Dependantsources&lifiers

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Dependantsources&lifiers as PDF for free.

More details

  • Words: 1,129
  • Pages: 24
6.002

CIRCUITS AND ELECTRONICS

Dependent Sources and Amplifiers

6.002 – Fall 2002: Lecture 8

1

Review

„

Nonlinear circuits — can use the node method

„

Small signal trick resulted in linear response

Today „

Dependent sources

„

Amplifiers

Reading: Chapter 7.1, 7.2

6.002 – Fall 2002: Lecture 8

2

Dependent sources Seen previously Resistor Independent Current source

+ i + i

v



R v – I

v i= R

i=I

2-terminal 1-port devices New type of device: Dependent source iI i O

+ control port

f ( vI )

+

vI

vO





output port

2-port device E.g., Voltage Controlled Current Source Current at output port is a function of voltage at the input port 6.002 – Fall 2002: Lecture 8

3

Dependent Sources: Examples

Example 1: Find V + R V –

independent current source

I = I0

V = I0R

6.002 – Fall 2002: Lecture 8

4

Dependent Sources: Examples Example 2: Find V + R V –

voltage controled current source

+ R V –

K I = f (V ) = V

iI +

f (vI ) =

K vI

iO +

vI

vO





6.002 – Fall 2002: Lecture 8

5

Dependent Sources: Examples Example 2: Find V voltage controled current source

+ R V –

K I = f (V ) = V e.g. K = 10-3 Amp·Volt R = 1kΩ

K V = IR = R V or V 2 = KR or V = KR = 10 −3 ⋅ 10 3 = 1 Volt

6.002 – Fall 2002: Lecture 8

6

Another dependent source example

RL iIN

vI + –

iD

+

+

vIN

vO





e.g.

VS + –

iD = f (vIN ) iD = f (vIN ) K 2 = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise

Find vO as a function of vI .

6.002 – Fall 2002: Lecture 8

7

Another dependent source example VS RL iIN

vI + –

iD

+

+

vIN

vO





iD = f (vIN ) e.g.

iD = f (vIN ) K 2 = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise

Find vO as a function of vI .

6.002 – Fall 2002: Lecture 8

8

Another dependent source example VS RL vI vI

+ –

vO K 2 iD = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise

Find vO as a function of vI .

6.002 – Fall 2002: Lecture 8

9

Another dependent source example VS RL vI vI

+ –

vO K 2 iD = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise

KVL

− VS + iD RL + vO = 0 vO = VS − iD RL K 2 vO = VS − (vI − 1) RL 2 vO = VS

for vI ≥ 1 for vI < 1

Hold that thought

6.002 – Fall 2002: Lecture 8

10

Next, Amplifiers

6.002 – Fall 2002: Lecture 8

11

Why amplify? Signal amplification key to both analog and digital processing. Analog: AMP

IN

Input Port

OUT

Output Port

Besides the obvious advantages of being heard farther away, amplification is key to noise tolerance during communication

6.002 – Fall 2002: Lecture 8

12

Why amplify? Amplification is key to noise tolerance during communication No amplification

useful signal

1 mV

e nois

10 mV

huh?

6.002 – Fall 2002: Lecture 8

13

Try amplification e nois

AMP

not bad!

6.002 – Fall 2002: Lecture 8

14

Why amplify? Digital: Valid region 5V

5V

VIH IN VIL 0V

5V

OUT Digital System

IN

5V

VOL

OUT

V OH

VIH VIL

0V

0V

VOH

t

6.002 – Fall 2002: Lecture 8

V OL

t

0V

15

Why amplify? Digital:

Static discipline requires amplification! Minimum amplification needed: VIH VIL

6.002 – Fall 2002: Lecture 8

VOH VOL

VOH − VOL VIH − VIL

16

An amplifier is a 3-ported device, actually Power port Input port

iO

iI

+v – I

Amplifier

+ v Output – O port

We often don’t show the power port. Also, for convenience we commonly observe “the common ground discipline.” In other words, all ports often share a common reference point called “ground.”

POWER IN OUT

How do we build one? 6.002 – Fall 2002: Lecture 8

17

Remember? VS RL vI vI

+ –

vO K 2 iD = (vIN − 1) for vIN ≥ 1 2 iD = 0 otherwise

KVL

− VS + iD RL + vO = 0 vO = VS − iD RL K 2 vO = VS − (vI − 1) RL 2 vO = VS

for vI ≥ 1 for vI < 1

Claim: This is an amplifier

6.002 – Fall 2002: Lecture 8

18

So, where’s the amplification? Let’s look at the vO versus vI curve. mA e.g. VS = 10V , K = 2 2 , RL = 5 kΩ V K 2 vO = VS − RL (vI − 1) 2 2 2 = 10 − ⋅10 −3 ⋅ 5 ⋅ 103 (vI − 1) 2 vO = 10 − 5 (vI − 1) vO VS

2

∆vO

1

∆vO >1 ∆v I 6.002 – Fall 2002: Lecture 8

∆vI

vI

amplification 19

Plot vO versus vI vO = 10 − 5 (vI − 1)

2

0.1 change in vI

Demo

vI

vO

0.0 1.0 1.5 2.0 2.1 2.2 2.3 2.4

10.00 10.00 8.75 5.00 4.00 2.80 1.50 ~ 0.00

1V change in vO

Gain!

Measure vO .

6.002 – Fall 2002: Lecture 8

20

One nit … vO

What happens here? 1

vI

Mathematically, K 2 vO = VS − RL (vI − 1) 2 So

is mathematically predicted behavior

6.002 – Fall 2002: Lecture 8

21

One nit … vO

K 2 vO = VS − RL (vI − 1) 2 What happens here? vI

1 However, from

iD =

K (vI − 1)2 2 VS

for vI ≥ 1

RL vO

VCCS

iD

For vO>0, VCCS consumes power: vO iD For vO<0, VCCS must supply power! 6.002 – Fall 2002: Lecture 8

22

If VCCS is a device that can source power, then the mathematically predicted behavior will be observed —

vO

K 2 i.e. vO = VS − RL (vI − 1) 2 vI

where vO goes -ve

6.002 – Fall 2002: Lecture 8

23

If VCCS is a passive device, then it cannot source power, so vO cannot go -ve. So, something must give! Turns out, our model breaks down.

K 2 iD = (vI − 1) 2 will no longer be valid when vO ≤ 0 . e.g. iD saturates (stops increasing) and we observe: Commonly

vO

1

6.002 – Fall 2002: Lecture 8

vI

24