SIMULATION OF ARMATURE CONTROLLED DC MOTOR IN MATLAB/SIMULINK MODELLING V = ia R + L + Eb ……… (1) Taking La-Place Transform V ( s ) = I a ( s ) [ R + sL ] + Eb ( s )……… (2) Eb = Kbω dθ dt Eb ( s ) = Kb sθ ( s )……… (3) But ω =
Substitute (3) in (2) V ( s ) = I a ( s ) [ R + sL ] + Kb sθ ( s )……… (4) d 2θ
dθ + TL dt dt 2 Assuming load torque, TL = 0
T =J
+B
T = Kt ia Kt I a ( s ) = Js 2 + Bs I a ( s) =
Js 2 + Bs ……… (5) Kt
Substitute (5) in (4) Js 2 + Bs V ( s) = [ R + sL] + Kb sθ ( s) Kt Js 2 + Bs ) ( R + sL ) + Kb Kt s ( θ (s) V ( s) = Kt
Transfer function is
θ ( s) V (s)
θ ( s) V (s)
=
Kt
( Js2 + Bs ) ( R + sL ) + Kb Kt s Kt
=
k RB = 2 s (1 + τ m s ) (1 + τ s ) + Kb s s (1 + τ m s ) (1 + τ s ) + Kb 2 s
Fig. 1. DC motor model
M-file Ra=2.5 ; % resistance in ohms La=0.5000; % inductance in H J=0.01265; % inertia constant in kg-m^2 B=8.4e-4; % friction coefficient in Nm-s Kb=1.10089; % motor constant in Vs/rad PLOT COMMANDS plot(y(:,1), y(:,3)) title('RESPONSE ') ylabel('Speed (rpm)') xlabel('Time (s)')
SIMULATION RESULT
Melvin Koshy M.Tech College of Engineering, Trivandrum E-mail:
[email protected]
SIMULATION OF FIELD CONTROLLED DC MOTOR IN MATLAB/SIMULINK vf = if Rf + Lf
di dt
Va = constant dω + Bω dt T = K f if T=J
Kf Transfer function
ω (s) v f (s)
= s2 +
Lf J BL f + R f J Lf J
s+
BR f Lf J