Diaphragm Sheetpile

  • Uploaded by: Toddy Samuel
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Diaphragm Sheetpile as PDF for free.

More details

  • Words: 769
  • Pages: 19
1

Construction

Grab for cohesionless soil

Hydrofraise for very cohesive soils 2

Construction

• Vibratory hammer • Hammer 3

Similar method of design • Definition of the dimension • Embedment • Type of sheetpile or thickness of the slurry wall

• Design of the anchor system if required • Number • Length • Kind

• Global stability analysis • Analysis of hydraulic flow under the wall

4

• Rigid plastic method

• Elastic plastic method  Modulus of subgrade reaction method

5

• Bidimensional analysis • Rigid plastic behavior • Stresses normal to the wall (Rankine theory) • Strains in the wall remain small

6

Deflection y

« Rotation point »

O

Active earth pressure

Passive earth pressure 7

Maximum active earth pressure

z H

Maximum passive earth pressure

A f0 0.2f0

Max counter passive earth pressure

O Resulting diagram of earth pressure

Max counter active earth pressure

Simplified model

D

FC

Final model

8

• Hypotheses • Rotation around O • Balance equations of the system (unknown : f0, Fc) Active pressure : a ( z ) = K a .γz Passive pressure : b( z ) = − K p .γ ( z − H ) For point A :

r r ∑F = 0 r r ∑ M /o = 0

a ( z ) + b( z ) = 0 ⇒ z A =

K pH K p − Ka

⇒ D = 1.2 f 0 +

Ka H K p − Ka

9

• Hypotheses Point B : 0 ≤ y ( B ) ≤

T k

T

d

B H

Point O : end restraint

y (O ) = 0 y′(O) = 0 Unknowns :

T , f0 , Fc

A D

FC O

 we state : y ( B ) = 0

r r ∑F = 0 r r ∑ M /o = 0

10

• Solvation of the problem  Iterative method

 Blum method (equivalent beam) Hyp : M f ( A) = 0

y′(O) = 0 rejected B

T

A

R

A

FC

R

O 11

• In case of several rows of anchors  displacements restrained

 plastic equilibrium is no more correct

 Elastic plastic method

12

z≤H σ H′ (z ) p p = K p .σ v′ ( z )

p i = K 0 .σ v′ ( z )

pi

p a = K a .σ v′ ( z )

y

yp

ya

• Elastic domain :

: at rest pressure

ya ≤ y ≤ y p

p ( y ) = pi + K h ( y ). y

Kh

: subgrade reaction modulus

• Plastic domain :

y ≤ ya

y ≥ yp

p ( y ) = pa

ya ≈ 0.0005 H

p( y) = p p

y p ≈ 0.005H

13

p out

z≥H

K h out

p a out

p p out

y

p a in

K h in

p p in

p in p = pout − pin 3

y

p a out − p p in

1

2

pp out − pa in

1 : K h in 2: K h in + K h out 3 : K h out

 5 linear portions

14

d2y EI 2 = − M dz

Bending moment for beam theory

∂M ∂2M T =− ⇒ dT = pdz = − 2 dz ∂z ∂z d4y EI 4 = p ( y, z ) dz

with

Shear force

p( y, z ) = pi ( z ) + K h ( y, z ). y

solvation with numerical technics

15

loading stage p

Assumption :

new state  M’

M moves to M’ to an « elastic » state

∆σ v

Case 1 :

K p ∆σ v

K 0∆σ v

K a∆σ v

M : initial state

y Case 2 :

new state  M’ K 0∆σ v

M : initial state

K 0 ∆σ v

new state  M’

Case 3 :

K 0∆σ v

M : initial state 16

unloading stage p

Assumption :

K p ∆σ v

M does not change Case 1 : ∆σ v

Soil

K a∆σ v

M =M’

y

removed

Case 2 : M=M’

K 0 ∆σ v

M

Case 3 : M’

exception !!! 17

Displacements y(z) Anchor

Reality : arching between anchor and foundation

Assumption for reaction modulus method

Assumptions : • No shear component on the wall • Soil : independent layers Correct estimate of pressure on the wall Bad estimate of wall displacements

18

• From pressumeter tests • Correlations with site experiments

 industrial software

19

Related Documents

Diaphragm Sheetpile
July 2020 12
Foramina Diaphragm
November 2019 20
Diaphragm Fitting
November 2019 30
Urogenital Diaphragm
May 2020 18
Diaphragm Lecture
June 2020 15

More Documents from ""