ from the right. Left hand limit โ the independent variable x approaches โaโ from the left. It means that x ๏ฎ a- that each x involved is lesser than โaโ. #12: Limit of ๐ ๐๐๏ตโ๏ต as ๏ต approaches zero Theorem 4: If ๏ต is measured in ratios ๐ฟ๐๐
๐ ๐๐๏ต
๏ต
= 1
Area RB T 19
1 ๐ต๐ . ๐
๐ 2 1 = ๐ ๐๐๐ โ ๐ ๐ ๐๐ โ 2
๐ด๐
๐๐ต
=
๐ 2 ๐ ๐๐๏ต ๐๐๐ ๏ต = 2 ๐ต๐ ๐
๐
๐ถ๐๐ ๏ต =
๐ต๐ = ๐ ๐๐๐ ๏ต ๐
๐ = ๐ ๐ ๐๐ โ ๐
๐ = ๐๐ ๐๐๏ต Area of the sector
๏ต
๐ด๐ ๐๐ = =
2๐
(๏ฐ๐2)
๏ต
๏ต๐ 2 2
Area of SUB = 1โ2 (๐ต๐)(๐๐) 1 = ๐ (๐ ๐๐๐ ๏ต) 2 ๐๐ก๐๐๏ต = 2 ๐ ๐ฃ ๐ ๐ ๐ ๐๐ ๏ต๐๐๐ ๏ต
๐๐๐ ๏ต =
[
2
๐๐
๐๐ = ๐ ๐๐๐๏ต
๏ต๐2 <
2
๐2 ๐ก๐๐ ๏ต <
[๐ ๐๐๏ต ๐๐๐ ๏ต < ๏ต < ๐ก๐๐๏ต]
2
๐ต๐
]
2 1โ2
1 ๐ ๐๐๏ต
๏ต 1 < ๐ ๐๐๏ต ๐๐๐ ๏ต 1 ๏ต > > ๐๐๐ ๏ต ๐๐๐ ๏ต ๐ ๐๐ ๏ต ๐ถ๐๐ ๏ต <
1 > ๐ข๐๐ > 1 20
๐ถ๐๐ ๏ต >
๐ ๐๐๏ต
๏ต
> ๐๐๐ โ ๏ต
1 > 1 > 1 ๐ฟ๐๐
๐ ๐๐ ๏ต
๏ต
= 1
EXAMPLES: 1. ๐ฟ๐๐ (๐ฅ 2 + 3๐ฅ โ 5) ๐ฅ๏ฎ4 = 42 + 3 (4) โ 5 = 16 + 12 โ 5 = 23 2. ๐ฟ๐๐ (๐ฆ 3 โ 2๐ฆ + 7) ๐ฆ ๏ฎ3 = 33 โ 2(3) + 7 = 27 ๏ญ 6 + 7 = ๐๐
๏ข3 + ๏ข2 โ 8๏ข โ 12 3. ๐ฟ๐๐ 3 ๏ข โ 4๏ข2 โ 3๏ข + 18 ๏ข๏ฎ3 33 + 32 โ 8(3) โ 12 = 3 3 โ 4(3)2 โ 3(3) + 18 =
27+9โ24โ12 27โ36โ9+18
= ๐ต๐ ๐ณ๐๐๐๐
๏ข2 + 4๏ข + 4 = 0 (๏ข + 2)2 (๏ข โ 3) (๏ข + 2)2 (๏ข โ 3) = (๏ข + 2)(๏ข โ 3)2
21
=
๏ข +2 3+2 ๐ = = ๐ต๐ ๐ณ๐๐๐๐ ๏ข โ3 3โ3 ๐
4. ๐ฟ๐๐
๏ข3 + 7๏ข โ 6 2๏ข3 โ 11๏ข2 + 12๏ข + 9
๏ข๏ฎ3 33 โ 7(3) โ 6 = 2(3)3 โ 11 (3)2 + 12 (3) + 9 27 โ 21 โ 6 ๐ = ๐ผ๐๐
๐๐๐๐๐๐
54 โ 99 + 36 + 9 ๐ (๏ข + 1)(๏ข + 2)(๏ข โ 3) = (2๏ข + 1)(๏ข โ 3)2 =
=
(๏ข + 1)(๏ข + 2) (2๏ข + 1)(๏ข โ 3)
๏ข๏ฎ3 =
(3 + 1)(3 + 2) (2(3) + 1)(3 โ 3)
=
๐๐ ๐ต๐ ๐ณ๐๐๐๐ ๐
5. ๐ฟ๐๐ ๐ฅ๏ฎ
=
=
=
=
4๐ฅ 3 โ 3๐ฅ + 1 12๐ฅ 3 โ 8๐ฅ 2 โ ๐ฅ + 1
1 2
1 3 1 4 (2) โ 3 (2) + 1 1 3 1 2 1 12 (2) โ 8 (2) โ (2) + 1 1 1 4 (8) โ 3 (2) + 1 1 1 1 12 (8) โ 8 (2) โ 2 + 1 0 3 1 2 โ2 + 2 0 ๐ข๐๐๐๐๐๐๐๐ 0 22
(x + 1)(2x โ 1)2 = (12x + 4)(2x โ 1)2 =
(x + 1) (12x + 4)
1 3โ (2 + 1) ๐ = = 2= 1 10 ๐๐ (12 (2) + 4)
6. ๐ฟ๐๐
๐๐๐๐ ๐ ๐๐2 ๐
๏ฆ = 90 sin ๐ sin ๐ cos ๐ = = 2 ๐ ๐๐ ๐ cos ๐๐ ๐๐2 ๐ sin 90 1 = 2 cos 90๐ ๐๐ 90 0(1)2 =
๐ ๐๐๐
๐
7. ๐ฟ๐๐
๐ถ๐๐ 2๏ฆ ๐๐๐ ๏ฆ
ฯ 2 ๐๐๐ 180 = ๐ก๐๐ 90 โ๐ = ๐๐๐
๏ฆโ
8. ๐ฟ๐๐
๐๐๐ 2 ๏ฆ โ ๐ ๐๐2 ๏ฆ ๐ ๐๐๏ฆ ๐๐๐ ๏ฆ
๏ฆ ๏ฎ 90 ๐๐๐ ๏ฆ ๐๐๐ 2 ๏ฆ โ ๐ ๐๐2 ๏ฆ ๐ ๐๐๏ฆ ๐ฟ๐๐ ๐ฅ ๐ ๐๐๏ฆ ๐๐๐ ๏ฆ ๐๐๐ ๏ฆ ๐ ๐๐๏ฆ
23
๐๐๐ ๏ฆ (๐๐๐ 2 ๏ฆ โ ๐ ๐๐2 ๏ฆ) = ๐ ๐๐๏ฆ =
0 (0 โ 1) 0 = 1 1
= ๐
โ๐ฅ โ 2
9. ๐ฟ๐๐
โ๐ฅ 2 โ 4
๐ฅ๏ฎ2 ๐ฟ๐๐ โ
(๐ฅ โ 2)1 1 1 ๐ = โ = โ = (๐ฅ โ 2)(๐ฅ + 2) ๐ฅ+2 4 ๐
10. ๐ฟ๐๐
๐ฅโ3 โ๐ฅ 2 โ 9
= 0
๐ฅ๏ฎ 3 2
(๐ฅ โ 3)2
๐ฟ๐๐
1
(๐ฅ 2 โ 9)2 (๐ฅ โ 3)2 โ = (๐ฅ โ 3)(๐ฅ + 3) 3โ3 = โ 3+3
= โ
0 = ๐ 6
1
11. ๐ฟ๐๐
(๐ฅ 4 โ 4๐ฅ + 5๐ฅ 2 โ 4๐ฅ + 4)2 1
(๐ฅ 2 โ 3๐ฅ + 2)2 ๐ฅ๏ฎ2 1
1
(๐ฅ โ 2)2 (๐ฅ 2 + 1) 2 (๐ฅ โ 2)(๐ฅ 2 + 1) 2 ๐ฟ๐๐ [ ] = ๐ฟ๐๐ [ ] (๐ฅ โ 2)(๐ฅ โ 1) (๐ฅ โ 1) 1
(2 โ 2)(22 + 1) 2 =( ) 1
1
0 2 = ( ) 1
= ๐ 24
1
12. ๐ฟ๐๐
(๐ฅ 2 + 4๐ฅ โ 5)2 1
(๐ฅ 2 โ 4๐ฅ + 3)2 ๐ฅ๏ฎ 1 1
1
(๐ฅ + 5)(๐ฅ โ 1) 2 (๐ฅ + 5) 2 ๐ฟ๐๐ [ ] = ๐ฟ๐๐ [ ] (๐ฅ โ 3)(๐ฅ โ 1) (๐ฅ โ 3) 1
1
1+5 2 6 2 = ( ) = ( ) = โโ๐ 1โ3 โ2
13. ๐ฟ๐๐
4๐ฅ 3 โ 3๐ฅ + 1 12 ๐ฅ 3 โ 8 ๐ฅ 2 โ ๐ฅ + 1
1 2 (2๐ฅ โ 1)2 (4 ๐ฅ + 4) = (2๐ฅ โ 1)2 (12๐ฅ + 4) ๐ฅ๏ฎ
=
4(๐ฅ + 1) 4(3๐ฅ + 1)
=
(๐ฅ + 1) (3๐ฅ + 1)
1 +1 = 2 1 3 (2) + 1
3 =2 5 2
=
๐ ๐
25
Name: Course/Year & Section:
ASSIGNMENT no.2 Limits 1. Lim(2๐ฅ 2 + ๐ฅ + 4) ๐ฅโ โ1
= [2(๏ญ1)2 + (๏ญ1) + 4] = [2(1) ๏ญ 1 + 4] = ๐ 2. Lim(๐ฆ 2 + 5 โ 1) ๐ฆโ โ2
= [(๏ญ2)2 + 5 ๏ญ 1] = [4 + 5 ๏ญ 1] = ๐ 2๐ก 2 + 1 3. Lim 3 ๐กโ0 ๐ก + 3๐ก โ 4 2(0)2 + 1 = (0)3 + 3(0) โ 4 = โ
4. lim ๐กโ1
๐ ๐
(๐ก + 1)2 2(๐ก 2 + 3) (1+1)2 = 2[(1)2 + 3] =
(2)2 2(4)
=
๐ ๐
26
3๐ค 2 โ 4๐ค + 2 5. lim ๐คโ2 ๐ค3 โ 5 3(2)2 โ 4(2) + 2 = (2)3 โ 5 =
12 โ 8 + 2 8โ5
= ๐ 3๐ค 3 โ 2๐ค + 7 ๐คโโ1 ๐ค2 + 1
6. lim
=
3(โ1)3 โ 2(โ1) + 7 (โ1)2 + 1
=
โ3 + 2 + 7 1+1
= ๐
๐ ๐๐2 ๐ 7. lim 3 1 ๐โ ๐ ๐ก๐๐ ๐ 2
๐ ๐๐2 ๐ = ๐ ๐๐3 ๐ ๐๐๐ 3 ๐ ๐๐๐ 3 ๐ = ๐ ๐๐ ๐ . ๐ ๐๐3 ๐ 0 = 1 2
= ๐
8. lim๐ ๐โ
6
sin 2๐ sin ๐ tan ๐ =
2 ๐ ๐๐ ๐ ๐๐๐ ๐ 2 ๐๐๐ ๐ == ๐ ๐๐ ๐ ๐ก๐๐ ๐ ๐ก๐๐ ๐
2โ3 = 2 1 โ3
=
โ3 1 โ3
=๐
27
๐ฅ2 โ 1 9. lim 2 ๐ฅโ1 ๐ฅ + 3๐ฅ โ 4 (๐ฅ โ 1)(๐ฅ + 1) = (๐ฅ + 4)(๐ฅ โ 1) =
(๐ฅ + 1) (๐ฅ + 4)
1+1 1+4 ๐ = ๐ =
๐ฅ 2 + ๐ฅ โ 12 10. lim 2 ๐ฅโ3 2๐ฅ โ 7๐ฅ + 3 (๐ฅ + 4)(๐ฅ โ 3) = (2๐ฅ โ 1)(๐ฅ โ 3) ๐ฅ+4 2๐ฅ โ 1 3+4 = 2(3) โ 1 =
=
๐ ๐
2๐ฅ 2 โ ๐ฅ โ 3 ๐ฅโโ1 3๐ฅ 3 + 5๐ฅ + 2
11. lim
=
(๐ฅ + 1)(2๐ฅ โ 3) 3(โ1)3 + 5(โ1) + 2
(โ1 + 1)[2(โ1) โ 3] โ3 โ 5 + 2 0 = โ6 =
= ๐
28
2๐ฅ 3 โ 7๐ฅ โ 4 12. lim 2 ๐ฅโ4 ๐ฅ โ ๐ฅ โ 12 2(4)3 โ 7(4) โ 4 = (๐ฅ โ 4)(๐ฅ + 3) =
128 โ 28 โ 4 (4 โ 4)(4 โ 3)
= ๐ผ๐๐
๐๐๐๐๐๐
๐ฆ3 โ ๐ฆ2 โ ๐ฆ โ 2 13. lim 3 ๐ฆโ2 2๐ฆ โ5๐ฆ 2 + 5๐ฆ โ 6
๐ฆ 3 โ 13๐ฆ + 12 ๐ฆโ3 ๐ฆ 3 โ 14๐ฆ + 15
14. lim
2๐3 โ 5๐2 โ 4๐ + 12 15. lim ๐โ2 ๐3 โ 12๐ + 16
29
๐ฅ 4 + 5๐ฅ + 6 16. lim 4 ๐ฅโโ2 ๐ฅ + 5๐ฅ โ 6
2๐ฅ 4 โ 2๐ฅ 3 โ ๐ฅ 2 + 1 ๐ฅโ1 ๐ฅ 4 โ ๐ฅ 2 โ 2๐ฅ + 2
17. lim
1 โ cos ๐ฆ ๐ฆโ0 ๐ ๐๐2 ๐ฆ
18. lim
๐ ๐๐2 ๐ฆ 19. lim ๐ฆโ๐ 1 + cos ๐ฆ
sin ๐ sin 2๐ ๐โ0 1 โ cos ๐
20. lim
๐ ๐๐3 ๐ ๐โ0 sin ๐ โ tan ๐
21. lim
30
sin ๐2 ๐โ0 ๐ 2
22. lim
sin ๐2 23. lim ๐โ0 ๐
๐2 ๐โ0 sin ๐
24 lim
๐ ฮธโ0 ๐ ๐๐2 ๐
25. lim
sin ๐๐ฅ ๐ฅโ0 ๐ฅ
26 lim
31
27. lim ๐ฅ csc 3๐ฅ ๐ฅโ0
๐ฅ sin ๐ ๐๐3๐ฅ 3๐ฅ = 3 sin 3๐ฅ 1 = 3 =
sin ๐๐ฅ ๐ฅโ0 tan ๐๐ฅ
28. lim
1 โ cos 4๐ฅ ๐ฅโ0 1 โ cos 2๐ฅ
29. lim
2๐ฆ โ ๐ ๐ cos ๐ฆ
30. lim 1 ๐ฆโ 2
31. lim 1
๐ฆโ ๐ 2
1 (๐ฆ โ 2 ๐)2 1 โ sin ๐ฆ
32
1
32. lim
๐ฅโ1
33. lim
๐ฅโ1
(1 โ ๐ฅยฒ)2 1
(1 โ ๐ฅยณ)2
โ1 โ ๐ฅ 3 โ1 โ ๐ฅ 2
33
CONTINUITY A function ๐(๐ฅ) is said to be continuous at ๐ฅ = ๐ ๐ผ๐ ๐(๐) = ๐๐ฅ๐๐ ๐ก
๐น(๐ฅ) = โ๐ฅ
๐ฅ= 0
Lim f(x) exist
๐น (0) = โ0 = 0
๐ฅ๏ฎ๐
Lim โ๐ฅ = 0 does not exist ๐ฅ๏ฎ0
Lim f(x) = f (a) ๐ฅ๏ฎ๐
๐ (๐ฅ) = โ๐ฅ right hand
continuity Ex. At x = 2; f (x) = x2 + 1 ๐ (2) = 22 + 1 Lim x2 + 1 = 22 + 1 X๏ฎ2
=5
Missing Point Discontinuities
Consider a function f(x) which is not defined when x = a but such that Lim f (x) exist Lim f(x) = L ๐ฅ๏ฎ๐ 6 (๐ฅ) = ๐ (๐ฅ)
๐ฅ = ๐
6 (๐ฅ) = 1
๐ฅ = ๐
๐ฟ๐๐
๐ฅ 3 โ 9๐ฅ + 10 ๐ฅโ2
๐ฅ๏ฎ2 (๐ฅ โ 2)(๐ฅ 2 + 2๐ฅ โ 5) = (๐ฅ โ 2)
๐ฟ๐๐ ๐ฅ2 + 2๐ฅ โ 5 ๐ฅ๏ฎ2
= 22 + 2(2) โ 5 = 4 + 4โ 5 = ๐
34
Finite Jump
Infinite Discontinuity
๐ฟ๐๐๐ (๐ฅ) = ๐ฟ1
๐ฆ =
๐ฅ๏ฎ๐โ
๐ฅ = โ 2| โ 1 | 0 | 1 | 2 | 3 | 4
๐ฟ๐๐ ๐ (๐ฅ) = ๐ฟ2
๐ฆ =
1 (๐ฅ โ 1)2 1 1 1 1 | | 1 |๐ข๐๐|1| | 9 4 4 9
๐ฅ๏ฎ๐+ Function with argument approaching infinity ๐ฟ๐๐
๐ฅ2 โ 1 ๐ฅ2 + 1
๐ฅ๏ฎ๏ฅ
๏ฅ2 โ 2 ๏ฅ = 2 = = ๏ฅ ๏ฅ + 1 ๏ฅ
Rational Algebraic Functions
Theorem 6: a polynomial is continuous for all values of x.
Theorem 7: a rational algebraic function is continuous except for those values of x which the denominator vanishes. ๐ฅ2 + 3 1. ) 2 ๏ฎ ๐ฅ 2 โ 16 = 0 ๏ฎ โ๐ฅ 2 = โ16 ๏ฎ ๐ = ยฑ ๐ ๐ฅ โ 16
2. )
3๐ฅ + 2 ๏ฎ ๐ฅ2 โ 6๐ฅ + 9 = 0 ๏ฎ (๐ฅ โ 3)2 = 0 ๏ฎ ๐ = ๐ ๐ฅ 2 โ 6๐ฅ + 9
๐ฅ 2 โ 3๐ฅ 3. ) 2 ๏ฎ ๐ฅ2 + 9 ๏ฎ ๐ฅ = โโ9 ๏ฎ 3โโ1 ๏ฎ ๐๏ฉ ๐ฅ + 9
35
4. )
๐ฅ+3 ๏ฎ ๐ฅ โ ๐ฅ+2
4๐ฅ 2
=
โ๐ ยฑ โ๐ 2 โ 4๐๐ 1 ยฑ โ12 โ 4(4)(7) ๐ ยฑ โโ๐๐ ๏ฎ ๏ฎ 2๐ 2(4) ๐
๐ฅ 2 โ 3๐ฅ 5. ) 3 ๏ฎ ๐ฅ3 + 2๐ฅ2 + 5๐ฅ = 0 ๏ฎ ๐ฅ(๐ฅ 2 + 2๐ฅ + 5) ๐ฅ + 2๐ฅ 2 + 5๐ฅ = 0 ๏ฎ
โ2 ยฑ โ22 โ 4(1)(5) 2
๏ฎ
โ๐ ยฑ โโ๐๐ ๐
Intermediate Value Function Theorem
The function f (x) is said to be continuous over the closed interval a โค ๐ฅ โฅ b if f(a) is continuous at every pt a โค ๐ฅ โฅ b and f(x) has right hand continuity x = a left hand continuity at x = b.
LEMMA 1: If f(x) is continuous over the closed interval a โค ๐ฅ โฅ b; if f(a) < 0 and f(b) > 0, there exist a number โcโ in the open interval a < c < b for which f(c) = 0
Theorem 8: if the single value function(x) is continuous over the closed interval a โค ๐ โฅ b then in that interval f(x) takes on every value between f(a) and f(b).
Theorem 9: if f(x) is continuous over the closed interval a โค ๐ โฅ b if (x) takes on a greatest value and the least value in the closed interval
36
DERIVATIVE ๏ฎ rate of change
๏ฎ ๐กโ๐ ๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๐๐ โ๐ฆโ ๐ค๐๐กโ ๐๐๐ ๐๐๐๐ก ๐ก๐ โ๐ฅโ ๐๐ ๐กโ๐ ๐๐๐๐๐ก ๐๐ ๐กโ๐ ๐๐๐ก๐๐
โ๐ฆ ๐คโ๐๐ โ๐ฅ โ๐ฅ
๐๐๐๐๐๐๐โ๐๐ ๐ง๐๐๐ ๐๐ฆ ๐(๐ฅ + โ๐ฅ) โ ๐(๐ฅ) = ๐ฟ๐๐ ๐๐ฅ โ๐ฅ
Steps in to determine the derivative of a function 1. Replace x by (๐ฅ + โ๐ฅ) ๐๐๐ ๐ฆ ๐๐ฆ (๐ฆ + โ๐ฆ) 2. By subtraction, eliminate y b/n, thus obtaining a formula for โ๐ฆ in terms of x and โx 3. By some suitable transformation throw the right member into a form which contains โ๐ฅ explicity as factor 4. Divide through by โx 5. Determine the limit as โx approaches zero
Examples: 1. ๐ฆ = ๐ฅ 3 โ 2๐ฅ ๐ฆ + โ๐ฆ = (๐ฅ + โ๐ฅ)3 โ 2 (๐ฅ + โ๐ฅ) โ๐ฆ = (๐ฅ + โ๐ฅ)3 โ 2 (๐ฅ + โ๐ฅ) โ ๐ฆ โ๐ฆ = ๐ฅ 3 + 3๐ฅ 2 (โ๐ฅ) + 3๐ฅ (โ๐ฅ)2 + (โ๐ฅ)3 โ 2๐ฅ ๏ญ 2(โ๐ฅ) โ (๐ฅ 2 โ 2๐ฅ) โ๐ฆ = 3๐ฅ 2 (โ๐ฅ) + 3๐ฅ (โ๐ฅ)2 + (โ๐ฅ)3 ๏ญ 2(โ๐ฅ) โ๐ฆ = โ๐ฅ [3๐ฅ 2 + 3๐ฅ (โ๐ฅ) + (โ๐ฅ)3 ๏ญ 2] โ๐ฆ = 3๐ฅ 2 + 3๐ฅ (โ๐ฅ) + (โ๐ฅ) 2 ๏ญ 2 โ๐ฅ โ๐ฆ = 3๐ฅ 2 ๏ญ 2 โ๐ฅ 2. ๐ฅ =
1 ๐ก
37
๐ฅ + โ๐ฅ =
1 ๐ก + โ๐ก
1 โ ๐ฅ ๐ก + โ๐ก 1 1 โ๐ฅ = โ ๐ก + โ๐ก ๐ก ๐ก โ (๐ก + โ๐ก) โ๐ฅ = (๐ก โ โ๐ก) ๐ก โ๐ฅ =
โ๐ฅ = โ๐ฅ =
๐ก โ ๐ก โ โ๐ก (๐ก)2 + (โ๐ก)๐ก ๐ก2
โ๐ก + ๐ก (โ๐ก)
โ๐ฅ โ1 = 2 โ๐ก ๐ก + ๐ก (โ๐ก) โ๐ฅ โ1 = 2 โ๐ก ๐ก 3.
๐ฆ = โ๐ฅ
๐ฆ + โ๐ฆ = โ๐ฅ + โ๐ฅ โ๐ฆ + (๐ฆ + โ๐ฆ) = โ๐ฅ + โ๐ฆ โ ๐ฆ โ๐ฆ = โ๐ฅ + โ๐ฅ โ โ๐ฅ โ๐ฆ = (โ๐ฅ + โ๐ฅ โ โ๐ฅ ) . โ๐ฅ + โ๐ฅ + โ๐ฅ โ๐ฅ + โ๐ฅ + โ๐ฅ โ๐ฆ =
โ๐ฅ โ๐ฅ + โ๐ฅ + โ๐ฅ 1
โ๐ฆ = โ๐ฅ โ๐ฅ + โ๐ฅ + โ๐ฅ โ๐ฅ โ 0 โ๐ฆ 1 = โ๐ฅ 2โ๐ฅ
38
4. ๐ฆ = ๐ ๐๐ ๐ฅ ๐ฆ + โ๐ฆ = ๐ ๐๐ (๐ฅ + โ๐ฅ) โ๐ฆ + (๐ฆ + โ๐ฆ) = ๐ ๐๐ (๐ฅ + โ๐ฅ) โ ๐ฆ โ๐ฆ = ๐ ๐๐ (๐ฅ + โ๐ฅ) โ ๐ ๐๐ ๐ฅ โ๐ฆ = ๐ ๐๐ ๐ฅ ๐๐๐ โ๐ฅ + ๐๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ โ ๐ ๐๐ ๐ฅ โ๐ฆ = ๐๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ โ ๐ ๐๐ ๐ฅ (1 โ ๐๐๐ โ๐ฅ) โ๐ฅ ๐๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ โ 2๐ ๐๐ ๐ฅ ๐ ๐๐2 2 โ๐ฆ = โ๐ฅ โ๐ฅ โ๐ฆ ๐๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ โ๐ฅ = โ ๐ ๐๐ ๐ฅ ๐ ๐๐2 โ๐ฅ โ๐ฅ 2 โ๐ฅ ๐ ๐๐ ๐ฅ ๐ ๐๐2 2 โ๐ฆ = ๐๐๐ ๐ฅ โ โ๐ฅ โ๐ฅ 2 โ๐ฆ โ๐ฅ = ๐๐๐ ๐ฅ โ ๐ ๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ 2 โ๐ฅ โ 0 โ๐ฆ = ๐๐๐ ๐ฅ โ๐ฅ 5. ๐ฆ = ๐๐๐ ๐ฅ ๐ฆ + โ๐ฆ = ๐๐๐ (๐ฅ + โ๐ฅ) โ๐ฆ + (๐ฆ + โ๐ฆ) = ๐๐๐ (๐ฅ + โ๐ฅ) โ ๐ฆ โ๐ฆ = ๐๐๐ (๐ฅ + โ๐ฅ) โ ๐๐๐ ๐ฅ
โ๐ฅ โ ๐๐๐ ๐ฅ ๐ ๐๐2 2 โ๐ฆ ๐ ๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ = โ โ๐ฅ โ๐ฅ โ๐ฅ 2
โ๐ฆ
โ๐ฆ โ๐ฅ = โ ๐๐๐ ๐ฅ ๐ ๐๐ โ ๐ ๐๐ ๐ฅ โ๐ฅ 2
= ๐๐๐ ๐ฅ ๐๐๐ โ๐ฅ โ ๐ ๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ โ ๐๐๐ ๐ฅ
โ๐ฅ ๏ฎ 0
โ๐ฆ
โ๐ฆ = โ ๐๐๐ ๐ฅ (0) โ ๐ ๐๐ ๐ฅ โ๐ฅ โ๐ฆ = โ ๐ ๐๐ ๐ฅ โ๐ฅ
= โ ๐๐๐ ๐ฅ (1 โ ๐๐๐ โ๐ฅ) โ ๐ ๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ
โ๐ฆ โ ๐๐๐ ๐ฅ (2 ๐ ๐๐2 โ๐ฅ) โ ๐ ๐๐ ๐ฅ ๐ ๐๐ โ๐ฅ = โ๐ฅ 2 โ๐๐๐ ๐ฅ(1 โ ๐๐๐ โ๐ฅ) โ ๐ ๐๐๐ฅ๐ ๐๐โ๐ฅ โ๐ฆ = โ๐ฅ
39
Name: Course/Year & Section:
ASSIGNMENT no.3: DERIVATIVES 1. ) ๐ฅ = ๐ฆ 4 โ 2๐ฆ 3
1 2. ) ๐ฆ = (3๐ฅ 2 + 1)ยฒ 2
40
3. )๐ฆ =
1 ๐ฅ+7
4. ) ๐ฆ =
2๐ฅ ๐ฅโ1
41
5. ) ๐ฆ = 2 โ 3๐ฅ โ
6. ) ๐ฅ =
1 ๐ฅ
1 ๐ก2
42
7. ) ๐ฆ = โ2 โ 3๐ฅ
8. ) ๐ฆ =
1 โ๐ฅ
43
9. ) ๐ฆ =
1 โ๐ฅ โ 2
10. ) ๐ฆ = ๐ฅโ๐ฅ โ 1
44
Tangent to Plane Curves 1. ) ๐ฆ = 2โ ๐ฅ 2 (3, โ7) ๐ฆ + ๏๐ฆ = 2 โ (๐ฅ + ๏๐ฅ)2
๏๐ฆ = 2 โ (๐ฅ 2 + 2๐ฅ๏๐ฅ + (๏๐ฅ) 2) ๏ญ(2 โ ๐ฅ2) ๏๐ฆ = 2 โ ๐ฅ 2 โ 2 ๐ฅ๏๐ฅ โ (๏๐ฅ)2 โ 2 + ๐ฅ 2 ๏๐ฆ = ๏๐ฅ(โ2๐ฅ โ ๏๐ฅ) ๏๐ฆ = โ2๐ฅ โ ๏๐ฅ ๏๐ฅ ๏๐ฅ = 0 ๐๐ฆ = โ2๐ฅ ๐๐ฅ ๐ = โ6 ๐ฆ โ ๐ฆ1 = ๐(๐ฅ โ ๐ฅ1 ) ๐ฆ ๏ญ ( ๏ญ7) = โ6(๐ฅ โ 3) ๐ฆ + 7 = โ6๐ฅ + 18 ๐ฆ = โ6๐ฅ + 11 ๏ฎ ๐๐๐ข๐๐ก๐๐๐ ๐๐ ๐กโ๐ ๐ก๐๐๐๐๐๐ก
2. ) ๐ฆ 2 = 3๐ฅ + 1 (
โ1 , 0) 3
(๐ฆ + ๏๐ฆ)2 = 3(๐ฅ + ๏๐ฅ) + 1 ๐ฆ 2 + 2๐ฆ๏๐ฆ + (๏๐ฆ)2 = 3๐ฅ + 3๏๐ฅ + 1 2๐ฆ๏๐ฆ + (๏๐ฅ)2 = 3๐ฅ + 3๏๐ฅ + 1 โ (3๐ฅ + 1) 2๐ฆ๏๐ฆ + (๏๐ฆ)2 = 3๏๐ฅ
๏๐ฆ(2๐ฆ + ๏๐ฆ) = 3๏๐ฅ ๏๐ฆ 2 3 โ1 = = ( , 0) ๏๐ฅ 2๐ฆ + ๏๐ฆ 2๐ฆ 3 ๐ฆ๏ฎ 0
๏๐ฆ 3 = ๏๐ฅ 2(0) ๏๐ฆ = ๐๐๐
๐๐๐๐๐๐
๏๐ฅ 45
3.) Find how fast a.) the circumference b.) the area of a circle increases when the radius increases. ๐. )๐ = 2๏ฐ๐
๐. ) ๐ด = ๏ฐ๐2
๐ + ๏๐ = 2๏ฐ(๐ + ๏๐)
๐ + ๏๐ = ๏ฐ(๐ + ๏๐)2
๏๐ = 2๏ฐ๐ + 2๏ฐ๏๐ โ ๐ถ
๏๐
= ๏ฐ[๐2 + 2๐๏๐ + (๏๐)2] โ ๐ด
๏๐ = 2๏ฐ๐ + 2๏ฐ๏๐ โ 2๏ฐ๐
๏๐
= ๏ฐ๐2 + 2๏ฐ๐๏๐ + ๏ฐ(๏๐)2 โ ๏ฐ๐2
๏๐ = 2๏ฐ๏๐
๏๐ = 2๏ฐ๐ + ๏ฐ๏๐ ๏๐
๏๐ = 2๏ฐ๐ ๏๐
๏๐๏ฎ 0 ๏๐ = 2๏ฐ ๏๐
4.) The dimension of a box , ๐, ๐ + 1, ๐ + 4.Find how fast the total surface area A increases as b increases. ๐ด = 2(๐) (๐ + 1) + 2๐ (๐ + 4) + 2 (๐ + 1) (๐ + 4) ๐ด = 2๐2 + 2๐ + 2๐2 + 8๐ + 2๐ + 10๐ + 8
b
b+4 b+1
๐ด = 6๐2 + 20๐ + 8 ๐ด + ๏๐ด = 6(๐ + ๏๐)2 + 20 (๐ + ๏๐) + 8
๏๐ด = 6(๐2 + 2๐๏๐ + (๏๐)2 + 20๐ + 20๏๐ + 8 โ (6๐2 + 20๐ + 8) ๏๐ด = (6๐2 + 12๐๏๐ + 6(๏๐) 2 + 20๐ + 20๏๐ + 8 โ 6๐2 โ 20๐ โ 8 ๏๐ด = 12๐๏๐ + 6(๏๐) 2 + 20๏๐ ๏๐ด = ๏๐(12๐ + 6๏๐ + 20) ๏๐ด = 12๐ + 6๏๐ + 20 ๏๐ต ๏๐๏ฎ0 ๏๐ด = 12๐ + 20 ๏๐ต
46
5. ) ๐. )๐ด = 6๐ 2 ๐ด + ๏๐ด = 6(๐ + ๏๐ )2
๏๐ด = 6[๐ 2 + 2๐ (๏๐ ) + (๏๐ )2] ๏ญ ๐ด ๏๐ด = 6๐ 2 + 12๐ (๏๐ ) + 6(๏๐ )2 ๏ญ 6๐ 2 ๏๐ด = ๏๐ [12๐ + 6(๏๐ )] ๏๐ = 0 ๏๐ด = 12๐ ๏๐ ๏๐ด ๏๐ = 12๐ ๏๐ก ๏๐ก
= 12(6)(2)
๐ ๐2 = 144 ๐ ๐
๐) ๐ฃ = ๐ 3 ๐๐ฃ ๐๐ = 3๐ 2 ๐๐ก ๐๐ก ๐๐ฃ = 3(6)2 (2) ๐๐ก ๐๐ฃ = 63 ๐๐ก ๐๐ฃ ๐3 = 216 ๐๐ก ๐ 6. ) ๐. )๐ด = 4๐๐ 2 ๐ด + ๏๐ด = 4๏ฐ(๐ + ๏๐)2
๏๐ด = 4๏ฐ[๐ 2 + 2๐(๏๐) + (๏๐)2 ] ๏ญ ๐ด ๏๐ด = 4๏ฐ๐ 2 + 8๏ฐ๐(๏๐) + 4๏ฐ(๏๐)2 ] ๏ญ 4๏ฐ๐ 2 ๏๐ด = ๏๐[8๏ฐ๐ + (๏๐)] ๏๐ = 0 ๏๐ด = 8๐๐ ๏๐
47
4๐๐ 3 ๐)๐ฃ = 3 4๐ ๏๐ฃ + ๐ฃ = (๐ + ๏๐)3 3 4๐ 3 ๏๐ฃ = (๐ + 3(๏๐)๐ 2 + 3๐(๏๐)2 + (๏๐)3 ) โ ๐ฃ 3 4๐๐ 3 4๐(๏๐)3 2 2 ๏๐ฃ = + 4๐(๏๐)๐ + 4๐๐(๏๐) + 3 3 ๏๐ฃ ๏๐ 4๐ = [4๐๐ 2 + 4๐(๏๐)๐ + (๏๐)2 ] ๏๐ก ๏๐ก 3
๏๐ = 0 ๏๐ฃ ๏๐ [4๐๐ 2 ] = ๏๐ก ๏๐ก ๏๐ฃ ๐ = (2 )(4๐)(6๐)2 ๏๐ก ๐ ๏๐ฃ ๐3 = 288๐ ๏๐ก ๐ ๐. ) ๐ฆ = 3 + 4๐ฅ๏ญ๐ฅ 2 ๏๐ฆ + ๐ฆ = 3 + 4(๏๐ฅ + ๐ฅ) โ (๏๐ฅ + ๐ฅ)2 ๏๐ฆ = 3 + 4๏๐ฅ + 4๐ฅ โ (๏๐ฅ)2 โ 2๐ฅ๏๐ฅ โ ๐ฅ 2 โ ๐ฆ ๏๐ฆ = 3 + 4๏๐ฅ + 4๐ฅ โ (๏๐ฅ)2 โ 2๐ฅ๏๐ฅ โ ๐ฅ 2 โ (3 + 4๐ฅ โ ๐ฅ2) ๏๐ฆ = 4๏๐ฅ โ (๏๐ฅ)2 โ 2๐ฅ๏๐ฅ ๏๐ฆ = ๏๐ฅ(4๏๐ฅ โ 2๐ฅ) ๏๐ฆ = 4 โ ๏๐ฅ โ 2๐ฅ ๏๐ฅ ๏๐ฅ๏ฎ0 ๐=
๏๐ = ๐ โ ๐๐ ๐๐๐๐ ๐ก ๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ ๏๐
๐ = 4 โ 2๐ฅ
๏๐ง + ๐ง = 4 โ 2(๏๐ฅ + ๐ฅ) ๏๐ง = 4 โ 2๏๐ฅ โ 2๐ฅ โ ๐ง ๏๐ง = 4 โ 2๏๐ฅ โ 2๐ฅ โ (4 โ 2๐ฅ) ๏๐ง = โ2๏๐ฅ ๏๐ = โ๐ ๏๐
๐ ๐๐๐๐๐ ๐๐๐๐๐ฃ๐๐ก๐๐ฃ๐ 48
๐ฆ = 3๐ฅ 2 โ 2๐ฅ(2,8) ๐ฆ + ๏๐ฆ = 3(๏๐ฅ + ๐ฅ)2 โ 2(๏๐ฅ + ๐ฅ)
๏๐ฆ = 3((๏๐ฅ)2 + 2๐ฅ๏๐ฅ + ๐ฅ 2 ) โ 2๏๐ฅ โ 2๐ฅ โ ๐ฆ ๏๐ฆ = 3(๏๐ฅ)2 + 6๐ฅ๏๐ฅ + 3๐ฅ 2 โ 2๏๐ฅ โ 2๐ฅ โ (3๐ฅ2 โ 2๐ฅ) ๏๐ฆ = 3(๏๐ฅ)2 + 6๐ฅ๏๐ฅ โ 2๏๐ฅ ๏๐ฆ = ๏๐ฅ(3๏๐ฅ + 6๐ฅ โ 2)
๏๐ฆ = 3๏๐ฅ + 6๐ฅ โ 2 ๏๐ฅ ๏๐ฅ๏ฎ0
๏๐ฆ = 6(2) โ 2 (2,8) ๏๐ฅ ๏๐ฆ = 12 โ 2 ๏๐ฅ ๏๐ฆ = 10 ๏๐ฅ 7.) Find the vertex of the parabola 4๐ฅ 2 + 2๐ฅ โ 6๐ฆ + 100 = 0 4(๏๐ฅ + ๐ฅ)2 + 2๐ฅ๏๐ฅ + ๐ฅ2 + 2๏๐ฅ + 2๐ฅ โ 6๏๐ฆ โ 6๐ฆ + 100 = 0 ๐ฆ =
4๐ฅ 2 + 2๐ฅ + 100 6
2๐ฅ 2 ๐ฅ 50 + + 3 3 3 2 1 50 ๏๐ฆ + ๐ฆ = (๏๐ฅ + ๐ฅ)2 + (๏๐ฅ + ๐ฅ) + 3 3 3 2 ๏๐ฅ ๐ฅ 50 ๏๐ฆ = ((๏๐ฅ)2 + 2๐ฅ๏๐ฅ + ๐ฅ2) + + + โ๐ฆ 3 3 3 3 ๐ฆ =
๏๐ฆ =
2(๏๐ฅ)2 4๐ฅ๏๐ฅ 2๐ฅ 2 ๏๐ฅ ๐ฅ 50 2๐ฅ 2 ๐ฅ 50 + + + + + โ( + + ) 3 3 3 3 3 3 3 3 3
2(๏๐ฅ)2 4๐ฅ๏๐ฅ ๏๐ฅ + + 3 3 3 2๏๐ฅ 4๐ฅ 1 = ๏๐ฅ [ + + ] 3 3 3 =
49
๐ฅ๐ฆ 2๏๐ฅ 4๐ฅ 1 = + + ๐ฅ๐ฅ 3 3 3
๏๐ฅ = 0 4๐ฅ 1 + 3 3 4๐ฅ โ1 = 3 3 0=
12๐ฅ = โ3
๐ฅ = โ
1 4
โ1 2 โ1 4 ( ) + 2 ( ) โ 6๐ฆ = โ 100 4 4 4 1 โ โ 6๐ฆ = โ 100 16 2 1 1 โ โ 6๐ฆ = โ 100 4 2 โ400 + 1 โ 6๐ฆ = 4(โ6) ๐ฆ=
โ399 4(+6)
๐ (โ
1 133 ) 4, 8
50
8.) Find the points where the tangent is parallel to the x-axis ๐ฆ = 12๐ฅ 2 + 6๐ฅ โ 18 ๐ฆ โ ๏๐ฆ = 12(๏๐ฅ + ๐ฅ)2 + 6(๏๐ฅ + ๐ฅ) โ 18
๏๐ฆ = 12((๏๐ฅ)2 + 2๐ฅ๏๐ฅ + ๐ฅ 2 ) + 6๏๐ฅ + 6๐ฅ โ 18 โ ๐ฆ ๏๐ฆ = 12(๏๐ฅ)2 + 24๐ฅ๏๐ฅ + 12๐ฅ 2 + 6๏๐ฅ + 6๐ฅ โ 18 โ ๐ฆ ๏๐ฆ = ๏๐ฅ(12๏๐ฅ + 24๐ฅ + 6) ๏๐ฅ = 0 ๏๐ฆ = 24๐ฅ + 6 ๏๐ฅ 24๐ฅ + 6 = 0 โ6 24 โ1 ๐ฅ= 4 ๐ฅ =
โ1 2 โ1 ๐ฆ = 12 ( ) + 6 ( ) โ 18 4 4 12 3 = โ โ 18 6 2 12 โ 24 โ 18 (16) = 16 โ12 โ 288 = 16 โ300 = 16 โ150 = 8 โ75 = 4 โ1 โ75 , 4 4
51
Derivative of Constant ๐ฆ = 7๐ฅ 0 7(0)๐ฅ โ1 0 General Power Formula ๐ฆ = ๐๐ฅ ๐ ๐๐ฒ = ๐ฒ โฒ = ๐๐ง(๐ฑ)๐งโ๐ ๐๐ฑ Derivative of Sum ๐
(๐ + ๐) =
๐
๐ ๐
๐ + ๐
๐ ๐
๐
1. ๐ฆ = 2๐ฅ 3 โ 7๐ฅ + 1 ๐
๐ = (๐๐๐ โ ๐) ๐
๐ 2. ๐ฆ = 3๐ฅ โ1 โ 4๐ฅ โ2 ๐๐ฆ = 3(โ1)x โ2 โ 4(โ2)๐ฅ โ3 ๐๐ฅ ๐๐ฒ โ๐ ๐ = ๐ + ๐ ๐๐ฑ ๐ ๐
3. ๐ฆ =
3 5 โ ๐ฅ ๐ฅ2
๐๐ฆ = 3๐ฅ โ1 โ 5๐ฅ โ2 ๐๐ฅ ๐๐ฆ = 3(โ1)x โ2 โ 5(โ2)x โ3 ๐๐ฅ ๐
๐ โ๐ ๐๐ = + ๐
๐ ๐๐ ๐๐ 1
1
4. ๐ฆ = ๐ฅ 2 โ 4๐ฅ โ2
52
1 1 1โ1 1 x 2 โ 4 (โ ) x โ2โ1 2 2 ๐ ๐ ๐ ๐ ๐ ๐โฒ = ๐โ๐ + ๐๐โ๐ = + ๐/๐ ๐/๐ ๐ ๐๐ ๐
๐ฆโฒ =
5. ๐ฅ = โ๐ก โ
1 โ๐ก
= [๐ก โ
1 โ1 2 ๐ก2]
1 1 1 + 3/2 โ1 2โ1 1 1 โ1โ1 2t ๐ฅโ = [๐ก โ ๐ก 2 ] [1 + ๐ก 2 ] = 1 2 2 1 2 2 [๐ก โ 1 ] ๐ก2 1
1 2
2t 3/2 + 1 [๐ก โ 1 ] ๐ก2 2t 3/2 ๐ฅโ = 1โ 1 1 2 1 2 2 [๐ก โ 1 ] [๐ก โ 1 ] ๐ก2 ๐ก2 ๐/๐
๐โ =
๐๐ญ ๐/๐ + ๐ ๐ญ ๐/๐ โ ๐ โ ( ๐/๐ ) ๐๐ญ ๐/๐ ๐ ๐ [๐ โ
๐
๐] ๐๐
Derivative of Product ๐
(๐๐) =
1.
๐
๐ ๐
๐ ๐+๐ ๐
๐ ๐
๐
๐ฆ = (1 + ๐ฅ 2 )(3 โ 2๐ฅ)
๐ฆโ = (2๐ฅ)(3 โ 2๐ฅ) + (1 + ๐ฅ 2 )(โ2) ๐ฆ โฒ = 6๐ฅ โ 4๐ฅ 2 โ 2 โ 2๐ฅ 2 ๐โฒ = โ๐๐๐ + ๐๐ โ ๐ = โ(๐๐๐ โ ๐๐ฑ + ๐) 2. ๐ฆ = (๐ฃ 2 + 3)( ๐ฃ 2 + ๐ฃ + 1) y โฒ = (2๐ฃ) (๐ฃ 2 + ๐ฃ + 1) + (๐ฃ 2 + 3) (2๐ฃ + 1) y โฒ = 2๐ฃ 3 + 2๐ฃ 2 + 2๐ฃ + 2๐ฃ 3 + ๐ฃ 2 + 6๐ฃ + 3 53
๐โฒ = ๐๐๐ + ๐๐๐ + ๐๐ + ๐
Derivative of a Quotient (๐๐ฎ) ๐ฏ โ ๐ฎ (๐๐ฏ) ๐ฎ ๐ ( )= ๐ฏ ๐ฏ๐ 1. ๐ฆ = ๐ฆโฒ =
๐ฅ2
๐ฅ โ1
1(๐ฅ 2 โ 1) โ ๐ฅ (2๐ฅ) (๐ฅ 2 โ 1)2
๐ฅ 2 โ 1 โ 2๐ฅ 2 y = (๐ฅ 2 โ 1)2 โฒ
yโฒ =
โ๐ฅ 2 โ 1 (๐ฅ 2 โ 1)2
โ๐(๐๐ + ๐) ๐ = (๐๐ โ ๐)๐ โฒ
๐ฅ2 2. ๐ฆ = 2 ๐ฅ โ1 2๐ฅ(๐ฅ 2 โ 1) โ ๐ฅ 2 (2๐ฅ) y = (๐ฅ 2 โ 1)2 โฒ
yโฒ = ๐โฒ =
2๐ฅ 3 โ 2๐ฅ โ 2๐ฅ 3 (๐ฅ 2 โ 1)2 โ๐๐ โ ๐)๐
(๐๐
1 3๐ฅ โ 2 0(3๐ฅ โ 2) โ (3)(1) ๐ฆโฒ = (3๐ฅ โ 2)2
3. ๐ฆ =
๐ฒโฒ =
โ๐ (๐๐ โ ๐)๐
yโฒ =
โ๐(๐ฃ)๐ ๐๐ ๐๐ข๐๐๐๐๐ก๐๐ ๐๐ ๐๐๐๐ ๐ก๐๐๐ก ๐ฃ2 54
๐ฆโฒ =
3๐ฅ โ 2 4
๐ฆโฒ =
3(4) โ (3๐ฅ โ 2)0 42
=
12 ๐ = 16 ๐
MORE PROBLEMS 1. ๐ฆ = ๐ฅ 2 ๐โฒ = ๐๐ 2. ๐ฆ = (๐ฅ 2 + 1) (๐ฅ 2 + 1) ๐ฆ โฒ = (2๐ฅ) (๐ฅ 2 + 1) + (๐ฅ 2 + 1) (2๐ฅ) ๐ฆ โฒ = 2๐ฅ 3 + 2๐ฅ + 2๐ฅ 3 + 2๐ฅ ๐ฆ โฒ = 4๐ฅ 3 + 4๐ฅ ๐โฒ = ๐๐(๐๐ + ๐)
3. ๐ฆ = 4๐ฅ(๐ฅ 2 + 1) ๐ฆโฒ =
๐๐ฆ = 4(๐ฅ 2 + 1) + 4๐ฅ(2๐ฅ) ๐๐ฅ
๐ฆ โฒ = 4๐ฅ 2 + 4 + 8๐ฅ 2 ๐ฆ โฒ = 12๐ฅ 2 + 4 ๐ = ๐(๐๐๐ + ๐) 4. ๐ฆ = (3๐ฅ 2 + 4๐ฅ โ 1)3 ๐ฆ โฒ = 3(3๐ฅ 2 + 4๐ฅ โ 1)2 (6๐ฅ + 4) ๐โฒ = ๐(๐๐ + ๐) (๐๐๐ + ๐๐ โ ๐)๐ D((๐ฎ)๐ง ) = n(๐ฎ๐งโ๐ ) du
1. ๐ฆ = 6โ4 + ๐ฅ 1 1 1 ๐ฆ = 6(4 + ๐ฅ)2 = 6 ( ) (4 + ๐ฅ)2โ1 2
55
1
๐ฆ โฒ = 3(4 + ๐ฅ)โ2 (1) ๐โฒ =
๐ โ๐ + ๐
Name: Course/Year & Section: Assignment no. 4 Derive
1. )๐ฆ = 7๐ฅ 4 โ 3๐ฅ 3 โ 5๐ฅ + 1000 ๐โฒ = ๐๐๐๐ โ ๐๐๐ โ ๐ 2. )2๐ฆ = 8๐ฅ 3 โ 10๐ฅ + 4 ๐ฆ = 4๐ฅ 3 โ 5๐ฅ + 2 ๐โฒ = ๐๐๐๐ โ ๐ 3. )๐ฆ = (4๐ฅ 2 + 3๐ฅ + 1) (2๐ฅ 2 + 7) ๐ฆ โฒ = (8๐ฅ + 3)( 2๐ฅ 2 + 7) + (4๐ฅ 2 + 3๐ฅ + 1)(4๐ฅ) ๐ฆ โฒ = 16๐ฅ 3 + 56๐ฅ + 6๐ฅ 2 + 21 + 16๐ฅ 3 + 12๐ฅ 2 + 4๐ฅ ๐โฒ = ๐๐๐๐ + ๐๐๐๐ + ๐๐๐ + ๐๐ 4. )๐ฆ = ๐ฅ(๐ฅ โ 1) (๐ฅ + 1) ๐ฆโ = ๐ฅ(๐ฅ 2 โ 1) 56
๐ฆ โฒ = 1(๐ฅ 2 โ 1) + ๐ฅ(2๐ฅ) ๐โ = ๐๐ โ ๐ + ๐๐๐ = ๐๐๐ โ ๐ 5. )๐ฆ =
3๐ฅ 2 โ 2๐ฅ + 5 2๐ฅ โ 5
(6๐ฅ โ 2)(2๐ฅ โ 5) โ (2)(3๐ฅ 2 โ 2๐ฅ + 5) (2๐ฅ โ 5)2 2 12๐ฅ โ 30๐ฅ โ 4๐ฅ + 10 โ 6๐ฅ 2 + 4๐ฅ โ 10 โฒ ๐ฆ = (2๐ฅ โ 5)2 2 6๐ฅ โ 30๐ฅ ๐ฆโฒ = (2๐ฅ โ 5)2 ๐๐(๐ โ ๐) ๐โฒ = (๐๐ โ ๐)๐ ๐ฆโฒ =
๐ฅ2 โ 4 6. )๐ฆ = 2 ๐ฅ + 4๐ฅ + 4 2๐ฅ(๐ฅ 2 + 4๐ฅ + 4) โ (๐ฅ 2 โ 4)(2๐ฅ + 4) (๐ฅ 2 + 4๐ฅ + 4)2 3 2 2๐ฅ + 8๐ฅ + 8๐ฅ โ 2๐ฅ 3 โ 4๐ฅ 2 + 8๐ฅ + 16 ๐ฆโ = (๐ฅ 2 + 4๐ฅ + 4)2 4๐ฅ 2 + 16๐ฅ + 16 4(๐ฅ + 2)2 ๐ฆโฒ = 2 = (๐ฅ + 4๐ฅ + 4)2 (๐ฅ + 2)4 ๐ ๐โ = (๐ + ๐)๐ ๐ฆโ =
7. ) ๐ฆ = โ4๐ฅ 2 + 9 (2๐ฅ + 3)6 1
๐ฆ = (4๐ฅ 2 + 9)2 (2๐ฅ + 3)6 ๐ฆโฒ = ๐ฆโฒ =
1 1 (4๐ฅ 2 + 9)โ2 (8๐ฅ) (2๐ฅ + 3)6 + 6(2๐ฅ + 3)5 (4๐ฅ 2 + 9)1/2 (2) 2
8๐ฅ(2๐ฅ + 3)6 1
1
+ 12(4๐ฅ 2 + 9 )2 (2๐ฅ + 3)5
2(4๐ฅ 2 + 9)2 ๐ฆ โฒ = (2๐ฅ + 3)5 [
5[
๐ฆโ = (2๐ฅ + 3)
4๐ฅ(2๐ฅ + 3)
1
2 2 1 + 12(4๐ฅ + 9) ] 2 (4๐ฅ + 9 )2
8๐ฅ 2 + 12๐ฅ + 12 (4๐ฅ 2 +9) ] 1 (4๐ฅ 2 + 9)2
57
=
(2๐ฅ + 3)5 (4๐ฅ 2
8. ) ๐ฆ =
๐ฆโฒ =
1 9)2
+
(56๐ฅ 2
+ 12๐ฅ + 108) =
(๐๐๐ +
4๐ฅ 2 + 9
๐ฆ=
โ2๐ฅ โ 3
(8๐ฅ)(2๐ฅ โ
1 3)2
4๐ฅ 2 + 9 1
โ1
4๐ฅ 2 + 9 1
(2๐ฅ โ 3)2 (2๐ฅ โ 3)
๐ฆโฒ =
8๐ฅ(2๐ฅ โ 3) โ (4๐ฅ 2 + 9) 3
=
16๐ฅ 2 โ 24๐ฅ โ 4๐ฅ 2 โ 9
(2๐ฅ โ 3)2 ๐ฆโฒ =
(๐๐๐๐ + ๐๐ + ๐๐)
(4๐ฅ 2 + 9 )(2๐ฅ โ 3) 2 (2) โ 2 (2๐ฅ โ 3)
1
๐ฆ =
๐ ๐)๐
(2๐ฅ โ 3)2
8๐ฅ(2๐ฅ โ 3 )2 โ
โฒ
๐(๐๐ + ๐)๐
3
(2๐ฅ โ 3)2
12๐ฅ 2 โ 24๐ฅ โ 9 3
(2๐ฅ โ 3)2 โฒ
๐ =
๐(๐๐๐ โ ๐๐ โ ๐) ๐
(๐๐ โ ๐)๐
9. ) ๐ฆ =
โ100 โ5๐ฅ 2 โ 3
1
๐ฆโฒ = โ100 (5๐ฅ 2 โ 3)โ2 3 โ1 ๐ฆโฒ = โ100 ( ) (5๐ฅ 2 โ 3 )โ2 (10๐ฅ) 2 ๐๐๐๐ ๐โฒ = ๐ (๐๐๐ โ ๐)๐
3
10. ) ๐ฆ = โ7๐ฅ 2 + 5 โ5๐ฅ โ 3 ๐ฆ = (7๐ฅ 2 + 5)1/3 (5๐ฅ โ 3)1/2
58
๐ฆโฒ = ๐ฆโฒ =
2 1 1 1 (7๐ฅ 2 + 5)โ3 (14๐ฅ) (5๐ฅ โ 3)2 + (7๐ฅ 2 + 5)1/3 ( ) (5๐ฅ โ 3)โ1/2 (5) 3 2
14๐ฅ(5๐ฅ โ 3)1/2 2
+
3(7๐ฅ 2 + 5)3
5(7๐ฅ 2 + 5)1/3 2(5๐ฅ โ 3)1/2
28๐ฅ(5๐ฅ โ 3) + 15(7๐ฅ 2 + 5) ๐ฆโฒ = 6(7๐ฅ 2 + 5)2/3 (5๐ฅ โ 3)1/2 ๐ฆโฒ =
140๐ฅ 2 โ 84๐ฅ + 105๐ฅ 2 + 75 2
1
6(7๐ฅ 2 + 5 )3 (5๐ฅ โ 3)2 ๐โ =
๐๐๐๐๐ โ ๐๐๐ + ๐๐ ๐(๐๐๐ + ๐)๐/๐ (๐๐ โ ๐)๐/๐
Examples: 1. y = 2 โ x 2 (3, โ 7) y โฒ = โ2x = โ2(3) = โ๐
Tangent
2. y = 3x 2 โ 2x(2, 8) y โฒ = 6x โ 2 = 6(2) โ 2 = ๐๐
59
4 3. ๐ฃ = ๐๐ 3 3 ๐๐ฃ 4๐ ๐๐ (3)๐ 2 = ๐๐ก 3 ๐๐ก ๐๐ฃ 6๐๐ก = 4๐๐ 2 ( ) ๐๐ก ๐
๐๐ ๐๐ก ๐ =6 = ๐๐ก ๐ ๐ก 6=
๐ ; 0.25
๐ก = 0.25
๐ = 1.5
๐๐ฃ = 24๐๐ 2 = 24๐(1.5)2 = ๐๐๐
๐๐ก ๐=
d t
๐ฏ ๐จ๐ ๐ฌ๐ฉ๐ก๐๐ซ๐ P of circle rectangle dr r =6 = 1 dt 4 1 6( ) = ๐ 4 1.5=r ๐ ๐๐ฆ๐๐๐๐๐๐ = ๐๐ 2 โ;
๐๐ โ = 6
๐ฃ = 6๐๐ 2 ๐๐ฃ ๐๐ = 12๐๐ ๐๐ก ๐๐ก ๐๐ฃ = 12๐(1.5)(6) ๐๐ก ๐๐ฃ = ๐๐๐๐ ๐๐ก
SLOPE 1. ๐ฆ 2 =
๐ฅ3 @ (๐, ๐) 2๐ โ ๐ฅ
3๐ฅ 2 ๐๐ฅ (2๐ โ ๐ฅ ) โ ๐ฅ 3 (โ1)๐๐ฅ 2๐ฆ๐๐ฆ = (2๐ โ ๐ฅ)2 60
6๐๐ฅ 2 โ 3๐ฅ 3 + ๐ฅ 3 2๐ฆ๐ฆโ = (2๐ โ ๐ฅ)2 ๐ฆโ =
6๐๐ฅ 2 โ 2๐ฅ 3 ๐
๐๐๐๐๐๐๐๐๐ 2๐ฆ(2๐ โ ๐ฅ)2
๐ฆโฒ =
6aa2 โ 2a3 2a(2a โ a)2
4a3 ๐ฆโฒ = 3 2a ๐ฒโ = ๐
๐ฆ3 =
2.
2๐๐ฅ 3 @ (๐, ๐) ๐ฅ+๐
6ax 2 (x + a) โ 2ax 3 (1) (x + a)2 3 6ax + 6a2 x 2 โ 2ax 3 โฒ y = 3y 2 (x + a)2 3 4๐๐ฅ + 6๐2 ๐ฅ 2 โฒ ๐ฆ = ๐
๐๐๐๐๐๐๐๐๐ 3๐ฆ 2 (๐ฅ + ๐)2
3y 2 y โฒ =
yโฒ =
4aa3 + 6a2 a2 3a2 (a + a)2
yโฒ =
10a4 12a4
๐โฒ =
๐ ๐
POLYNOMIAL OF A TERM 1. ๐ฆ = 3๐ฅ 2 โ 2๐ฅ = 1 @ (1 ,2) y โฒ = 6x โ 2 Derivative y โฒ = 6(1) โ 2 ๐ฒ โฒ = ๐ Slope ๐=
๐ฆ โ ๐ฆ1 ๐ฅ โ ๐ฅ1
๐บ๐๐๐๐ ๐ญ๐๐๐๐๐๐ 61
4=
yโ2 xโ1
4x โ 4 = y โ 2 ๐๐ โ ๐ = ๐
๐ป๐๐๐๐๐๐ ๐ณ๐๐๐
โ1 y โ y1 = 4 x โ x1 โ1 y โ 2 = 4 xโ1 โx + 1 = 4y โ 8 ๐ฑ + ๐๐ฒ = ๐
2.
Normal Line
y = x 2 โ 2x @ its pt. of intersection w/ the line ๐ฆ = 3
y + 1 = x 2 โ 2x + 1 (-1, 3)
(3, 3)
y + 1 = (x โ 1)2 V (1, -1) up P.I (-1, 3) (3, 3) y = x 2 โ 2x 3 = x 2 โ 2x 0 = x 2 โ 2x โ 3
FACTOR
(x โ 3) (x + 1) = 0 x = 3 x = โ1 y = x 2 โ 2x ๐ฒ โฒ = ๐๐ฑ โ ๐ @ (-1, 3) yโ = 2 (โ1) โ 2 = โ๐ 62
yโ = 2 (3) โ 2 = ๐
โ4 =
y โ 3 x + 1
โ4x โ 4 = y โ 3 ๐๐ฑ + ๐ฒ = โ ๐ 4 =
yโ 3 x โ 3
๐๐ฑ โ ๐๐ = ๐ฒ โ ๐
๐๐ โ ๐ = ๐ Parabola x 2 = y + c Circle
x 2 + y 2 = a2
Ellipse ax 2 + by 2 = c Hyperbola ax 2 โ by 2 = c
1. To the ellipse x 2 + 4y 2 = 8 || to the line ๐ฅ + 2๐ฆ = 6 x 2 + 4y 2 = 8 8 x2 y2 + =1 8 2 x2 y2 + =1 a2 b2 x + 2y = 6 2y = โx + 6 2 y = โ
1x + 3; 2
m=โ
1 2
slope of line 63
x 2 + 4y 2 = 8 2x + 8yyโ = 0 yโ =
โ2x โx 1 = = โ 8y 4y 2
x =1 2y x =2y x 2 + 4y 2 = 8 (2y)2 + 4y 2 = 8 4y 2 + 4y 2 = 8 8y 2 = 8 8 y2 = 1 ๐ฒ =ยฑ๐ y=1
y = -1
x= 2 x = - 2 (-2 , -1)
โ1 y+1 = 2 x+2 -x -2 = 2y + 2 x + 2y = -4 โ1 yโ1 = 2 xโ2 โx + 2 = 2y โ 2 x + 2y = 4
2. To the parabola y 2 = 6x โ 3 โ to the line x + 3y = 7 ๐ฆ 2 = 6(๐ฅ โ 1โ2) 64
๐ฃ(1โ2 , 0 ) ๐ฅ ๐๐๐ก ๐ฅ โ ๐๐๐ก
1 2 3 4 5 6 7 8
๐ฅ = 0 ๐ฆ = 0 ๐๐๐๐
(1/2 , 0)
(2๐ฆ๐ฆโฒ = 6) 2๐ฆ ๐ฆโ =
3 ๐ฆ
3 =
3 ๐ฆ
y=1 3y = โx + 7 y =
โ1 7 x+ 3 3
m =
โ1 3
m โฅ= 3 ๐ฆ 2 = 6๐ฅ โ 3 12 = 6๐ฅ โ 3 4 2 =๐ฅ= 6 3 2 ( , 1) 3 3=
๐ฆโ1 2 ๐ฅโ3
๐๐ โ ๐ = ๐ โ ๐ ๐๐ โ ๐ = ๐
65
3. To the cubic y = x 3 โ 2x + 3 || to 10๐ฅ โ ๐ฆ = 3 ๐ฆ = 10๐ฅ โ 3 ๐ = 10 yโ = 3x 2 โ 2 = 10 yโฒ =
3x 2 = 12 3
x2 = 4 ๐ฑ ๐ = +๐ ๐ฑ ๐ = โ๐ If x = + 2 y = 23 โ 2(2) + 3 = 8 -4 + 3 y=7
(2, 7)
If x = - 2 y = โ23 โ 2(โ2) + 3 = -8 + 4 + 3 y= -1 (-2, -1) 10 =
yโ7 xโ2
10x -20 = y -7 10x โy = 13 10 โ
y +1 x+2
10x + 20x = y + 1 10x โ y = -19
4. Make the parabola y = ax 2 + bx + c pass thru (2, 1) to be tangent to the line y = 2x + 4 @ (1, 6) @ (2, 1) 66
1 = a(2)2 + b(2) + c 1 = 4a + 2b +c
1 equation
@ (1 , 6) 6 = a(1)2 + b(1) +c 6= a + b + c
2 equation
y = ax 2 + bx + c yโ = 2ax + b 2 = 2a (1) + b y = 2x + 4 yโ= 2
2 = 2a + b
3equation
1equation - 2equation 1 = 4a + 2b + c -(6 = a + b + c)
-5 = 3a + b
4equation
3equation to 4equation -5 = 3a + b -(2 = 2a + b) -7 = a a = - 7 5 equation
5equation in 4equation -5 = 3 (-7) + b -5+21 = b = 16 b = 16
6= a + b + c 6 = -7 + 16 + c C = -3 67
y = โ7x 2 + 16x โ 3
5. Make the cube y = ax 3 + bx 2 + cx + d be tangent to y = 12x + 13 @ (-1 , 1) to have a horizontal tangent line @ (1 , 5). @ (-1 , 1) 1 = -a + b โ c + d
equation 1
@(1 , 5) 5= a + b + c + d
equation 2
y โฒ = 3ax 2 + 2bx + c 12 = 3a(โ1)2 + 2b(1) + c 12 = 3a โ 2b + c
3equation
0 = 3a(1)2 + 2b(1) + c 0 = 3a + 2b + c
4 equation
1equation to 2equation 1=-a+bโc+d -(5 = a + b +c +d) -4 = -2a โ 2c 2=a+c
5equation
y = 12x + 13 yโ = 12 3equation to 4equation 12 = 3a โ 2b + c 0 = 3a + 2b + c 12 = 6a + 2c 2
68
6 = 3a+c
6 equation
6=3a+c -(2 = a + c) 4=2a a=2
7equation
c=0
8 equation
7 equation to 8 equation in 4 equation 0=3a+2b+c 0=3(2)+2b -6=2b b=-3 9 equation 7equation, 8 equation to 9 equation in 4 equation 1=-a+b-c+d 1=-2-3+d d=6 y = ax 3 + bx 2 + cx + d y=๐๐๐ โ ๐๐๐ + ๐ MAXIMA AND MINIMA 1. y = 2 + 12x โ x 3 yโ = 12 โ 3x 2 = 0 =
12 = 3x 2 3
4 = x2 x = ยฑ2 y = 2 + 12(2) โ (2)3 = 2 + 24 โ 8 =18 y = 2 + 12(โ2) โ (โ2)3 69
= 2 โ 24 + 8 = -14
(2, 18) (-2 , -14) (2, 18) max
(-2, -14) min
x= 1
2 3 -1 -2 -3
y = 13 18 11 -9 -14 -7
๏ท ๏ท ๏ท
y = 0 if y changes from + to โ as x- increase y is a maximum if yโ changes from โ to + y is minimum yโ + to โ y is maximum yโ does not change sign y โต neither maximum or minimum if yโ > 0 y increases yโ < 0 y decreases Name: Course/Year & Section: Assignment no.5: maxima and minima Answers:
1. y = โ 6x + x 2 ๐ฆโ = 0 = โ 6 + 2๐ฅ 6 = 2๐ฅ ๐ = ๐ y = โ 6 (3) + (3)2 ๐ฆ = โ 18 + 9 ๐ = โ๐ C. P (3 , -9) ,minimum @ (2 ๐ฆโ = โ6 + 2๐ฅ ๐ฆโฒ = โ 6 + 2(2) 70
๐โฒ = โ๐ @ (4) ๐ฆโ = โ 6 + (2)(4) yโฒ = +2
2. y = 4x 2 + 16x + 9 ๐ฆโ = 8๐ฅ + 16 = 0 ๐= โ๐ y = 4(โ2)2 + 16(โ2) + 9 ๐ฆ = 16 โ 32 + 9 ๐ = โ๐ C.P (-2 , -7) minimum ๐ผ๐ ๐ฅ = โ3 ๐ฆโ = 8 (โ3) + 16 ๐ฆโฒ = โ24 + 16 ๐โฒ = โ๐ @ ๐ฅ = โ1 ๐ฆโ = 8(โ1) + 16 ๐ฆโฒ = โ8 + 16 ๐โฒ = ๐ 3. y = (2x โ 1)2 = 4(2x - 1) = 0 x=ยฝ 1 y = (2 ( ) โ 1)2 2 =0 C.P (1/2 , 0) minima y โฒ = 4(2(0) โ 1) y=4 yโ = 4(2(1) โ 1) = 4(2-1) =4 4. y = โ4(x + 2)2 yโ โ 8(x + 2)1 (1) ๐ฆโ = โ 8(๐ฅ + 2) = 0 ๐ฅ + 2 = 0โ8 71
๐ฅ + 2 = 0 ๐ = โ๐ y = โ4(โ2 + 2)2 ๐ฆ= 0 C.P (โ2 , 0) max ๐ฆโ = โ8 (โ3 + 2) ๐โฒ = +๐ ๐ฅ = โ1 ๐ฆโ = โ8 (โ1 + 2) ๐โฒ = โ๐
๏ท
yโ is + yโ is increasing as x- increases the tangent turns in a ccw sense to the curve is concave upward.
x
CCW
CW
yโ < 0 y is maximum yโ > 0 y is minimum yโ = 0 test fails
E.G. y =
1 3 1 2 x โ x โ 2x + 2 3 2
๐ฆโฒ = ๐ฅ2 โ ๐ฅ โ 2 = 0 (๐ฅ โ 2)(๐ฅ + 1) = 0 72
๐ฅ=2
๐ฅ = โ1
If ๐ฅ = 2 1 1 (2)3 โ (2)2 โ 2(2) + 2 3 2 8 ๐ฆ = โ2โ4+2 3 ๐ฆ=
๐ฆ=
8 4 โ 3 1
๐ฆ =
8 โ 12 3
โ4 3 โ4 C. P(2 ) 3 ๐ฆ=
If x = 1 1 1 (โ1)3 โ (โ1)2 โ 2(โ1) + 2 3 2 ๐ฆ = โ 1โ3 โ 1โ2 + 2 + 2 4 ๐ฆ = โ 1โ3 โ 1โ2 + 1 ๐ฆ = โ2 โ 2 + 24โ6 = 19โ6 ๐ฆ=
๐๐๐ฑ๐ข๐ฆ๐
19
C.P (โ1, 6 ) Minima (2, -4/3) ๐ฅ = โ2 ๐ฆโฒ = ๐ฅ2 โ ๐ฅ โ 2 ๐ฆโ = (โ2)2 โ (โ2) โ 2 ๐ฆโ = 4 + 2 โ 2 ๐โ = ๐ ๐ฅ = 0 ๐ฆ โฒ = 12 โ 1 โ 2 ๐ฆโ = 1 โ 1 โ 2 ๐ = โ๐ ๐ฅ = 3 ๐ฆโ = 32 โ 3 โ 2 ๐ฆโ = 9 โ 5 ๐ = ๐ ๐ฆโฒ = ๐ฅ2 โ ๐ฅ โ 2 = 0 ๐ฆโ = 2๐ฅ โ 1 ๐ฆโโ = 2(โ1) โ 1 73
๐โ = โ๐ ๐ฆโ = 2(2) โ 1 ๐ฆโ = 4 โ 1 ๐โ = ๐ ๐ฆโ = 2๐ฅ โ 1 = 0 1 ๐ฅ= 2 1 1 3 1 1 2 1 ๐ฆ = ( ) โ ( ) โ 2( ) + 2 3 2 2 2 2 1 1 1 1 1 1 โ 3 + 24 ๐ฆ = ( )โ โ1+2 ๐ฆ= โ +1= 3 8 8 24 8 24
๐ฆ=
22 11 = 24 12
Point of Inflection A point @ which the curve changes from concave upward to concave downward or vice versa. Sketching Polynomial Curve 1. Find the points of intersection with the axes. 2. Determine the behavior of y for large values of x. 3. Locate points where ๐ฆ โฒ = 0 to determine max or min. 4. Locate points where ๐ฆ " = 0. 5. Plot additional points. ๐ฆ = ๐ฅ 3 โ 3๐ฅ y = x(๐ฅ 2 โ 3) Intercepts y=0 0 = x (๐ฅ 2 โ 3) x = 0 + โ3โ3 (0 , 0) (โ3, 0)(โโ3, 0) x=0 y=0 ๐ฆ = ๐ฅ 3 โ 3๐ฅ ๐ฆ โฒ = 3๐ฅ 2 โ 3 = 0 ๐ฅ2 = 1 ๐ฆ = (1)3 โ 3(1) y= 1 โ 3 y= -2 ๐ฆ = (โ1)3 โ 3(โ1) 74
๐ฆ = โ1 + 3 ๐ฆ= 2 ๐ถ๐ (1 , โ2) (โ1 , 2) ๐ฆ " = 6๐ฅ ๐ฆโ = 6(1) ๐ฆโ = 6 ๐ฆ " = 6(โ1) = โ6 ๐ฆ " = 6๐ฅ = 0 ๐ฅ= 0 ๐ฆ= 0
Name: Course/Year & Section:
Assignment no.6: Point of Inflection 1. )y = xยณ โ 3xยฒ ๐ฆโ = 3๐ฅ 2 โ 6๐ฅ 0 = 3๐ฅ (๐ฅ โ 2) ๐ฅ = 0
๐ฅ = 2
๐ฆ = 03 โ 3(0)2 = 0 ๐ฆ = 23 โ 3(2)2 = 8 โ 12 = โ4 0 = ๐ฅ 2 (๐ฅ โ 3) ๐ฅ =0
๐ฅ =3
C.P Maxima(0,0) Minima(2, โ4) ๐ฆโ = 6๐ฅ โ 6 = 0 ๐ฅ = 1 ๐ฆ = 13 โ 3(1)2 ๐ฆ= 1โ 3 75
๐ฆ = โ2 ๐. 1 (1, โ2) ๐ฆโ = 6(0) โ 6 = โ6 ๐ฆโ = 6(2) โ 6 ๐ฆ" = 12 โ 6 ๐ฆ" = 6 2. )y = x 3 + 3x 2 + 3x ๐ฆ โฒ = 3(๐ฅ 2 + 2๐ฅ + 1) ๐ฆโ = 3๐ฅ 2 + 6๐ฅ + 3 = 0 0 = (3๐ฅ + 3)(๐ฅ + 1) ๐ฅ = โ1 ๐ฆ = (โ1) 3 + 3(โ1)2 + 3(โ1) ๐ฆ = โ1 + 3 โ 3 ๐ฆ = โ1 C.P (โ1, โ1) ๐ฆโ = 6๐ฅ + 6 ๐ฆโ = 6(โ1) + 6 ๐ฆโ = 0 0 = 6๐ฅ + 6 ๐ฅ = โ1 P.I (โ1, โ1) ๐ฅ = 0; ๐ฆ = 0 ๐ฆ = 0 0 = ๐ฅ(๐ฅ 2 + 3๐ฅ + 3)
3. )y = 36 + 12x โ xยณ ๐ฆโ = 12 โ 3๐ฅ 2 = 0 0 = โ3(โ4 + ๐ฅ 2 ) ๐ฅ = ยฑ2 ๐ฆ = 36 + 12(2) โ (2)3 ๐ฆ = 36 + 24 โ 8 76
๐ฆ = 20 C.P. (2,52) (โ2,20) ๐ฆโ = 0 = โ6๐ฅ ๐ฅ = 0๐ฆ = 36 P.I (0, 36) Interceps (0,36)
4. )y = 2x 3 โ 9x 2 + 12x โ 2 ๐ฆโ = 6๐ฅ 2 โ 18๐ฅ + 12 0 = 6(๐ฅ 2 โ 3๐ฅ + 2) 0 = (๐ฅ โ 2) (๐ฅ โ 1) ๐ฅ = 2๐ฅ = 1 ๐ฆ = 2(2)3 โ 9(2) 2 + 12(2) โ 2 ๐ฆ = 16 โ 36 + 24 โ 2 ๐ฆ = 2 ๐ฆ = 3
C.P. (2,2) (1,3) ๐ฆโ = 12๐ฅ โ 18 ๐ฆโ = 12(2) โ 18 = 6 minima ๐ฆโ = 12(1) โ 18 = โ6 maxima ๐ฆโ = 0 = 6(2๐ฅ โ 3) ๐ฅ = 1.5 ๐ฆ = 2.5 P.I (1.5, 2.5) ๐ฅ = 0 ; ๐ฆ = โ2 77
๐ฆ = 0; ๐ฅ = 5. )y = 28 โ 15x + 6xยฒ โ xยณ yโ = -15 + 12x โ 3x2 yโ = -3(5 - 4x + x2) no. critical points yโ = 12 โ 6x = 0 x=2 y = 14 P.I = (2,14)
x y
-1 50
0 28
1 18
2 14
3 10
4 0
5 -22
APPLICATION OF DERIVATIVES 1. A box is to be made of a piece of cardboard 16x10in by cutting equal squares out the corners and turning up the sides. Find the volume of the largest box that can be made in this way. ๐๐ฃ = ๐ฅ(10 โ 2๐ฅ)(16 โ 2๐ฅ) ๐ฃ = 2(10 โ 2๐ฅ) (16 โ 2๐ฅ) 2) ๐ฃ = ๐ฅ(160 โ 20๐ฅ โ 32๐ฅ + 4๐ฅ ๐ฃ = 2(10 โ 4) (16 โ 4) ๐ฃ = 160๐ฅ โ 52๐ฅยฒ + 4๐ฅ 3 ๐ฃ = 2(6) (12) ๐ฃ โฒ = 160 โ 104๐ฅ + 12๐ฅยฒ = 0 ๐ฃ = 144 ๐๐3 โฒ 2 ๐ฃ = 12๐ฅ โ 104๐ฅ + 160 = 0 ๐ฃ โฒ = 6๐ฅ 2 โ 52๐ฅ + 80 = 0 ๐ฃ โฒ = 3๐ฅ 2 โ 26๐ฅ + 40 = 0 โ๐ ยฑ โ๐ 2 โ 4๐๐ ๐ฅ= 2๐ 26 ยฑ โ262 โ 4(3)(40) ๐ฅ= 2(3) 26 ยฑ โ676 โ 480 ๐ฅ= 6 26 ยฑ โ196 ๐ฅ= 6 26 ยฑ 14 ๐ฅ= 6 40 20 ๐ฅ1 = = = 6.67 6 3 ๐ฅ2 = 2
78
2. Find the area of the largest rectangle that can be inscribed in a given circle. A = 4xy xยฒ + yยฒ = rยฒ yยฒ = rยฒ โ xยฒ y = โr 2 โ x 2 A = 4xโr 2 โ x 2 1 ๐ดโฒ = 4โ๐ 2 โ ๐ฅ 2 + 4๐ฅ ( ) (๐ 2 โ ๐ฅยฒ)โ1/2 (โ2๐ฅ) 2 4๐ฅ 2 ๐ดโ = 4(๐ 2 โ ๐ฅ 2 )1/2 โ โ๐ 2โ๐ฅ2 2 2) 2 4(๐ โ ๐ฅ โ 4๐ฅ ๐ดโฒ = =0 โ๐ 2 + ๐ฅ 2 4๐ 2 8๐ฅ 2 = 8 8 ๐2 = ๐ฅยฒ 2 r โ2r x= = 2 โ2 2 y = โr + x 2 y = โr 2 โ r
r2 2
โ2r =x 2 โ2 2x = 2y = rโ2 A = 4xy rโ2 rโ2 A = 4( )( ) = 2rยฒ 2 2 y=
=
3. Find the altitude of the largest circular cylinder that can be inscribed in a cone of radius r and height h. v = ฯx 2 y ๐ฃ๐๐ฆ๐๐๐๐๐๐ = ๐๐ฅ 2 ๐ฆ x hโy = r h r(h โ y) x= h ๐๐ 2 (โ โ ๐ฆ)2 ๐ฆ ๐ฃ๐๐ฆ๐๐๐๐๐๐ = โ2 2 ฯr vโฒ = [(h โ y)ยฒ + 2(h โ y)(โ1) y] = 0 h 2 (h โ y) โ 2y(h โ y) = 0 (h โ y)2 = 2y(h โ y) 79
h โ y = 2y h = 3y h y= 3
x=
h r (h โ 3)
h 2 rh x=3 h 2 x= 3r 2r 2 h v = ฯ( ) ( ) 3 3 4ฯr 2 h v= 27
USE OF AUXILLARY VARIABLE 1. Find the shape of the largest rectangle that can be inscribed in a given circle. ๐ด = 4๐ฅ๐ฆ ๐ฅยฒ + ๐ฆยฒ = ๐ยฒ ๐ดโฒ = 4๐ฅ๐ฆ โฒ + 4๐ฆ ๐ด = 4(๐ฅ๐ฆ โฒ + ๐ฆ) = 0 ๐ฅ๐ฆ โฒ + ๐ฆ = 0 ๐ฆ ๐ฆโฒ = โ ๐ฅ 2๐ฅ + 2๐ฆ๐ฆ โฒ = 0 ๐ฅ ๐ฆโฒ = โ ๐ฆ โฒ โฒ ๐ฆ =๐ฆ ๐ฆ ๐ฅ โ =โ ๐ฅ ๐ฆ 2 โ๐ฆ โ โ๐ฅ 2 ๐โ2 ๐ฅ=๐ฆ= 2 ๐ด = 2๐ยฒ
2. What odd numbers added to its reciprocal gives the minimum sum? 1 ๐ =๐ฅ+ ๐ฅ 80
๐ โฒ = 1 + (โ 1 0= 1โ 2 ๐ฅ 1 =1 ๐ฅ2
1 ) ๐ฅ2
โ1 = ๐ฅ 2 ๐ฅ = ยฑ1
3. What number exceeds its square by the maximum amount? ๐ฅ ๐ฅยฒ ๐ฆ = ๐ฅ โ ๐ฅยฒ ๐ฆ โฒ = 1 โ 2๐ฅ = 0 1 = 2๐ฅ ๐ ๐= ๐ 4. The sum of two numbers is k. find the minimum value of the sum of their squares. ๐ฅ+๐ฆ =๐ ๐ฅ =๐โ๐ฆ ๐ = ๐ฅ2 + ๐ฆ2 ๐ = (๐ โ ๐ฆ)2 + ๐ฆยฒ ๐ โฒ = 2(๐ โ ๐ฆ)(โ1) + 2๐ฆ = 0 ๐ฆ =๐โ๐ฆ 2๐ฆ = ๐ ๐ ๐ฆ= 2 ๐ = ๐ฅ2 + ๐ฆ2 ๐ 2 ๐ = (๐ โ ๐ฆ) + ( ) 2 2
๐ = ๐ 2 โ 2๐๐ฆ + ๐ฆ 2 +
๐2 4
๐ ๐ 2 ๐2 ๐ = ๐ โ 2๐ ( ) + ( ) + 2 2 4 2 2 ๐ ๐ ๐ = ๐2 โ ๐2 + + 4 4 ๐๐ ๐= ๐ 2
81
5. The sum of two numbers is k. find the minimum value of their cubes. ๐ฅ+๐ฆ =๐ ๐ฅ =๐โ๐ฆ ๐ = ๐ฅ3 + ๐ฆ3 ๐ = (๐ โ ๐ฆ)3 + ๐ฆยณ ๐ โฒ = 3(๐ โ ๐ฆ)2 (โ1) + 3๐ฆ 2 = 0 โ๐ฆ 2 = โ(๐ โ ๐ฆ)2 ๐ฆ =๐โ๐ฆ 2๐ฆ = ๐ ๐ ๐ฆ= 2 ๐ = ๐ฅ3 + ๐ฆ3 ๐ = (๐ โ ๐ฆ)3 + ๐ฆ 3 ๐ 3 ๐ 3 ๐ = (๐ โ ) + ( ) 2 2 ๐ 3 ๐ 3 ๐3 ๐3 ๐ =( ) +( ) ๐= + 2 2 8 8
๐3 ๐= 4
6. The sum of two + number is 2. Find the sum of the cube of one number and the square of the other. ๐ฅ + ๐ฆ = 2 ๐ฅ = 2โ ๐ฆ ๐ = ๐ฅ3 + ๐ฆ2 ๐ = (2 โ ๐ฆ)3 + ๐ฆ 3 ๐ โฒ = 3(2 โ ๐ฆ)2 (โ1) + 2๐ฆ = 0 2๐ฆ = 3(4 โ 4๐ฆ + ๐ฆ 2 ) ๐ โฒ = 12 โ 12๐ฆ + 3๐ฆ 2 โ 2๐ฆ ๐โ = 12 โ 14๐ฆ + 3๐ฆ 2 = 0 3๐ฆ 2 โ 14๐ฆ + 12 = 0 14 ยฑ โ142 โ 4(3)(12) ๐ฆ= 2(3) 14 ยฑ โ196 โ 144 ๐ฆ= 6 14 ยฑ โ52 ๐ฆ= 6 14 ยฑ 2โ13 ๐ฆ= 6 7 + โ13 ๐ฆ1 = = 3.54 3 7 โ โ13 ๐ฆ2 = = 1.13 3 ๐ฅ = 2 โ 1.13 = 0.87 ๐ = 0.873 + 1.132 ๐ = 1.94 82
Name: Course/Year & Section: Assignment no.7: AUXILLARY VARIABLE 1. The sum of two numbers is 4. Find the sum of the cube of one number and the square of the other.
2. A balloon leaving the ground 60ft from an observer, rises vertically at the rate of 10ft/s. how fast the balloon receding from the observer, after 8 seconds? d= vt s 2 = 602 + (10t)2 sยฒ = 3600 + 100tยฒ 83
s = โ3600 + 100tยฒ s = โ100(36 + tยฒ) s = 10โ36 + tยฒ s = 10(36 + tยฒ)1/2 ds dt ds dt ds dt ds
=
10 2
(36 + t 2 )-1/2(2t)
= 10t/(36 + tยฒ )1/2 = 10(8)/(36 + 8ยฒ)1/2
= 80/(100)1/2 ds 80 = dt 10 ds = 8 ft /s dt dt
2. As a man walks across a bridge at the rate of 5ft/s , a boat passes directly beneath him at 10ft/s. if the bridge is 30ft after water, how fast are the man and the boat separating 3s later? d = vts2 = x 2 + y 2 + z 2 sยฒ = (5t)2 + (30)2 + (10t)2 sยฒ = 25tยฒ + 900 + 100tยฒ โs2 = โ125t 2 + 900 s = โ125t 2 + 900 ds 1 = 2 (125t 2 + 900)-1/2(250t) dt ds 125t = dt 125t 2 + 900 ds 125(3) = dt โ(125(3)2 + 900 ds 375 = 1 dt (1125 + 900)2 ds = 375/(2025)1/2 dt ds 375 = dt 45 ds ft = 8.33 dt s
84
4. A man on the wharf 20ft above the water pulls a rope to which the boat is attached, at the rate of 4ft/s. at what rate is the boat approaching the wharf when there is 25ft of rope out? 2 2 2 s =x +y (4t)2 = 202 + x 2 16t 2 = 400 + x 2 dx 32t= 2x dt r2 = x2 + y2 โx 2 = โr 2 โ y 2 x = โr 2 โ y 2 =โr 2 โ 202 =โr 2 โ 400 1 dv 1 dr = (r 2 โ 400)โ2 (2r ) dt 2 dt ๐ ๐๐/๐๐ก = (๐2 โ 400)1/2 4(4๐๐ก/๐ ) = 1 (๐ 2 โ 400)2 25(4) 100 = = 2 (25 โ 400) (625 โ 400)1/2 100 = (225)1/2 ๐๐ฅ 100 20 = = = 6.667๐๐ก๐ ๐๐ก 5 3
5. Water is flowing into a coined reservoir 20ft deep to 10ft across the top, at the rate of 15cu ft/min. Find how fast the surface is rising when the water is 8ft deep. ๐๐ 2 โ ๐= 3 ๐โ โ2 ๐= ( )2 3 4 ๐โ3 ๐= 48 5 ๐ โ = , ๐= 204 โ 4 ๐๐ฃ 3๐โ2 ๐โ = ๐๐ก 48 ๐๐ก 85
๐(8)2 ๐โ 15 = 16 ๐๐ก ๐โ 15(16) 240 60 15 = = = = = 1.194 ๐๐ก/๐๐๐ ๐๐ก ๐(64) ๐(64) ๐(16) 4๐
Name: Course/Year & Section: Assignment no.8: 1. Water is flowing into a vertical cylinder tank at the rate of 24 cu. ft/min. if the radius of the tank is 4ft., how fast is the surface rising? v = ฯr 2 h v = ฯ(4)2 h v = 16ฯh dv 16ฯdh = dt dt 16ฯdh 24 = dt 24ft 3 dh = min 2 dt 16ฯft dh = 0.48ft/min dt
2. Water flows into a vertical cylindrical tank at 12ftยณ/min., the surface rises 6in/min., find the radius of the tank.
86
dh 6in 1ft = โ = 0.5ft/min dt min 12in v = ฯrยฒh dv ฯr 2 dh = dt dt 12ft 0.5ft = ฯr 2 ( ) min min 24 โ = rยฒ ฯ r = 2.76ft
3. A rectangular through is 10ft long and 3ft wide. Find how fast the surface rises, if the water flows in at the rate of 12ftยณ/min. v = lwh v = 10(3)(h) dv 30dh = dt dt 12ft 3 30ft 2 dh = min dt 12ft 3 dh = min2 dt 30ft dh 2ft = dt 5min dh 0.4ft = dt min 4. A triangular through is 10ft long, 4ft across the top and 4ft deep. If the water flows in at the rate of 3 cu. ft/min., find how fast the surface is rising when the water is 6 inches deep?
87
v=
lwh 2
v=
lh2 2
10 (2h)dh dv = 2 dt dt 3=
10(0.5)dh dt
dh 3 = dt 5 dh = 0.6ft/min dt
5. A triangular through is 10ft long, 6ft across the top and 3ft deep. If the water flows in at the rate of 12 cu. ft/min., find how fast the surface is rising when the water id 6in deep. 6 x = 3 h x = 2h w = 2h lwh v= 2 l(2h)(h) v= 2 v = lhยฒ dv 2hdh = 10 ( ) dt dt 20(0.5)dh 12 = dt 10dh 12 = dt dh ft = 1.2 dt min
88
Square root โ8.73 y = โx dy = ยฝx-1/2 dx dx dy = 2โx x=9 โx = 8.73 โ 9 dx = โ0.27 0.27 dy = โ 2โ9 0.27 dy = โ 6 dy = โ0.045 โ8.73 = y + dy โ8.73 = 3 โ 0.045 โ8.73 = 2.995 โ15 dx dy = 2โx x = 16 โx = 15 โ 16 dx = โ1 89
dy = โ
1
2โ16 1 dy = โ 8 dy = โ0.125 โ15 = y + dy โ15 = 4 โ 0.125 โ15 = 3.875 โ17 x = 16 โx = 17 โ 16 dx = 1 1 dy = 2โ16 1 dy = 8 dy = 0.125 โ17 = y + dy โ17 = 4 + 0.125 โ17 = 4.125 cube root 3
โ26 3 y = โ26 y = x1/3 dy = 1/3x-2/3dx dx dy = 3 3โx 2 x = 27 dx = 26 โ 27 dx = โ1 1 dy = โ 3 3 โ272 1 dy = โ 3(9) 1 dy = โ 27 dy = โ0.037 3 โ26 = 3 โ 0.037 3 โ26 = 2.963 Fourth root
90
4โ17
y =4โx y = x1/4 dy = 1/4x-3/4dx dx dy = 4 4โx 3 x = 16 dx = 17 โ 16 dx = 1 1 dy = 4 4โ163 1 dy = 32 dy = 0.03125 4 โ17 = 2 + 0.03125 4 โ17 = 2.03125
Newtonโs Law of Approximation y =2x 3 + 3x 2 โ 12x + 5 yโ = 6๐ฅ 2 + 6๐ฅ โ 12 F(2)= 2(2)3 + 3(2)2 โ 12(2) + 5 = 9 Fโ(2)= 6(2)2 + 6(2) โ 12 = 24 f (x )
9
x2 = x1 - f(x 1) = 2-24 =1.625 1
F(1.625)=2.0039 Fโ(1.625)= 13.5937 x2 = 1.625 โ
2.0039 = 1.4775 13.5937
F(1.4775)=0.0066 Fโ(1.4775)=9.9630 x2 = 1.4775 โ
0.0066 = 1.4768 9.9630
91
F(1.4768)=0.2628 Fโ(1.4768)=6.9928 x2 = 1.4768 โ
0.2638 = 1.4392 6.9928
F(1.4392)=0.0944 Fโ(1.4392)=9.0630 x2 = 1.4392 โ
0.0944 = 1.446 9.0630
F(1.4496)=0.0010 Fโ(1.4496)=9.3056 x2 = 1.446 โ
0.001 = 1.4494 9.3056
Derivatives of Trigonometric Functions d dฮธ = sin ฮธ = cos ฮธ dx dx d dฮธ = cos ฮธ = โ sin ฮธ dx dx d dฮธ = tan ฮธ = sec ยฒฮธ dx dx d dฮธ = cot ฮธ = โ csc ยฒฮธ dx dx d dฮธ = sec ฮธ = sec ฮธ tan ฮธ dx dx d dฮธ = sec ฮธ = โ csc ฮธ cot ฮธ dx dx Examples 1. )y = sin 3x
92
dy = 3 cos 3x dx 2. )x = cot 4t dx = โ4 sin 4t dt 3. )w = tan 2ฮธ dw = 2 secยฒ 2ฮธ dฮธ 4. )z = sec
y 2
dz y y = 1/2 sec tan dy 2 2 5. )y = cot 5x dy = โ5 csc ยฒ 5x dx 6. )y = csc 7x dy = โ7 csc 7x cot 7x dx 7. )v = 3 cos 2u dv = โ6 sin 2u du 8. )x = sec 3 2t dx = 6 secยฒ 2t sec 2t tan 2t dt dx = 6 secยณ 2t tan 2t dt 9. )y = x 2 sin
x 2
93
dy sin y x 2 x = 2x + cos dt 2 2 2 10. )y = cos4 t โ sin4 t dy = 4cos3 t(โ sin t) โ 4sin3 t cos t dt dy = โ4cos3 t sin t โ 4cost sin3 t dt dy = โ4 sin t cos t(cos2 t + sin2 t) dt dy = โ4 sin t cos t dt sin(2ฮธ) = 2sinฮธcosฮธ sin(2ฮธ) = โ2(2 sin t cos t) sin(2ฮธ) = โ2 sin 2t
11. )y = sec 2 ฮธ โ tan2 ฮธ dy = 2 secฮธsecฮธtanฮธ โ 2 tanฮธsecฮธ dt ๐๐ฒ =๐ ๐๐ญ 12. )r = cosฮธcotฮธ dr = โ sin ฮธcotฮธ + cosฮธ (โcsc 2 ฮธ) dt dr = โsinฮธcotฮธ โ cosฮธcsc 2 ฮธ dt dr cosฮธ = sinฮธ โ cosฮธcsc 2 ฮธ dt sinฮธ
94
dr = โcosฮธ โ cosฮธcsc 2 ฮธ dt dr = โcosฮธ (1 + csc 2 ฮธ) dt Derivatives of Logarithmic Functions Exponential dv d lnv = dx dx v dv m d log10 v = dx dx v Derivatives of Exponential Functions d v dv a = av ln d dx dx d dv = ey = ev dx dx
Examples: 1. )y = ln(7 โ 3x) dy โ3 = dx 7 โ 3x 2. )y = ln(2x 3 + x โ 1) dy 6x 2 + 1 = 3 dx 2x + x โ 1 3. )w = ln โa2 โ x 2 1
w = ln(a2 โ x 2 )2 โ1 1 ln 2 (a2 โ x 2 ) 2 (โ2x) w= 1
(a2 โ x 2 )2
w=
a2
โx โ x2
95
4. )y = log10
sin x a
m x dy a cos a = x dx sin a x dy m cos a = x dx a sin a dy m x = cos dx a a 5. )y = e2x
3
3
y = e2x (6x 2 ) 3 y = 6x 2 e2x y = eโ3x y = eโ3x (โ3)
dy = โ3eโ3x dx ๐. ). x = 102t dy = 102t ln 10 (2) dx dy = 2(102t ln 10) dx
96
Name: Course/Year & Section: Assignment no.9 Newtonโs Law of Approximation 1. ๐ฅ 3 + 5๐ฅ + 2 = 0
2. ๐ฅ = โ4 tan 3๐ฅ
3. ๐ค = 2 csc(1 โ 3๐ฅ) 97
๐ฅ
4. ๐ฆ = 4 cot 4
5. ๐ฆ = 6 sec 3๐ฅ
๐ฅ
6. ๐ฆ = 12 sin 2
๐ ๐ฅ 7. ๐ฆ = tan( โ ) 4 3
๐ ๐ฅ 8. ๐ฆ = sin ( โ ) 4 3
9. ๐ง = cos ยณ 2๐ฅ
98
10. ๐ฃ = sin ยฒ 3๐ก
11. ๐ฆ = tan ยฒ 4๐ก
99