1
Construction
Grab for cohesionless soil
Hydrofraise for very cohesive soils 2
Construction
• Vibratory hammer • Hammer 3
Similar method of design • Definition of the dimension • Embedment • Type of sheetpile or thickness of the slurry wall
• Design of the anchor system if required • Number • Length • Kind
• Global stability analysis • Analysis of hydraulic flow under the wall
4
• Rigid plastic method
• Elastic plastic method Modulus of subgrade reaction method
5
• Bidimensional analysis • Rigid plastic behavior • Stresses normal to the wall (Rankine theory) • Strains in the wall remain small
6
Deflection y
« Rotation point »
O
Active earth pressure
Passive earth pressure 7
Maximum active earth pressure
z H
Maximum passive earth pressure
A f0 0.2f0
Max counter passive earth pressure
O Resulting diagram of earth pressure
Max counter active earth pressure
Simplified model
D
FC
Final model
8
• Hypotheses • Rotation around O • Balance equations of the system (unknown : f0, Fc) Active pressure : a ( z ) = K a .γz Passive pressure : b( z ) = − K p .γ ( z − H ) For point A :
r r ∑F = 0 r r ∑ M /o = 0
a ( z ) + b( z ) = 0 ⇒ z A =
K pH K p − Ka
⇒ D = 1.2 f 0 +
Ka H K p − Ka
9
• Hypotheses Point B : 0 ≤ y ( B ) ≤
T k
T
d
B H
Point O : end restraint
y (O ) = 0 y′(O) = 0 Unknowns :
T , f0 , Fc
A D
FC O
we state : y ( B ) = 0
r r ∑F = 0 r r ∑ M /o = 0
10
• Solvation of the problem Iterative method
Blum method (equivalent beam) Hyp : M f ( A) = 0
y′(O) = 0 rejected B
T
A
R
A
FC
R
O 11
• In case of several rows of anchors displacements restrained
plastic equilibrium is no more correct
Elastic plastic method
12
z≤H σ H′ (z ) p p = K p .σ v′ ( z )
p i = K 0 .σ v′ ( z )
pi
p a = K a .σ v′ ( z )
y
yp
ya
• Elastic domain :
: at rest pressure
ya ≤ y ≤ y p
p ( y ) = pi + K h ( y ). y
Kh
: subgrade reaction modulus
• Plastic domain :
y ≤ ya
y ≥ yp
p ( y ) = pa
ya ≈ 0.0005 H
p( y) = p p
y p ≈ 0.005H
13
p out
z≥H
K h out
p a out
p p out
y
p a in
K h in
p p in
p in p = pout − pin 3
y
p a out − p p in
1
2
pp out − pa in
1 : K h in 2: K h in + K h out 3 : K h out
5 linear portions
14
d2y EI 2 = − M dz
Bending moment for beam theory
∂M ∂2M T =− ⇒ dT = pdz = − 2 dz ∂z ∂z d4y EI 4 = p ( y, z ) dz
with
Shear force
p( y, z ) = pi ( z ) + K h ( y, z ). y
solvation with numerical technics
15
loading stage p
Assumption :
new state M’
M moves to M’ to an « elastic » state
∆σ v
Case 1 :
K p ∆σ v
K 0∆σ v
K a∆σ v
M : initial state
y Case 2 :
new state M’ K 0∆σ v
M : initial state
K 0 ∆σ v
new state M’
Case 3 :
K 0∆σ v
M : initial state 16
unloading stage p
Assumption :
K p ∆σ v
M does not change Case 1 : ∆σ v
Soil
K a∆σ v
M =M’
y
removed
Case 2 : M=M’
K 0 ∆σ v
M
Case 3 : M’
exception !!! 17
Displacements y(z) Anchor
Reality : arching between anchor and foundation
Assumption for reaction modulus method
Assumptions : • No shear component on the wall • Soil : independent layers Correct estimate of pressure on the wall Bad estimate of wall displacements
18
• From pressumeter tests • Correlations with site experiments
industrial software
19