ĐỀ LUYỆN THI TỐT NGHIỆP TRUNG HỌC PHỔ THÔNG NĂM 2009 Môn thi: TOÁN Thời gian 150 phút, không kể thới gian phát đề _________________________
TRƯỜNG THPT YERSIN ĐỀ SỐ 1
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm ) Cho hàm số y x 3 3x 2 1 có đồ thị (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Dùng đồ thị (C), xác định k để phương trình x 3 3x 2 k 0 có đúng 3 nghiệm phân biệt. Câu II ( 3,0 điểm ) 1. Giải phương trình: 4.9 x 12 x 3.16 x 0. ( x ¡ ) 2
2. Tính tích phân: I 0
x2 x3 1
dx .
3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y 4 4 x 2 . Câu III ( 1,0 điểm ) Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB a, AC a 3, mặt bên SBC là tam giác đều và vuông góc với mặt phẳng đáy. Tính theo a thể tích của khối chóp S.ABC. II . PHẦN RIÊNG ( 3 điểm ) Thí sinh học chương trình nào thì chỉ được làm phần dành riêng cho chương trình đó. 1. Theo chương trình chuẩn : Câu IV.a ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d):
x 2 y z 3 và mặt phẳng 1 2 2
(P): x 2y 2z 6 0 . 1. Viết phương trình mặt cầu tâm I(1; 2; 3) và tiếp xúc với mặt phẳng (P). 2. Viết phương trình mặt phẳng () chứa đường thẳng (d) và vuông góc với mặt phẳng (P). Câu V.a ( 1,0 điểm ) : 3
Tính môđun của số phức z (1 2i) . 3 i
2. Theo chương trình nâng cao : Câu IV.b ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho đường thẳng (d):
x 2 y z 3 và mặt phẳng 1 2 2
(P): x 2y 2z 6 0 . 1. Viết phương trình mặt cầu tâm I(1; 2; 3) và tiếp xúc với mặt phẳng (P). 2. Viết phương trình hình chiếu vuông góc của đường thẳng (d) trên mặt phẳng (P). Câu V.b ( 1,0 điểm ) : Tìm căn bậc hai của số phức z 4i . . . . . . . .Hết . . . . . . .
Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên:……………………….. Số báo danh:…………………………