PENULANGAN Hasil tulangan diperoleh dari luas tulangan atas (As Top) terbesar dan luas tulangan bawah (As Min) terbesar melalui program ETABS. Summary Balok B1 Balok B2 As Top As Bot At Shear As Top As Bot At Shear Story (mm2) (mm2) (mm2/m) (mm2) (mm2) (mm2/m) 1 2 3 4 5
323 312 321 321 104
Tulangan Balok B1
241 232 234 236 59
202.2 199.32 198.98 199.37 51.2
212 220 223 223 66
185 183 185 186 33
199.22 200.98 201.78 201.92 57.79
ETABS 2016 16.0.0
License #*1S8ZDXPNU9WFLC4
ETABS 2016 Concrete Frame Design ACI 318-14 Beam Section Design
Beam Elem ent Details (Sum m ary) Level
Elem ent
Unique Nam e
Section ID
Com bo ID
Station Loc
Length (m m )
LLRF
Type
Story1
B20
20
Balok B1
Envelope
250
5700
1
Sway Special
Section Properties b (m m )
h (m m )
bf (m m )
ds (m m )
dct (m m )
dcb (m m )
250
450
250
0
50
50
Material Properties Ec (MPa)
f' c (MPa)
Lt.Wt Factor (Unitless)
fy (MPa)
f ys (MPa)
26587.21
32
1
420
420
Design Code Param eters ΦT
ΦCTied
ΦCSpiral
ΦVns
ΦVs
ΦVj oint
0.9
0.65
0.75
0.75
0.6
0.85
Design Mom ent and Flexural Reinforcem ent for Mom ent, M u3 Design -Mom ent kN-m Top
(+2 Axis)
Design +Mom ent kN-m
-Mom ent Rebar mm²
-35.601
Bottom (-2 Axis)
17.8005
+Mom ent Rebar mm²
Minim um Rebar mm²
Required Rebar mm²
242
0
323
323
0
121
161
161
Shear Force and Reinforcem ent for Shear, V u2 Shear V u2 kN
Shear ΦV c kN
Shear ΦV s kN
Shear V p kN
Rebar Av /S m m ²/m
20.0578
0
20.0578
18.2128
202.02
Torsion Force and Torsion Reinforcem ent for Torsion, T u Φ*Tu kN-m
Tth kN-m
Tcr kN-m
Area Ao cm ²
Perim eter, p h mm
Rebar At /s m m ²/m
Rebar Al mm²
0.0067
3.1801
12.7204
494.5
1044.4
0
0
ETABS 2016 Concrete Frame Design ACI 318-14 Beam Section Design
Level
Element
Unique Name
Story1
B21
26
Beam Element Details (Summary) Section ID Combo ID Station Loc Balok B2
b (mm)
h (mm)
200
350
Envelope
Section Properties bf (mm) ds (mm) 200
Length (mm)
LLRF
Type
4700
1
Sway Special
4450
dct (mm)
dcb (mm)
50
50
0
Ec (MPa)
f'c (MPa)
Material Properties Lt.Wt Factor (Unitless)
fy (MPa)
fys (MPa)
26587.21
32
1
420
420
ΦT
ΦCTied
0.9
0.65
Design Code Parameters ΦCSpiral ΦVns 0.75
0.75
ΦVs
ΦVjoint
0.6
0.85
Design Moment and Flexural Reinforcement for Moment, Mu3 -Moment +Moment Minimum Design Design Rebar Rebar Rebar -Moment +Moment mm² mm² mm² kN-m kN-m Top
(+2 Axis)
-20.3347
Bottom (-2 Axis)
10.1673
Shear Vu2 kN 14.5443
186
0
201
201
0
93
124
124
Shear Force and Reinforcement for Shear, Vu2 Shear ΦVc Shear ΦVs Shear Vp kN kN kN 0
14.5443
Rebar Av /S mm²/m
11.8453
195.32
Φ*Tu kN-m
Torsion Force and Torsion Reinforcement for Torsion, Tu Area Ao Rebar At /s Tth Tcr Perimeter, ph cm² mm²/m kN-m kN-m mm
0.0107
1.5661
6.2644
246.6
Required Rebar mm²
744.4
0
Rebar Al mm² 0
Tulangan Balok B2
Tulangan Longitudinal Luas Story Balok Tulangan (mm2) A
B
B1 1 B2
C
Tulangan D16 (mm2)
Desain Jumlah tulangan
Keterangan
E
F=D/E
G
2 2 2 2
2D16 2D16 2D16 2D16
D
As Top As Bot As Top As Bot
323 241 201 184
201.062 201.062 201.062 201.062
Balok B1 Story 1 memiliki luas tulangan terbesar dan diperoleh jumlah tulangan sebanyak 2 buah (tulangan minimum), sehingga balok lain yang memilki luas tulangan yang dibutuhkan lebih kecil digunakan pula tulangan minimum sebanyak 2 buah.
Tulangan Transversal Balok B1 Vu = 20057.8 N d’ = 50 mm d = h – d’ = 450 – 50 = 400 mm √f′c √32 = 250 × 400 × = 94280 N 6 6 Vu 20057.8 Vn = = = 26743.733N 0,75 0.75 Vc = b × d ×
jika Vc > Vn " gunakan Avmin " Coba dengan n = 2 kaki Ø10: 1 Avs = Avmin 2
1 b×s 2 × × π × D2 = 4 3 × fy 1 250. s 2 × × π × 102 = 4 3 × 420 s = 791.84 mm Syarat s ≤ d/2 791.84 mm ≤ 400/2 =200 mm :: digunakan s = 200 mm untuk tulangan tumpuan :: tulangan geser daerah lapangan digunakan: S = d/4 = 400/4 = 100 mm
Tulangan Transversal Balok B2 Vu = 14544.3 N d’ = 50 mm d = h – d’ = 450 – 50 = 400 mm √f′c √32 = 250 × 400 × = 94280 N 6 6 Vu 14544.3 Vn = = = 19392.4 N 0,75 0.75 Vc = b × d ×
jika Vc > Vn " gunakan Avmin " Coba dengan n = 2 kaki Ø10: 1 Avs = Avmin 2
1 b×s 2 × × π × D2 = 4 3 × fy 1 250. s 2 × × π × 102 = 4 3 × 420 s = 791.84 mm Syarat s ≤ d/2 791.84 mm ≤ 400/2 =200 mm :: digunakan s = 200 mm untuk tulangan tumpuan :: tulangan geser daerah lapangan digunakan: S = d/4 = 400/4 = 100 mm
Pengecekan Kolom Pengecekan kolom dilakukan menggunakan bantuan program PCAColumn. Gaya aksial diperoleh dari hasil ETABS. Berikut adalah gaya aksial yang telah diurutkan dari gaya yang terbesar. TABLE: Column Forces Story Column Unique Name Load Case/Combo Station m Story1 C11 251 QX 2 0 Story1 C11 251 QX 2 1.775 Story1 C11 251 QX 2 3.55 Story1 C11 251 QX 4 0 Story1 C11 251 QX 4 1.775
Story1 Story1 Story1 Story1 Story1 Story1
C14 C27 C27 C12 C12 C12
266 Envelope Min 331 Comb7 Min 331 Envelope Min 256 Comb7 Max 256 Comb7 Min 256 Envelope Min
0 0 0 0 0 0
P kN 254.2984 254.2984 254.2984 254.2984 254.2984
V2 kN -0.9185 -0.9185 -0.9185 -0.9185 -0.9185
V3 kN 70.6322 70.6322 70.6322 70.6322 70.6322
T kN-m -0.3194 -0.3194 -0.3194 -0.3194 -0.3194
M2 kN-m 183.3885 58.0163 -67.3559 183.3885 58.0163
M3 kN-m -2.0384 -0.408 1.2224 -2.0384 -0.408
-2627.9805 -2627.9995 -2627.9995 -2631.7547 -2631.8801 -2631.8801
0.5705 -1.6765 -1.6765 1.7204 1.4944 0.5983
-1.2021 1.0193 0.3702 1.1214 1.0491 0.3812
-0.001 -0.0007 -0.0014 0.0039 -0.0002 -0.0012
-1.7136 1.301 0.379 1.4974 1.3336 0.3885
0.6411 -2.3314 -2.3314 2.3622 1.8532 0.6788
P ( kN) 6000 (Pmax)
4000
2000
1 -450
-350
-250
-150
-50
50
150
250
350
450
M (91°) (k N -m)
(Pmin)
-2000
500
My (k N -m)
300
1 100 Mx (k N -m) -500
-300
-100
100 -100
-300
-500 P = 254 k N
300
500
Penulangan Pelat Lantai
Data Perhitungan: Lebar pelat (b)
= 1000 mm
Tinggi pelat (h)
= 150 mm
Tebal Selimut Beton (d’) = 20 mm (asumsi) = h – d’ = 150 – 20 = 130 mm
Tinggi Eefektif (d)
Diperoleh gaya momen maksimum dan minimum dari ETABS M11 (kN) 21.546 -21.545
max min
ρmin =
M22 (kN) 30.976 -30.65
1,4 1,4 = =0,00333 fy 420
ρmax = 0,75 × ρbalance = 0,75 × (
0,85 × 𝛽1 × 𝑓′𝑐 600 × ) 𝑓𝑦 600 + 𝑓𝑦
0,85 × 0,834 × 32 600 ρmax = 0,75 × ( × ) = 0,0238 420 600 + 420
1. Desain Tulangan Arah X a. Tulangan Lapangan Arah X Mnx+ =
Mlx 30.976 = = 38.72 kNm = 38720000 Nmm ɸ 0,8
ρmin < ρ < ρmax
Mnx+
2=
ρ × fy × (1 - 0,59 ×
b×d 38720000
2=
1000 × 130
ρ × fy ) f'c
ρ × 420 × (1 - 0,59 ×
ρ × 420 ) 32
ρ = 0,0057 :: maka digunakan: ρ = 0,00571 As = ρ × b × d = 0,00571 × 1000 × 130 = 742.3 mm2
Coba tulangan ø10 D10 = ¼ × π × d2 = ¼ × π × 102 = 78,539 mm2 n=
742.3 = 9.451 ≈ 10 buah ø10 / meter 78,539
Jarak antar tulangan (s) =
b 1000 = = 100 mm n 10
b. Tulangan Tumpuan Arah X Mnx- =
Mtx 30.65 = = 38.3125 kNm = 38312500 Nmm ɸ 0,8
ρmin < ρ < ρmax
Mnx-
2=
b×d
ρ × fy × (1 - 0,59 ×
38312500
2=
1000 × 130
ρ × fy ) f'c
ρ × 420 × (1 - 0,59 ×
ρ × 420 ) 32
ρ = 0,00564
:: maka digunakan: ρ = 0,00564 As = ρ × b × d = 0,00564 × 1000 × 130 = 733.2 mm2 Coba tulangan ø10 D10 = ¼ × π × d2 = ¼ × π × 102 = 78,539 mm2 n=
733.2 = 9.335 ≈ 10 buah ø10 / meter 78,539
Jarak antar tulangan (s) =
b 1000 = = 100 mm n 10
2. Desain Tulangan Arah Y a. Tulangan Lapangan Arah Y Mny+ =
Mly 21.546 = = 26.325 kNm = 2632500 Nmm ɸ 0,8
ρmin < ρ < ρmax
Mny+
2=
ρ × fy × (1 - 0,59 ×
b×d 2632500
1000 × 130
2=
ρ × fy ) f'c
ρ × 420 × (1 - 0,59 ×
ρ × 420 ) 32
Didapat: ρ = 0,00372 ::bdigunakan: ρ = 0,00372 As = ρ × b × d = 0,00372 × 1000 × 130 = 483.6 mm2 D10 = ¼ × π × d2 = ¼ × π × 102 = 78,539 mm2 Coba tulangan ø10 n=
483.6 = 6.157 ≈ 7 buah D10 / meter 78,539
Jarak antar tulangan (s) =
b 1000 = = 142.85 mm ≈ 120 mm n 7
∷ karena jarak jadi 120mm maka tulangan menjadi : 8 buah ø10 / meter
b. Tulangan Tumpuan Arah Y Mny- =
Mly 21.545 = = 26.93125 kNm = 26931250 Nmm ɸ 0,8
ρmin < ρ < ρmax Mny-
2 = ρ × fy × (1 - 0,59 ×
b×d 26931250
ρ × fy ) f'c
2 = ρ × 420 × (1 - 0,59 ×
1000 × 130
ρ × 420 ) 32
Didapat: ρ = 0,00391 ::bdigunakan: ρ = 0,00391 As = ρ × b × d = 0,00391 × 1000 × 130 = 506.3 mm2 D10 = ¼ × π × d2 = ¼ × π × 102 = 78,539 mm2 Coba tulangan ø10 n=
508.3 = 6.471 ≈ 7 buah D10 / meter 78,539
Jarak antar tulangan (s) =
b 1000 = = 142.85 mm ≈ 120 mm n 7
∷ karena jarak jadi 120mm maka tulangan menjadi : 8 buah ø10 / meter