www.sakshieducation.com
De Moivre’s Theorem If n is any integer, (cosθ + i sinθ)n = cos nθ + i sin nθ If n is any fraction, one of the values of (cosθ + i sinθ)n is cos nθ + i sin nθ. nπ nπ − nθ + i sin − nθ 2 2
(sinθ + i cosθ)n = cos
If x = cosθ + i sinθ, then x + xn +
1 1 = 2 cosθ, x − = 2i sinθ x x
1 1 = 2cos nθ, x n − n = 2i sin nθ. n x x
1. The nth roots of a complex number form a G.P. with common ratio cis
2π n
which is denoted by ω.
2. The points representing nth roots of a complex number in the Argand diagram are concyclic. 3. The points representing nth roots of a complex number in the Argand diagram form a regular polygon of n sides. 4. The points representing the cube roots of a complex number in the Argand diagram form an equilateral triangle. 5. The points representing the fourth roots of complex number in the Argand diagram form a square. 6. The nth roots of unity are 1, w, w2 ,..... wn-1 where w = cis
2π n
7. The sum of the nth roots of unity is zero (or) the sum of the nth roots of any complex number is zero. 8. The cube roots of unity are 1,ω,ω2 where ω = cis ω=
2π 2 4π , ω = cis or 3 3
−1+ i 3 2 −1− i 3 ,ω = . 2 2
1 + ω+ ω2 = 0. ω3 = 1 The product of the nth roots of unity is (-1)n-1 . The product of the nth roots of a complex number Z is Z(-1)n-1 . ω, ω2 are the roots of the equation x2 + x + 1 = 0
www.sakshieducation.com
www.sakshieducation.com
Very Short Answer Questions
1.
If n is an integer then show that (1 + i ) + (1 − i ) = 2n +1 cos 2n
2n
nπ 2
Solution : Let 1 + i = r {cos θ + i sin θ }
( r cos θ )
2
+ ( r sin θ ) = 2 ⇒ r = 2
cos θ =
1 1 P.V of θ = π / 4 sin θ = 2 2
2
π π π π ∴1 + i = 2 cos + i sin similarly (1 − i ) = 2 cos − i sin 4 4 4 4
(1 + i )
2n
+ (1 − i ) = 2n
( 2)
2n
π π cos + i sin + 4 4 2n
( 2)
2n
π π cos − i sin 4 4
2n
2nπ 2nπ 2nπ 2nπ = 2 n cos + i sin cos − i sin 4 4 4 4
= 2n +1 cos
2.
nπ 2
Find the values of the following
(
(i) 1 + i 3
)
3
Solution : π 1 + i 3 = 2 cos + i sin π / 3 {by mod-amplitude form} 3
π 1 + 1 3 = 8 cos + isin π / 3 3
(
)
3
= 8 {cos π + i sin π }
3
{∵ ( cosθ + i sin θ )
n
= cos nθ + i sin nθ
}
= 8 {−1 + 0} = − 8
(ii) (1 − i )
8
Solution
(1 − i )
8
8
8
1 1 π π 4 = 2 −i = 2 cos 4 − i sin 4 = 2 {cos 2π − i sin 2π } 2 2
www.sakshieducation.com
www.sakshieducation.com (iii) (1 + i )
16
(1 + i )
16
16
Solution
π π = 2 cos + i sin = 2 {cos 2π + i sin 2π } 4 4
= 256 5
3 i 3 i (iv) + − − 2 2 2 2
3
5
3 i 3 i + − − Solution. 2 2 2 2
5
π π π π cos + i sin − cos − i sin 6 6 6 6 5
cos
5π 5π 5π + i sin − cos + 1 sin π / 6 6 6 6
2i sin
3.
5
5π 1 = 2i =i 6 2
( )
(
Find all values of 1 − i 3
)
1 3
1
(1 − i 3 )
1 3
1 3 3 = 2 − i 2 2 1
π π 3 = 2 cos − i sin 3 3 −π = 2 cos 3 1 3
−π + i sin 3
1
3
π π 2k π − 2k π − 3 + isn 3 = 2 cos 3 3 1 3
= 3 2 cis ( 6k − 1)
π 9
k = 0, 1, 2
k = 0, 1, 2
www.sakshieducation.com
www.sakshieducation.com 1
4.
Find all values of ( −i ) 6
Solution : -
( −i )
1 6
−π = cos 2
−π + i sin 2
1
6
2 kπ − π / 2 = cis k = 0, 1, 2, 3, 4, 5 6 1
∴ ( −1) 6 = cis ( 4k − 1)
5.
π 12
k = 0, 1, 2, 3
Find all values of (1 + i )
2/ 3
1
(1 + i )
2/3
2 π π 3 = 2 cos + 1 sin 4 4
π = 2 cos + i sin π / 2 2
π 2k π + 2 = 2 cis 3 1 3
1
= 2 3 cis ( 4k + 1)
π 6
1 3
k = 0, 1, 2 k = 0, 1, 2
1
6.
Find all the values of ( −16 ) 4 1
( −16) 4 = ( 24 ) 4 ( −1) 4 1
1
1 2 kπ + π = 2 ( cisπ ) 4 = 2cis 4
= 2cis ( 2k + 1)
π 4
k = 0, 1, 2, 3
k = 0, 1, 2, 3
1
7.
Find all values of ( −32 ) 5 1
( −32) 5
( ) 25
1 5
1
1
( −1) 5 = 2{cos π + i sin π }5 www.sakshieducation.com
www.sakshieducation.com 8.
If 1, ω, ω 2 are the cube roots of units then prove that
1 1 1 + = 2 + ω 1 + 2ω 1 + ω
Solution : L.H.S
1 1 + 2 + ω 1 + 2ω
3 (1 + ω ) 1 + 2ω + 2 + ω = ( 2 + ω )(1 + 2ω ) 2 + 4ω + ω + 2ω 2 =
=
(
3 (1 + ω )
)
2 1 + ω 2 + 5ω
(
3 −ω 2
)
−2ω + 5ω
∵1 + ω = − ω 2
1 + ω2 = ω −3ω 2 = = −ω 3ω =−
9.
1
ω
2
=
1 1+ω
If 1, ω, ω 2 are the cube roots of unity then prove that
( 2 − ω ) ( 2 − ω 2 ) ( 2 − ω10 )( 2 − ω11 ) = 49 Solution : - ( 2 − ω ) ( 2 − ω 2 ) ( 2 − ω10 )( 2 − ω11 ) =
{( 2 − ω ) ( 2 − ω )} {( 2 − ω ) ( 2 − ω )} {∵ω = {4− 2 (ω + ω + ω )}{4 − 2 (ω + ω ) + ω } 2
2
=(
10.
2
3
10
2
=ω
ω11 = ω 2 }
3
4 + 2 + 1)( 4 + 2 + 1) = 49
If 1, ω, ω 2 are the cube roots of units then prove that
( x + y + z ) ( x + yω + zω ) ( x + yω 2 + 2ω ) = x3 + y 3 + z 3 − 3xyz Solution: -
( x + y + z ) { x + yω + zω 2 }{ x + yω 2 + zω} ( x + y + z ) { x 2 + xyω 2 + xzω + xyω + xyω + y 2ω 3 + yzω 2 + xzω 2 + yzω + z 2ω 3} www.sakshieducation.com
www.sakshieducation.com
( x + y + z ) { x2 + y 2 + z 2 + xy (ω 2 + ω ) + yz (ω + ω 2 ) + zx (ω + ω 2 )} ( x + y + z ) { x 2 + y 2 + z 2 − xy − yz − zx} x3 + y 3 + z 3 − 3xyz
11. i) If x = cisθ θ then find the value of x 6 + Sol:
1 . x6
x = e iθ
i)
x 6 = ei6 θ 1 = e−6iθ 6 x x6 +
1 = ei6θ + e −6 θi 6 x
= cos 6θ + i sin 6θ + cos 6θ − i sin 6θ = 2 cos 6θ.
ii) If x = cisθ θ then find cube roots of 8. x = (8)1/ 3
x3 − 8 = 0 (x − 2)(x 2 + 2x + 4) =0 x = 2, x =
x=
−2 ± 4 − 16 2
−2 ± 2 3 i 2
x = −1 ± 3 i
Roots are 2, 2ω, 2ω2.
www.sakshieducation.com
www.sakshieducation.com 12 Prove that –ω ω and –ω ω2 are roots of z2 – z + 1 = 0 where ω and ω2 are the complex cube roots of unity. Sol:
z2 − z + 1 = 0
z=
1± 1− 4 2
z=
1 ± 3i 2
z=
−[−1 ± 3i] 2
z = −ω, −ω2
13. If 1, ω, ω2 are the cube roots of unity, then find the values of the following: i) (a + b)3 + (aω + bω2 ) 2 + (aω2 + bω)3 Sol:
i) (a + b)3 + (aω + bω2 ) 2 + (aω2 + bω)3 = a 3 + b3 + 3a 2 b + 3ab 2 + a 3ω3 + b3ω6 + 3a 2 ω2 ⋅ bω2 + 3aω⋅ b 2 ω4 + a 3ω6 + b3ω3 + 3a 2 bω4 ⋅ ω + 3b 2 ω2 ⋅ aω2 = a 3 + b3 + 3a 2 b(1 + ω + ω2 ) + a 3 + b3 + 3b 2 a(ω2 + ω + 1) + a 3 + b3 = 3(a 3 + b3 )
ii) (a + 2b) 2 + (aω2 + 2bω)2 + (aω + 2bω2 ) 2 Sol. (a + 2b) 2 + (aω2 + 2bω)2 + (aω + 2bω2 ) 2 = a 2 + 4b 2 + 4ab + a 2 ω4 + 4b 2 ω2 + 4abω3 + a 2 ω2 + 4b 2 ω4 + 4abω3 = a 2 (1 + ω + ω2 ) + 4b 2 (1 + ω2 + ω) + 4ab(1 + ω3 + ω2 ) = 12ab.
iii) (1 − ω + ω2 )3 2 3 Sol. (1 − ω + ω )
Now 1 + ω + ω2 = 0 1+ ω2 = −ω
www.sakshieducation.com
www.sakshieducation.com = (−ω − ω)3 = (−2)3 ω3 = −8
iv) (1 − ω)(1 − ω2 )(1 − ω4 )(1 − ω8 ) Sol. = (1 − ω − ω2 + ω3 )(1 − ω)(1 − ω2 ) = (1 − ω − ω2 + ω3 )(1 − ω − ω2 + ω3 ) = (1 + 1 + 1)(1 + 1 + 1) =9
a + bω + cω2 a + bω + cω2 + 2 2 c + aω + bω b + cω + aω
v)
a + bω + cω2 a + bω + cω2 + c + aω + bω2 b + cω + aω2 Sol. =
ω2 (a + bω + cω2 ) aω2 + bω3 + cω4 + cω2 + aω3 + bω4 ω2 (b + cω + aω2 )
1 ω2 ω = ω2 + 3 ω = ω2 +
⇒ ω2 + ω = −1
vi) (1 − ω)3 + (1 + ω2 )3 3 2 3 Sol. (1 − ω) + (1 + ω )
= (−ω2 )3 + (−ω)3 = −1 + (−1) = −2.
www.sakshieducation.com
www.sakshieducation.com a + bω + cω2 a + bω + cω2 + 2 2 c + aω + bω b + cω + aω
vii) (1 − ω + ω2 )5 + (1 + ω − ω2 )5 (1 − ω + ω2 )5 + (1 + ω − ω2 )5
1 + ω2 = −ω = (−2ω)5 + (−2ω2 )5 = (−2)5 (ω2 + ω) = (−2)5 (−1) = 32 .
Short Answer Questions
1.
α , β are the roots of the equation x2 − 2 x + 4 = 0 then for any n ∈ N show that
α n + β n = 2n +1 cos
nπ 3
Solution: x2 − 2x + 4 = 0 ⇒ x =
α = 2 cos
π 3
+ i sin
2 ± 4 − 16 2 ± 2i 3 = 2 2
π
π π β = 2 cos − i sin 3 3 3 n
π π π π α + β = 2 cos + i sin + 2 cos − sin 3 3 3 3 n
n
n
nπ nπ nπ nπ = 2n cos + i sin + cos − i sin 3 3 3 3 nπ nπ n +1 = 2n 2 cos = 2 cos 3 3
2.
cos α + cos β + cos ϑ = 0 = sin α + sin β + sin ϑ = 0 then show that
(i) cos 3α + cos 3β + cos 3ϑ = 3 cos (α + β + ϑ ) (ii) sin 3α + sin 3β + sin 3ϑ = 3 sin (α + β + ϑ ) (iii) cos ( 2α − β − ϑ ) + cos {2 β − ϑ − α } + sin ( 2ϑ − α − β ) = 3 (iv) sin ( 2α − β − ϑ ) + sin ( 2 β − ϑ − α ) + sin ( 2ϑ − α − β ) = 0
www.sakshieducation.com
www.sakshieducation.com (v) cos 2α + cos 2β + cos 2ϑ = 0 (vi) sin 2α + sin 2β + sin 2ϑ = 0 (vii) cos2 α + cos 2 β + cos2 ϑ = 0 (viii) sin 2 α + sin 2 β + sin 2 ϑ = 3/ 2 (ix) cos (α + β ) + cos ( β + ϑ ) + cos (ϑ + α ) = 0 (x) sin (α + β ) + sin ( β + ϑ ) + sin (ϑ + α ) = 0 Solution : Let x = cos α + i sin α
y = cos β + i sin β : z = cos ϑ + i sin ϑ
x + y + z = ( cos α + cos β + cos ϑ ) + i ( sin α + sin β + sin ϑ )
x + y + z = 0 ⇒ x3 + y 3 + z 3 = 3xyz
Proof of (i) & (ii)
( cos α + i sin α )
3
+ ( cos β + i sin β ) + ( cos ϑ + i sin ϑ ) = 3cisα cisβ cisϑ 3
3
cis3α + cis3β + cis3ϑ = 3cis (α + β + ϑ )
( cos 3α + i sin 3α ) + ( cos 3β + i sin 3β ) + ( cos 3ϑ + i sin 3ϑ ) = 3cos (α + β + ϑ ) + 3i sin (α + β + ϑ ) By comparing real and imaginary parts on both sides cos 3α + cos 3β + cos 3ϑ + 3cos (α + β + ϑ ) sin 3α + sin 3β + sin 3ϑ = 3sin (α + β + ϑ )
Proof of (iii) & (iv) We know that sin 3α + sin 3β + sin 3ϑ = 3sin (α + β + ϑ ) x3 + y3 + z 3 x2 y2 z2 = 3⇒ + + =3 xyz yz zx xy cis 2α cis 2 β cis 2ϑ + + =3 cis β cisϑ cisϑ. cisα cisα cis β
cis ( 2α − β − ϑ ) + cis ( 2 β − ϑ − α ) + cos ( 2ϑ − α − β ) = 3
{cos ( 2α − β − ϑ ) + i sin ( 2α − β − ϑ )} + cos ( 2β − ϑ − α ) + 1sin ( 2β − ϑ − α ) + cos ( 2ϑ − α − β ) + 1sin ( 2ϑ − α − β ) = 3
Comparing real and imaginary parts on both sides
www.sakshieducation.com
www.sakshieducation.com cos ( 2α − β − ϑ ) + cos ( 2 β − ϑ − α ) + cos ( 2ϑ − α − β ) =3 sin ( 2α − β − ϑ ) + sin ( 2 β − ϑ − α ) + sin ( 2ϑ − α − β ) = 0
Proof of V & VI We know that x + y + z = 0 ∴
1 1 1 1 1 1 + + = + + x y z cos α + 1sin α cos β + i sin β cos ϑ + i sin ϑ
= cos α − i sin α + cos β − i sin β + cos ϑ − i sin ϑ 1 1 1 + + =0 x y z
x + y + z = 0 ⇒ ( x + y + z ) = 0 ⇒ x 2 + y 2 + z 2 + 2 xy + 2 y + 2 zx = 0 2
1 1 1 x 2 + y 2 + z 2 + 2 xyz + + = 0 z x y
( cisα )
2
+ ( cisβ ) + ( cisϑ ) + 2 ( cisα cisβ cisϑ ) ( 0 ) 2
2
1 1 1 ∵ + + = 0 x y z cis 2α + cis 2 β + cis 2ϑ = 0 ⇒ ( cos 2α + cos 2 β + cos 2ϑ ) + i ( sin 2α + sin 2 β + sin 2ϑ ) = 0
By comparing real and imaginary parts on both sides cos 2α + cos 2 β + cos 2ϑ = 0 sin 2α + sin 2 β + sin 2ϑ = 0
Proof of (vii) From the above problem we can prove cos 2α + cos 2 β + cos 2ϑ = 0
2cos2 α + 2cos2 β − 1 + 2cos2 ϑ − 1 =0 2 {cos 2 α + cos 2 β + cos 2 ϑ} = 3 ∴ cos 2 α + cos 2 β + cos 2 ϑ =
3 2
www.sakshieducation.com
www.sakshieducation.com Proof viii cos 2α + cos 2 β + cos 2ϑ = 0
1 − 2sin 2 α + 1 −2 sin 2 β + 1 − 2sin 2 ϑ = 0
{
3 = 2 sin 2 α + sin 2 β + sin 2 ϑ ⇒ sin 2 α + sin 2 β + sin 2 ϑ =
}
3 2
Proof of (ix) and (x) In proving iv & v we proved 1 1 1 + + =0 x y z ∴ yz + zx + xy = 0 ∴ cisα cis β + cis β cisϑ + cisϑ cisα = 0
= cis (α + β ) + cos ( β + ϑ ) + cis (ϑ + α ) = 0
{cos (α + β ) + i sin (α + β )} + {cos ( β + ϑ )} + {cos (ϑ + α ) + i sin (ϑ + α )} = 0 By comparing real and imaginary parts on both sides cos (α + β ) + cos ( β + ϑ ) + cos (ϑ + α ) = 0 sin (α + β ) + sin ( β + ϑ ) + sin (ϑ + α ) = 0
3.
z 2n − 1 = i tan nθ If n is an integer and z = cisθ then show that 2 n z +1
Solution : z 2 n − 1 ( cos θ + i sin θ ) − 1 = z 2 n + 1 ( cos θ + i sin θ )2 n + 1 2n
=
=
=
cos 2nθ + i sin 2nθ − 1 cos 2nθ + i sin 2nθ + 1
− (1 −cos 2nθ ) + i sin 2nθ
(1 + cos 2nθ ) + i sin 2nθ
(
)
i 2 2 sin 2 nθ + 2i sin nθ cos nθ 2 cos nθ + 2i sin nθ cos nθ 2
{∵ − 1 = i } 2
www.sakshieducation.com
www.sakshieducation.com =
2 i sin nθ {cos nθ + i sin nθ }
{
2 cos nθ cos nθ + i sin nθ
}
= i tan nθ
4. If (1 + x)n = a 0 + a1x + a 2 x 2 + ... + a n x n , then show that i) a 0 − a 2 + a 4 − a 6 + ... = 2n / 2 cos ii) a1 − a 3 + a 5 − a 7 + ... = 2n / 2 sin
nπ 4
nπ . 4
Sol: (1 + x)n = a 0 + a1x + a 2 x 2 + ... + a n x n Put x = i (1 + i) n = a 0 + a1i + a 2i 2 + ... + a n i n n
π π 2 cos 4 + i sin 4 = (a 0 − a 2 + a 4 ...) + i(a1 − a 3 + a 5 ...)
nπ nπ 2n/2 cos + i sin = (a 0 − a 2 + a 4 ...) + i(a1 − a 3 + a 5 ...) 4 4
Equating Real parts both sides a 0 − a 2 + a 4 ... = 2n / 2 cos
nπ 4
Equating imaginary parts a1 − a 3 + a 5 ... = 2n / 2 sin
5.
nπ . 4
Solve the following equations (i) x4 − 1 = 0
Solution : (i) x4 − 1 = 0 ⇒ x4 = 1 1
1
∴ x = (1) 4 = ( cos 0 + i sin 0 ) 4 2kπ i sin 2kπ = cos + k = 0, 1, 2, 3 4 4
= cos 0 + 1 sin 0 cis
π 2
cisπ cis
3π 2
www.sakshieducation.com
www.sakshieducation.com = 1, I, -1, -i = ± 1, ± i
(ii) x5 + 1 = 0 Solution : 1
x5 + 1 = 0 ⇒ ( cos π + i sin π ) 5 2k π + π x = cos 5
∴ x = cis
π 5
, cis
k = 0, 1, 2,3, 4
3π 7π 9π cisπ , cis , cos 5 5 5
(iii) x9 − x5 + x 4 − 1 = 0 Solution : x9 − x5 + x 4 − 1 = 0
(
) (
)
x5 x 4 − 1 + 1 x 4 − 1 = 0
(x
4
)
(
)
− 1 = 0 : x5 + 1 = 0
Do (i) , (ii) to get the solution of (iii)
(iv) x4 + 1 = 0 Solution : 1
1
x 4 + 1 = 0 ⇒ x = ( −1) 4 = ( cisπ ) 4 2 kπ + π x = cis 4
x = cis
π 4
, cis
k = 0, 1, 2, 3
3π 5π 7π cis cis 4 4 4
www.sakshieducation.com
www.sakshieducation.com 6.
If n is a positive integer then show that 1 q arc. tan p n
1
( p + iq ) n + ( p − iq ) n = 2 ( p 2 + q 2 ) 2n cos 1
1
Solution : Let p + iq = r {cos θ + i sin θ } r cos θ = p ∴r =
p2 + q2 p
cos θ = tan θ =
r sin θ = q ⇒ r 2 = p 2 + q 2
p +q 2
2
sin θ =
q p + q2 2
p q ⇒ θ = tan −1 p q 1
1
( p + iq ) n + ( p − q ) n = {r ( cos θ + i sin θ )} n + {r ( cos θ − i sin θ )} n 1
1
1 θ θ θ θ = r n cos + i sin + cos − i sin n n n n 1
2 n 1 = p 2 + q 2 cos θ n
(
= 2 p2 + q2
)
1 2n
1 q cos tan −1 p n
π π 1 +sin 8 + i cos 8 Show that 1 + sin π − i cos π 8 8
8/3
7.
= −1
Solution : π π 1 + sin 8 + i cos 8 LHS = 1 + sin π − i cos π 8 8
8/3
8/ 3
π π 1 + cos 2 − π / 8 + i sin 2 − π / 8 1 +cos π − π / 8 − 1 sin π − π / 3 2 2
www.sakshieducation.com
www.sakshieducation.com 3π 3π 1 + cos 8 + i sin 8 1 + cos 3π − i sin 3π 8 8
8/3
3π 3π 2 3π 2 cos 16 + 2i sin 16 cos 16 = 2 cos 2 3π − 2i sin 3π cos 3π 16 16 16
8/ 3
8
3π 3π 3π 3 2cos cos + 1sin 16 16 16 2 cos 3π cos 3π − i sin 3π 16 16 16 3π 3π 3π 3π + i sin + i sin cos cos 16 16 16 16 3π 3π 3π 3π cos 16 − i sin 16 cos 16 + i sin 16 2 3π 3π + i sin cos 16 16 2 3π 2 3π cos 16 + sin 16
8/ 3
8/ 3
3π 3π cos 8 + i sin 8
8/ 3
cos π + i sin π = − 1
8. Find the common roots of x12 – 1 = 0 and x4 + x2 + 1 = 0. Sol:
x12 − 1 = 0
x = (1)1/12
x = [ cos(2nπ) + i sin(2nπ) ]
1/12
n = 0,1, 2,...11 ...(1) x4 + x2 +1 = 0 (x 2 − 1)(x 4 + x 2 + 1) = 0 x6 −1 = 0 x = (1)1/ 6 x = [ cos(2nπ) + i sin(2nπ) ]
1/ 6
= cos
2nπ 2nπ + i sin , n = 0,1, 2,3, 4, 5...(2) 6 6
www.sakshieducation.com
www.sakshieducation.com Common roots to (1) and (2) π 2π 4π 5π cis , cis , cis , cis . 3 3 3 3
9. Find the number of 15th roots of unity, which are also 25th roots of unity. Sol:
x = (1)1/15
x = [cos 2nπ + i sin 2nπ]1/15 2nπ 2nπ + i sin 15 15 n = 0,1, 2,3,...14 x = cos
n = 3, m = 5 2π 2π + i sin 25 25 n = 9, m = 15 x = cos
cos
6π 6π + i sin 5 5
x = (1)1/ 25 x = [cos 2mπ + i sin 2mπ]1/ 25 x = cos
2mπ 2mπ + i sin 25 25
m = 0,1, 2, 3,...24 n = 6, m = 10 4π 4π + i sin 5 5 n = 12, m = 20 x = cos
cos
8π 8π + i sin 5 5
n = 0, m = 0 5 roots common.
www.sakshieducation.com
www.sakshieducation.com 10. If the cube roots of unity are 1, ω, ω2 then find the roots of the equation (x–1)3 + 8 = 0. Sol:
(x − 1)3 = −8
(x − 1) = (−8)3 x − 1 = −2 ⇒ x = −1 x − 1 = −2ω ⇒ x = −2ω + 1 x − 1 = −2ω2 ⇒ x = −2ω2 + 1
11. Find the product of all values of (1 + i)4/5. Sol:
(1 + i)4/5 i 1 = ( 2)4 / 5 + 2 2
= (2)
2/5
4/5
π π cos 2nπ + 4 + i sin 2nπ + 4
4/5
n = 0,1, 2,3, 4 π 4 π 4 = (2)2 / 5 cos ⋅ + i sin ⋅ 4 5 4 5
...(1)
9π 4 9π 4 = (2)2 / 5 cos ⋅ + i sin ⋅ 4 5 4 5
...(2)
Product = (2 =2
2
2/5 5
) e
π i (1+9 +17 + 25+33) 5
π i (85) e5
= 22 [cos17 π + i sin17 π] = −4
12. If z2 + z + 1 = 0, where z is a complex number, prove that 2
2
2
2
2
2
1 2 1 3 1 4 1 5 1 6 1 z + z + z + 2 + z + 3 + z + 4 + z + 5 + z + 6 = 12 z z z z z
Sol:
let z = ω then
L.H.S. =
www.sakshieducation.com
www.sakshieducation.com 2
2
2
2
2
1 2 1 3 1 4 1 5 1 6 1 ω+ ω + ω + 2 + ω + 3 +ω + 4 + ω + 5 + ω + 6 ω ω ω ω ω
2
= (−1)2 + (−1)2 + (2)2 + (−1)2 + (−1) 2 + (2) 2 = 12
Long Answer Questions
1. 1, α, α 2 , α3 ,...α n −1 be the nth roots of unity then prove that 0 if p ≠ kn 1p + α p + (α 2 ) p + (α 3 ) p + ... + (α n −1 )p = Where p, k ∈ N. n if p = kn
Sol:
Now x n − 1 = 0 ⇒ x = (1)1/ n x = [cos 2nπ + i sin 2nπ]1/ n 2mπ 2mπ + i sin n n 2mπ 2mπ α = cos + i sin n n 2mpπ 2mpπ α p = cos + i sin n n x = cos
Now p = kn 1 + 1 + 1 + … n terms = n If p ≠kn value 1p + α p + (α 2 )p + (α3 ) p + ... + (α n −1 )p = 0 .
2. Prove the sum of 99th powers of the roots of the equation x7 – 1 = 0 is zero and hence deduce the roots of Sol:
x 6 + x 5 + x 4 + x 3 + x 2 + x +1 = 0 .
x 7 − 1 = 0 ⇒ x = (1)1/ 7 x = (cos 2kπ + i sin 2kπ)1/ 7 x = cos
2kπ 2kπ + i sin 7 7
k = 0,1, 2,3, 4, 5, 6
www.sakshieducation.com
www.sakshieducation.com x1 = 1, x 2 =
2π i e 7 ,x
3
=
4π i e 7 ,..., x
6
=
12 π i e 7
99 x199 + x 99 2 + x 3 + ...
2π
199 + e 7
⋅99i
4π
+e 7
⋅99i
+ ...e
12 π ⋅99i 7
=0
Roots of x 6 + x 5 + x 4 + x 3 + x 2 + x +1 = 0 be cos
2kπ 2kπ + i sin ; k = 1, 2, 3, 4, 5, 6. 7 7
∵ (x 7 ) − 1 = (x − 1)(x 6 + x 5 + x 4 + x 3 + x 2 + x +1) = 0
x = 1 is one root ⇒ cis
2kπ ; k = 1, 2, 3, 4, 5, 6 are roots of 7
x 6 + x 5 + x 4 + x 3 + x 2 + x +1 = 0 .
3. Solve (x – 1)n = xn, n is a positive integer. n
x −1 x =1
Sol:
x −1 1/ n = (1) x
x −1 1/ n = [ cos 2mπ + i sin 2mπ] x x −1 2mπ 2mπ = cos + i sin x n n 1−
i 1 =e x
2m π n
2mπ 2mπ 1 − i sin = n n x mπ mπ mπ 1 2 sin 2 − 2i sin cos = n n n x
1 − cos
2 sin
mπ mπ mπ 1 sin − i cos = n n n x
www.sakshieducation.com
www.sakshieducation.com x=
1 mπ mπ mπ 2sin sin − i cos n n n
mπ mπ sin i cos + 1 n n = X mπ mπ mπ mπ mπ − + 2sin sin i cos sin i cos n n n n n mπ mπ sin n + i cos n = mπ 2 mπ mπ 2sin sin + cos 2 n n n mπ mπ sin n + i cos n = mπ 2sin n 1 mπ ; m = 1, 2, 3, …(n – 1) 1 + i cot 2 n
4. If m, n are integers and x = cosα α+ isinα α, y = cosβ β + isinβ β then prove that x m yn +
1 1 = cos(mα + nβ) and x m y n − m n = 2i sin(mα + nβ) . x y x y m n
Sol. xm = (cosα + isinα)m = cos mα + isin mα yn = (cosβ + isinβ)n = cos nβ + isin nβ ∴xmyn = (cos mα + isinmα) (cosnβ + isinnβ) = cos (mα + nβ) + isin (mα + nβ)
... (1)
1 1 = cos(mα + nβ) + i sin(mα + nβ) x y m n
= cos(mα + nβ) − i sin(mα + nβ)
...(2)
By adding (1) and (2), we get x m yn +
1 = cos(mα + nβ) x y m n
www.sakshieducation.com
www.sakshieducation.com By subtracting (2) from (1), we get x m yn −
1 = 2i sin(mα + nβ) x y m n
n
n
5. If n is a positive integer, show that (1 + i) + (1 – i) =
n +2 2 2
nπ cos . 4
1 1 +i 2 2
Sol. (1 + i) = 2
π π = 2 cos + i sin 4 4
1 1 (1 − i) = 2 −i 2 2 π π = 2 cos − i sin 4 4 (1 + i) = n
( 2)
n
π π cos + i sin 4 4
n
nπ nπ = 2n / 2 cos + i sin 4 4 (1 − i) = n
( 2)
n
π π cos − i sin 4 4
...(1)
n
nπ nπ = 2n / 2 cos − i sin 4 4
...(2)
By adding (1) and (2), we get nπ (1 + i) n + (1 − i)n = 2n/2 2 cos =2 4
n +2 2
nπ cos 4 θ
nθ
6. If n is an integer then show that (1 + cos θ + i sin θ)n + (1 + cos θ − i sin θ)n = 2n +1 cosn cos 2 2 Sol. L.H.S. = (1 + cos θ + i sin θ)n + (1 + cos θ − i sin θ)n = n
θ θ θ θ θ θ = 2 cos 2 + 2i sin cos + 2 cos 2 − 2i sin cos 2 2 2 2 2 2
n
www.sakshieducation.com
www.sakshieducation.com n n θ θ θ θ cos + i sin + cos − i sin 2 2 2 2
= 2n cos n
θ 2
= 2n cos n
θ nθ nθ nθ nθ + i sin + cos − i sin cos 2 2 2 2 2
= 2 n cos n
θ nθ 2 cos 2 2
= 2n +1 cos n
θ nθ cos = R.H.S. 2 2
7. If cosα α +cosβ β + cosγγ = 0 = sinα α + sinβ β + sinγγ prove that cos2 α + cos2β + cos2 γ =
3 =sin2 α + sin2 β + sin2 γ. 2
Sol. (cos α + i sin α) + (cos β + i sin β) + (cos γ + i sin γ ) = (cos α + cos β + cos γ ) + i(sin α + sin β + sin γ ) = 0 + i0 (cos α + i sin α) + (cos β + i sin β) + (cos γ + i sin γ ) = 0 ...(1)
Let x = cisα, y = cisβ, z = cisγ then x + y + z = 0 by (1), then x2 + y2 + z2 = –2(xy + yz + zx) 1
1
1
= −2xyz + + x y z
= −2xyz[cos α − i sin α + cos β − i sin β + cos γ − i sin γ ] = −2xyz[(cos α + cos β + cos γ ) − i(sin α + sin β + sin γ )] = −2xyz(0 − i0) = 0 ∴ x 2 + y2 + z2 = 0 ⇒ (cos α + i sin α) 2 + (cos β + i sin β)2 + (cos γ + i sin γ ) 2 = 0 ⇒ cos 2α + i sin 2α + cos 2β + i sin 2β + cos 2γ + i sin 2γ = 0 ⇒ (cos 2α + cos 2β + cos 2γ ) + i(sin 2α + sin 2β + sin 2γ ) = 0 ∴ cos 2α + cos 2β + cos 2γ = 0 2 cos 2 α − 1 + 2cos 2 β − 1 + 2 cos 2 γ − 1 = 0 2(cos 2 α + cos 2 β + cos 2 γ ) = 3
www.sakshieducation.com
www.sakshieducation.com ∴ cos 2 α + cos 2 β + cos 2 γ =
3 2
1 − sin 2 α + 1 − sin 2 β + 1 − sin 2 γ = ∴ sin 2 α + sin 2 β + sin 2 γ =
3 2
3 . 2
8. Find all the value of ( 3 + i)1/ 4 . Sol. The modulus amplitude form of 3 i 3 + i = 2 + = 2(cos 30° + i sin 30°) 2 2
1/ 4
π
Hence ( 3 + i)1/ 4 = 2cis 6
π 2kπ + 6 , k = 0, 1, 2, 3 = 21/ 4 cis 4
12kπ + π = 21/ 4 cis , k = 0, 1, 2, 3 24 = 21/ 4 cis(12k + 1)
π , k = 0, 1, 2, 3 24
∴ All the values of are ( 3 + i)1/ 4 are 21/ 4 cis
π 1/ 4 13π , 2 cis , 24 24 25π 1/ 4 37 π 21/ 4 cis , 2 cis 24 24
www.sakshieducation.com
www.sakshieducation.com 9. If 1, ω, ω2 are the cube roots of unity, prove that i) (1 − ω + ω2 )6 + (1 − ω2 + ω)6 = 128 = (1 − ω + ω2 )7 + (1 + ω − ω2 )7 3
Sol:
We use 1+ ω + ω2 = 1 +
(−1 + i 3) (−1 − i 3) 2π + = 0 and ω3 = cis = cis2π = 1 2 2 3
i) (1 − ω + ω2 )6 + (1 − ω2 + ω)6 = (−ω − ω)6 + (−ω2 − ω2 )6 = 26 (ω6 + ω12 ) = 26 (2) = 128 (1 − ω + ω2 )7 + (1 + ω − ω2 )7 = (−ω − ω)7 + (−ω2 − ω2 )7 = (−2)7 (ω7 + ω14 ) = (−2)7 (θ + θ2 ) = (−128)(−1) = 128.
ii) (a + b)(aω + bω2 )(aω2 + bω) = a 3 + b3 . (a + b)(aω + bω2 )(aω2 + bω)
= (a + b)(a 2ω3 + abω4 + abω2 + b 2ω3 )
(
= (a + b) a 2 + ab(ω + ω2 ) + b 2
)
= (a + b)(a 2 − ab + b 2 ) = a 3 + b3
iii)x2 + 4x + 7 = 0 where x = ω – ω2 – 2. x = ω − ω2 − 2
(x + 2) = ω − ω2 ⇒ (x + 2) 2 = ω2 + ω4 − 2ω3 ⇒ x 2 + 4x + 4 = ω2 + ω − 2 = −1 − 2 = −3 ⇒ x 2 + 4x + 7 = 0.
www.sakshieducation.com