Date And Test Detail (18 Test ).pdf

  • Uploaded by: ranag896
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Date And Test Detail (18 Test ).pdf as PDF for free.

More details

  • Words: 7,570
  • Pages: 19
18 TEST FIRST YEAR FROM OLD PAPER

TEST #

DESCRIPTION

1.

EX # 9.1+9.2+9.3

2.

EX # 9.4+10.1+10.2

3.

EX # 10.3+10.4+11.1

4.

EX # 12.1 TO 12.5

5.

EX # 12.6 TO 12.8

6.

UNIT # 13 + UNIT # 14 FULL

7.

UNIT # 1(SHORT QUESTION)

8.

EX # 2.1 TO 2.5

9.

EX # 2.6 TO 2.8 +EX # 3.1

10.

EX # 3.2+3.4+3.5

11.

EX # 3.3

12.

EX # 4.1 TO 4.3

13.

EX # 4.4 TO 4.7

14.

EX # 4.8 TO 4.10 + UNIT # 5 (SHORT QUESTION)

15.

EX # 6.1 TO 6.5

16.

EX # 6.6 TO 6.11

17.

UNIT # 7 FULL

18.

UNIT # 8 FULL

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 9.1 +9.2+9.3 ) TEST#:1 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

1.

Area of sector of circle of radius ๐’“ is: ๐Ÿ ๐Ÿ (a) ๐’“๐Ÿ ๐œฝ (b) ๐’“๐œฝ๐Ÿ

3. 4. 5. 6. 7.

๐Ÿ

(d)

๐Ÿ

๐Ÿ

๐Ÿ๐’“๐Ÿ ๐œฝ

60 part of ๐Ÿยฐ is equal to (a) One second (b) One minute (c) 1 Radian (d) ๐… radian Angles with same initial and terminal sides are called: (a) Acute angles(b) Allied Angles (c)Coterminal angles (d) Quadrentel angles ๐œ๐จ๐ฌ๐ž๐œ ๐Ÿ ๐œฝ โˆ’ ๐œ๐จ๐ญ ๐Ÿ ๐œฝ is equal to: (a) 0 (b) 1 (c) -1 (d) 2 The point (๐ŸŽ, ๐Ÿ) lies on the terminal side of angle: (a) ๐ŸŽยฐ (b) ๐Ÿ—๐ŸŽยฐ (c) ๐Ÿ๐Ÿ–๐ŸŽยฐ (d) ๐Ÿ๐Ÿ•๐ŸŽยฐ th

2.

๐Ÿ

๐Ÿ

(c) (๐’“๐œฝ)๐Ÿ

(8)

If initial and the terminal side of an angle falls on ๐’™ โˆ’ ๐’‚๐’™๐’Š๐’” ๐’๐’“ ๐’š โˆ’ ๐’‚๐’™๐’Š๐’” then it is called:

(a) Coterminal angle (b) Quadrantal angl (c) Allied angle

(d) None of these

If ๐’”๐’†๐’„๐œฝ < ๐ŸŽ and ๐’”๐’Š๐’๐œฝ < ๐ŸŽ then the terminal arm of angle lies in ___________ Quad.

(a) I

(b) II

๐Ÿ

๐’”๐’†๐’„๐Ÿ’๐Ÿ“ยฐ + ๐Ÿ ๐‘ช๐’๐’”๐’†๐’„๐Ÿ’๐Ÿ“ยฐ =?

8. Q#2

๐Ÿ

(a) โˆš๐Ÿ‘

๐Ÿ‘

(b)

โˆš๐Ÿ

(c) III

(d) IV

(c) โˆ’๐Ÿ

(d) 1

SHORT QUESTION ๐Ÿ๐Ÿ

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

SECTION(II)

2.

Find ๐‘ช๐’๐’” ๐œฝ ๐’‚๐’๐’… ๐‘ป๐’‚๐’ ๐œฝ if ๐‘บ๐’Š๐’ ๐œฝ =

3.

What is circular measure of the angle between the hands of a watch at 4 Oโ€™clock?

1.

4. 5. 6.

๐Ÿ

(b)

and the terminal arm of the angle is in quad 1st.

Find ๐’“, when ๐’ = ๐Ÿ“ ๐’„๐’Ž , ๐œฝ = ๐’“๐’‚๐’…๐’Š๐’‚๐’ ๐Ÿ

Find the radius of the circle, in which the arms of a central angle of measure 1 radian cut off an arc of length 35cm. Find ๐’™, if ๐’•๐’‚๐’๐Ÿ ๐Ÿ’๐Ÿ“ยฐ โˆ’ ๐’„๐’๐’”๐Ÿ ๐Ÿ”๐ŸŽยฐ = ๐’™๐’”๐’Š๐’๐Ÿ ๐Ÿ’๐Ÿ“ยฐ๐’„๐’๐’”๐Ÿ’๐Ÿ“ยฐ๐’•๐’‚๐’๐Ÿ’๐Ÿ“ยฐ ๐…

๐…

๐…

๐…

Verify ๐’”๐’Š๐’๐Ÿ : ๐’”๐’Š๐’๐Ÿ : ๐’”๐’Š๐’๐Ÿ : ๐’”๐’Š๐’๐Ÿ = ๐Ÿ: ๐Ÿ: ๐Ÿ‘: ๐Ÿ’

Q#3

(a)

๐Ÿ๐Ÿ‘

(12)

๐Ÿ”

๐Ÿ“

๐Ÿ’

๐Ÿ‘

๐Ÿ

LONG QUESTION

SECTION(III)

(10)

If ๐’„๐’๐’•๐œฝ = and the terminal arm of the angle is in ๐’Š๐’— quad., find the value of ๐Ÿ ๐Ÿ‘๐’”๐’Š๐’๐œฝ+๐Ÿ’๐’„๐’๐’”๐œฝ ๐’„๐’๐’”๐œฝโˆ’๐’”๐’Š๐’๐œฝ

.

๐’Ž๐Ÿ +๐Ÿ

๐…

If ๐’„๐’”๐’„๐œฝ = ๐’‚๐’๐’… ๐’Ž > ๐ŸŽ (๐ŸŽ < ๐œฝ < ), find the values of the remaining ๐Ÿ๐’Ž ๐Ÿ trigonometric ratios.

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 9.4+10.1+10.2) TEST#:2 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

1.

2.

3. 4. 5.

6.

7. 8.

๐…

๐’„๐’๐’” ( โˆ’ ๐œท) = ๐Ÿ

(a) ๐’„๐’๐’”๐œท

(b) โ€“ ๐’„๐’๐’”๐œท

(c) ๐’”๐’Š๐’๐œท

๐œถ+๐œท

If ๐œถ, ๐œท and ๐œธ are the angles of a triangle ABC then ๐’„๐’๐’” ( (a) ๐ฌ๐ข๐ง

๐œธ

(b) โ€“ ๐ฌ๐ข๐ง

๐Ÿ

๐œธ

(c) ๐œ๐จ๐ฌ

๐Ÿ

๐œธ ๐Ÿ

๐Ÿ

(8)

(d) โ€“ ๐’”๐’Š๐’๐œท

)=

(d) โ€“ ๐œ๐จ๐ฌ

Angles associated with basic angles of measure ๐œฝ to a right angle or its multiple are called:

๐œธ ๐Ÿ

(a)Coterminal angle (b) angle in standard position (c) Allied angle (d) obtuse angle

๐’„๐’๐’”๐’†๐’„๐œฝ๐’”๐’†๐’„๐œฝ๐’”๐’Š๐’๐œฝ๐’„๐’๐’”๐œฝ = (a) 1 (b) 0 (c) ๐’”๐’Š๐’๐œฝ (๐’”๐’†๐’„๐œฝ + ๐’•๐’‚๐’๐œฝ)(๐’”๐’†๐’„๐œฝ โˆ’ ๐’•๐’‚๐’๐œฝ) = (a) 1 (b) 0 ๐’”๐’†๐’„๐œฝ ๐’„๐’๐’”๐Ÿ๐Ÿยฐ+๐’”๐’Š๐’๐Ÿ๐Ÿยฐ

(d) ๐’„๐’๐’”๐œฝ

(d) ๐’•๐’‚๐’๐œฝ

=

๐’„๐’๐’”๐Ÿ๐Ÿยฐโˆ’๐’”๐’Š๐’๐Ÿ๐Ÿยฐ (a) ๐’•๐’‚๐’๐Ÿ“๐Ÿ”ยฐ (b) ๐’•๐’‚๐’๐Ÿ‘๐Ÿ’ยฐ (c) ๐’„๐’๐’•๐Ÿ“๐Ÿ”ยฐ (d) ๐’„๐’๐’•๐Ÿ‘๐Ÿ’ยฐ If ๐‘บ๐’Š๐’(๐œถ + ๐œท) is โ€“ ๐’Š๐’—๐’† and ๐‘ช๐’๐’”(๐œถ + ๐œท) is +๐’Š๐’—๐’† then terminal arm of (๐œถ + ๐œท) lies in

(a) I Quad (b) II Quad (๐’”๐’Š๐’๐œถ + ๐’”๐’Š๐’๐œท)(๐’”๐’Š๐’๐œถ โˆ’ ๐’”๐’Š๐’๐œท) =

(c) III Quad

(a) ๐ฌ๐ข๐ง๐Ÿ ๐œถ โˆ’ ๐ฌ๐ข๐ง๐Ÿ ๐œท (b) ๐ฌ๐ข๐ง๐Ÿ ๐œถ โˆ’ ๐œ๐จ๐ฌ๐Ÿ ๐œท

Q#2

(d) IV Quad

(c) ๐œ๐จ๐ฌ๐Ÿ ๐œถ โˆ’ ๐ฌ๐ข๐ง๐Ÿ ๐œท (d) None of these

SHORT QUESTION

SECTION(II)

2.

Prove that ๐‘บ๐’Š๐’(๐Ÿ๐Ÿ–๐ŸŽยฐ + ๐œถ)๐‘บ๐’Š๐’(๐Ÿ—๐ŸŽยฐ โˆ’ ๐œถ) = โˆ’๐‘บ๐’Š๐’๐œถ๐‘ช๐’๐’”๐œถ

3.

Prove that

1.

4.

5.

6. Q#3

๐œถ+๐œท

If ๐œถ, ๐œท, ๐œธ are angles of triangle ABC, then prove that ๐‘ช๐’๐’” ( ๐’„๐’๐’”๐Ÿ–ยฐโˆ’๐’”๐’Š๐’๐Ÿ–ยฐ ๐’„๐’๐’”๐Ÿ–ยฐ+๐’”๐’Š๐’๐Ÿ–ยฐ

= ๐’•๐’‚๐’๐Ÿ‘๐Ÿ•ยฐ

๐Ÿ

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(12)

๐œธ

) = ๐‘บ๐’Š๐’ ๐Ÿ

Prove that (๐’”๐’Š๐’๐Ÿ‘ ๐œฝ โˆ’ ๐’„๐’๐’”๐Ÿ‘ ๐œฝ) = (๐’”๐’Š๐’๐œฝ โˆ’ ๐’„๐’๐’”๐œฝ)(๐Ÿ โˆ’ ๐’”๐’Š๐’๐Ÿ ๐œฝ๐’„๐’๐’”๐Ÿ ๐œฝ) If ๐œถ, ๐œท, ๐œธ are angles of a triangle ๐‘จ๐‘ฉ๐‘ช , Show that

๐’„๐’๐’•

๐œถ ๐Ÿ

๐œท

๐œธ

๐œถ

๐œท

+ ๐’„๐’๐’• + ๐’„๐’๐’• = ๐’„๐’๐’• ๐’„๐’๐’• ๐’„๐’๐’• ๐Ÿ

๐Ÿ

๐Ÿ

๐Ÿ

๐œธ ๐Ÿ

Show that ๐’„๐’๐’•๐Ÿ’ ๐œฝ + ๐’„๐’๐’•๐Ÿ ๐œฝ = ๐’„๐’๐’”๐’†๐’„๐Ÿ’ ๐œฝ โˆ’ ๐’„๐’๐’”๐’†๐’„๐Ÿ ๐œฝ

(a)

If ๐’„๐’๐’”๐œถ = โˆ’

(b)

Prove that

๐Ÿ๐Ÿ’ ๐Ÿ๐Ÿ“

, ๐’•๐’‚๐’ ๐œท =

LONG QUESTION ๐Ÿ—

๐Ÿ’๐ŸŽ

SECTION(III)

, then terminal side of the angle of measure of ๐œถ in the II

quadrant and that of ๐œท is in the III quadtant, find the value of ๐’„๐’๐’”(๐œถ + ๐œท). ๐’•๐’‚๐’๐œฝ+๐’”๐’†๐’„๐œฝโˆ’๐Ÿ ๐’•๐’‚๐’๐œฝโˆ’๐’”๐’†๐’„๐œฝ+๐Ÿ

(10)

= ๐’•๐’‚๐’๐œฝ + ๐’”๐’†๐’„๐œฝ

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 10.3+10.4+unit #11 ) TEST#:3 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

Period of ๐’•๐’‚๐’๐Ÿ’๐’™ is 1. (a) ๐… (b) ๐Ÿ๐…

(c) โˆ’๐Ÿ๐…

Range of ๐’š = ๐’”๐’†๐’„๐’™ is 2. (๐’‚)๐‘น (b) ๐’š โ‰ฅ ๐Ÿ๐’๐’“ ๐’š โ‰ค โˆ’๐Ÿ ๐’•๐’‚๐’๐Ÿ๐œถ = ๐Ÿ๐’•๐’‚๐’๐œถ

3.

4.

(a) ๐Ÿ+๐’•๐’‚๐’๐Ÿ ๐œถ

8.

๐Ÿ’

(d) ๐‘น โˆ’ [โˆ’๐Ÿ, ๐Ÿ]

๐Ÿ ๐ญ๐š๐ง๐Ÿ ๐œถ

(d)

๐Ÿโˆ’๐ญ๐š๐ง๐Ÿ ๐œถ

(c) โˆ’๐Ÿ ๐ฌ๐ข๐ง (

๐Ÿ

) ๐ฌ๐ข๐ง (

๐Ÿ๐’”๐’Š๐’๐Ÿ•๐œฝ๐’„๐’๐’”๐Ÿ‘๐œฝ =

(a)

๐Ÿ

๐ญ๐š๐ง๐Ÿ ๐œถ

๐Ÿโˆ’๐ญ๐š๐ง๐Ÿ ๐œถ

๐’™

Period of ๐Ÿ‘๐’„๐’๐’” ๐Ÿ“ is

1.

I. II.

)

(a) ๐Ÿ๐…

๐Ÿ

)

๐Ÿ ๐œถโˆ’๐œท

) ๐œ๐จ๐ฌ (

๐Ÿ

)

(b)

๐…

(b)

๐…

(c) โˆ’๐Ÿ๐…

๐Ÿ‘

(d)

(c) ๐…

๐Ÿ

SHORT QUESTION

(d) 10๐…

SECTION(II)

๐… ๐Ÿ’

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(12)

Find the period of ๐Ÿ‘๐‘บ๐’Š๐’ ๐’™ Define the ๐’‘๐’†๐’“๐’Š๐’๐’… ๐’๐’‡ ๐’•๐’“๐’Š๐’ˆ๐’๐’๐’๐’Ž๐’†๐’•๐’“๐’Š๐’„ ๐’‡๐’–๐’๐’„๐’•๐’Š๐’๐’

2.

Prove that

3.

Prove that

๐œฝ ๐œฝ ๐Ÿ ๐Ÿ ๐œฝ ๐œฝ ๐’„๐’๐’• โˆ’๐’•๐’‚๐’ ๐Ÿ ๐Ÿ

๐’•๐’‚๐’ +๐’„๐’๐’•

๐…

= ๐’”๐’†๐’„๐œฝ

๐Ÿ + ๐’•๐’‚๐’๐œถ ๐’•๐’‚๐’๐Ÿ๐œถ = ๐’”๐’†๐’„๐Ÿ๐œถ ๐…

๐Ÿ

5.

Prove that ๐’”๐’Š๐’ ( โˆ’ ๐œฝ) ๐’”๐’Š๐’ ( + ๐œฝ) = ๐’„๐’๐’”๐Ÿ๐œฝ

6.

Prove the identity :

4.

๐Ÿ ๐œถ+๐œท

(d) ๐Ÿ ๐œ๐จ๐ฌ (

๐œถโˆ’๐œท

) ๐ฌ๐ข๐ง (

๐’”๐’Š๐’๐Ÿ๐ŸŽ๐œฝ + ๐’”๐’Š๐’๐Ÿ’๐œฝ (b) ๐’”๐’Š๐’๐Ÿ“๐œฝ โˆ’ ๐’”๐’Š๐’๐Ÿ๐œฝ (c) ๐’„๐’๐’”๐Ÿ๐ŸŽ๐œฝ + ๐’„๐’๐’”๐Ÿ’๐œฝ (d) ๐’„๐’๐’”๐Ÿ“๐œฝ โˆ’ ๐’„๐’๐’”๐Ÿ๐œฝ

Period of ๐’„๐’๐’•๐Ÿ‘๐’™ is (a) ๐…

Q#2

๐œถ+๐œท

(b) ๐Ÿ ๐œ๐จ๐ฌ (

๐œถโˆ’๐œท

๐œถ+๐œท

7.

๐…

(๐’‚) ๐Ÿ‘๐’”๐’Š๐’๐œถ โˆ’ ๐Ÿ ๐ฌ๐ข๐ง๐Ÿ‘ ๐œถ(b) ๐Ÿ‘๐’”๐’Š๐’๐œถ + ๐Ÿ ๐ฌ๐ข๐ง๐Ÿ‘ ๐œถ (c) ๐Ÿ‘๐’”๐’Š๐’๐œถ โˆ’ ๐Ÿ’ ๐ฌ๐ข๐ง๐Ÿ‘ ๐œถ (d) ๐Ÿ‘๐’„๐’๐’”๐œถ โˆ’ ๐Ÿ ๐ฌ๐ข๐ง๐Ÿ‘ ๐œถ

๐’„๐’๐’”๐œถ โˆ’ ๐’„๐’๐’”๐œท is equal to: ๐œถ+๐œท ๐œถโˆ’๐œท 5. (a) ๐Ÿ ๐ฌ๐ข๐ง ( ๐Ÿ ) ๐œ๐จ๐ฌ ( ๐Ÿ ) 6.

(c)

๐Ÿโˆ’๐ญ๐š๐ง๐Ÿ ๐œถ

๐’”๐’Š๐’๐Ÿ‘๐œถ =

(d)

(c) โˆ’๐Ÿ โ‰ค ๐’š โ‰ค ๐Ÿ

๐Ÿ๐’•๐’‚๐’๐œถ

(b)

(8)

Prove that

Q#3

๐Ÿ’

๐Ÿ’

๐‘บ๐’Š๐’๐Ÿ–๐’™+๐‘ช๐’๐’”๐Ÿ‘๐’™

๐Ÿ

= ๐’•๐’‚๐’๐Ÿ“๐’™

๐‘ช๐’๐’”๐Ÿ“๐’™+๐‘ช๐’๐’”๐Ÿ๐’™ ๐’”๐’Š๐’๐œถโˆ’๐’”๐’Š๐’๐œท ๐’”๐’Š๐’๐œถ+๐’”๐’Š๐’๐œท

= ๐’•๐’‚๐’

๐œถโˆ’๐œท

LONG QUESTION

(a)

Prove that

(b)

Prove that

๐’„๐’๐’”๐’†๐’„๐œฝ+๐Ÿ๐’„๐’๐’”๐’†๐’„๐Ÿ๐œฝ ๐’”๐’†๐’„๐œฝ

= ๐’„๐’๐’•

๐Ÿ

๐œฝ ๐Ÿ

๐’„๐’๐’•

๐œถ+๐œท ๐Ÿ

SECTION(III)

๐‘บ๐’Š๐’๐Ÿ๐ŸŽยฐ๐‘บ๐’Š๐’๐Ÿ‘๐ŸŽยฐ๐‘บ๐’Š๐’๐Ÿ“๐ŸŽยฐ๐‘บ๐’Š๐’๐Ÿ•๐ŸŽยฐ =

๐Ÿ

๐Ÿ๐Ÿ”

(10)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 12.1 to 12.5) TEST#:4 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

A โ€œTriangleโ€ has : 1. (a) Two elements (b) ๐Ÿ‘ elements If ๐’”๐’Š๐’๐’™ = ๐ŸŽ. ๐Ÿ“๐Ÿ๐ŸŽ๐ŸŽ then ๐’™ = 2. (a) ๐Ÿ‘๐ŸŽยฐ๐Ÿ’๐ŸŽโ€ฒ (b) ๐Ÿ‘๐Ÿ“ยฐ๐Ÿ’๐ŸŽโ€ฒ 3.

(c) ๐Ÿ’ elements

(c) ๐Ÿ’๐ŸŽยฐ๐Ÿ’๐ŸŽโ€ฒ

(8)

(d) ๐Ÿ” elments

(d) ๐Ÿ’๐Ÿ’ยฐ๐Ÿ’๐Ÿ’โ€ฒ

When we look an object below the horizontal ray, the angle formed is called angle of: (c) incidence (d) reflects (a) Elevation (b) depression

To solve an oblique triangle we use: 4. (a) Law of Sine (b) Law of Cosine

(c) Law of Tangents

(d) All of these

In any triangle ๐‘จ๐‘ฉ๐‘ช, if ๐œท = ๐Ÿ—๐ŸŽยฐ , then ๐’ƒ๐Ÿ = ๐’‚๐Ÿ + ๐’„๐Ÿ โˆ’ ๐Ÿ๐’‚๐’„๐’„๐’๐’”๐œท becomes: 5. (a) Law of sine (b) Law of tangents (c) Law of cosine (d) Pythagoras theorem 6.

In any triangle ๐‘จ๐‘ฉ๐‘ช, โˆš (a)

7.

๐œถ ๐ฌ๐ข๐ง ๐Ÿ

In any triangle (a)

๐œธ ๐ฌ๐ข๐ง ๐Ÿ

๐’‚๐’„

=

๐œท (b) ๐ฌ๐ข๐ง ๐Ÿ (๐’”โˆ’๐’‚)(๐’”โˆ’๐’ƒ) ๐‘จ๐‘ฉ๐‘ช, โˆš ๐’”(๐’”โˆ’๐’„) =

8. In any triangle ๐‘จ๐‘ฉ๐‘ช, (a)๐’„๐’๐’”๐œถ Q#2

(๐‘บโˆ’๐’‚)(๐’”โˆ’๐’„)

(b)

๐’ƒ๐Ÿ +๐’„๐Ÿ โˆ’๐’‚๐Ÿ ๐Ÿ๐’ƒ๐’„

(c)

๐œธ ๐ฌ๐ข๐ง ๐Ÿ

๐œธ ๐œ๐จ๐ฌ ๐Ÿ

=? (b) ๐’”๐’Š๐’๐œถ

(c)

2. Find ๐œฝ, if ๐’”๐’Š๐’๐œฝ = ๐ŸŽ. ๐Ÿ“๐Ÿ•๐Ÿ—๐Ÿ and ๐’•๐’‚๐’๐œฝ = ๐Ÿ. ๐Ÿ•๐ŸŽ๐Ÿ“

Solve the triangle ๐‘จ๐‘ฉ๐‘ช in which :

6. Find the values of ๐’„๐’๐’”๐Ÿ‘๐Ÿ”ยฐ๐Ÿ๐ŸŽโ€ฒ and ๐’„๐’๐’•๐Ÿ–๐Ÿ—ยฐ๐Ÿ—โ€ฒ Q#3 (a) (b)

(d)

SECTION(II) โ€ฒ

๐œธ ๐œ๐จ๐ญ ๐Ÿ

(d) ๐’„๐’๐’”๐œธ

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(12)

, ๐œท = ๐Ÿ“๐ŸŽยฐ๐Ÿ๐ŸŽ , ๐’„ = ๐ŸŽ. ๐Ÿ–๐Ÿ‘๐Ÿ

A vertical pole is ๐Ÿ–๐’Ž high and length of its shadow is ๐Ÿ”๐’Ž. What is the angle of elevation of the sun at that moment?

4. Solve the triangle ๐‘จ๐‘ฉ๐‘ช, if ๐’„ = ๐Ÿ๐Ÿ”. ๐Ÿ , ๐œถ = ๐Ÿ’๐Ÿยฐ๐Ÿ’๐Ÿ“โ€ฒ 5.

๐œธ ๐ญ๐š๐ง ๐Ÿ

(c) ๐’„๐’๐’”๐œท

SHORT QUESTION

1. Solve the right triangle ๐‘จ๐‘ฉ๐‘ช, in which ๐œธ = ๐Ÿ—๐ŸŽยฐ 3.

(d)

๐œถ ๐œ๐จ๐ฌ ๐Ÿ

A

LONG QUESTION

, ๐œธ = ๐Ÿ•๐Ÿ’ยฐ๐Ÿ‘๐Ÿโ€ฒ

๐’ƒ = ๐Ÿ‘,

๐’„ = ๐Ÿ” and ๐œท = ๐Ÿ‘๐Ÿ”ยฐ๐Ÿ๐ŸŽโ€ฒ

SECTION(III)

(10)

Solve the triangle using first law of tangents and then law of sines: ๐’ƒ = ๐Ÿ๐Ÿ’. ๐Ÿ– , ๐’„ = ๐Ÿ๐Ÿ”. ๐Ÿ and ๐œถ = ๐Ÿ’๐Ÿยฐ๐Ÿ’๐Ÿ“โ€ฒ Solve the triangle ๐‘จ๐‘ฉ๐‘ช in which : ๐’‚ = โˆš๐Ÿ‘ โˆ’ ๐Ÿ , ๐’ƒ = โˆš๐Ÿ‘ + ๐Ÿ and ๐œธ = ๐Ÿ”๐ŸŽยฐ

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 12.6 to 12.8) TEST#:5 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

(8)

To solve an oblique triangles when measure of three sides are given , we can use: 1. (a) Heroโ€™s formula (b) Law of cosine (c) Law of sine (d) Law of tangents In any triangle ๐‘จ๐‘ฉ๐‘ช Area if triangle is : 2. 3. 4.

๐Ÿ

๐Ÿ

(a) ๐’ƒ๐’„ ๐ฌ๐ข๐ง ๐œถ

(b) ๐’„๐’‚ ๐’”๐’Š๐’๐œถ

(a) ๐‘น

(b)

(c) ๐’‚๐’ƒ ๐’”๐’Š๐’๐œท

๐Ÿ

๐Ÿ

๐Ÿ

(d)

๐Ÿ

๐’‚๐’ƒ๐’”๐’Š๐’๐œธ

The smallest angle of โˆ†๐‘จ๐‘ฉ๐‘ช, when ๐’‚ = ๐Ÿ‘๐Ÿ•. ๐Ÿ‘๐Ÿ’ , ๐’ƒ = ๐Ÿ‘. ๐Ÿ๐Ÿ’ , ๐’„ = ๐Ÿ‘๐Ÿ“. ๐ŸŽ๐Ÿ” is (a) ๐œถ (b) ๐œท (c) ๐œธ (d) cannot be determined In any triangle ๐‘จ๐‘ฉ๐‘ช, with usual notations, ๐’”๐’Š๐’ ๐œธ = ๐’„

(c)

๐Ÿ๐‘น

๐Ÿ๐‘น

(d)

๐’„

๐‘น ๐Ÿ

The point of intersection of the right bisectors of the sides of the triangle is : 5. (a) Circum centre (b) In-centre (c) Escribed center (d) Diameter In any triangle ๐‘จ๐‘ฉ๐‘ช, with usual notation , ๐’“: ๐‘น: ๐’“๐Ÿ : ๐’“๐Ÿ : ๐’“๐Ÿ‘ = 6. (a) 3:3:3:2:1 (b) 1:2:2:3:3 (c) 1:2:3:3:3 (d) 1:1:1:1:1 In a triangle ๐‘จ๐‘ฉ๐‘ช, if ๐œท = ๐Ÿ”๐ŸŽยฐ , ๐œธ = ๐Ÿ๐Ÿ“ยฐ then ๐œถ = 7. (๐’‚) ๐Ÿ—๐ŸŽยฐ (b) ๐Ÿ๐Ÿ–๐ŸŽยฐ (c) ๐Ÿ๐Ÿ“๐ŸŽยฐ (d) ๐Ÿ๐ŸŽ๐Ÿ“ยฐ 8.

Q#2

1.

โˆ†

In any triangle ๐‘จ๐‘ฉ๐‘ช, with usual notations, ๐’”โˆ’๐’„ = (๐’‚)๐’“๐Ÿ‘

(b) ๐‘น

(c) ๐’“๐Ÿ

SHORT QUESTION

SECTION(II)

(d) ๐’“๐Ÿ

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(12)

Find the area of the triangle ๐‘จ๐‘ฉ๐‘ช, in which ๐’ƒ = ๐Ÿ๐Ÿ. ๐Ÿ” , ๐’„ = ๐Ÿ‘๐ŸŽ. ๐Ÿ and ๐œถ = ๐Ÿ“๐Ÿยฐ๐Ÿ’๐ŸŽโ€ฒ

3.

The area of the triangle is ๐Ÿ๐Ÿ’๐Ÿ‘๐Ÿ•. If ๐’‚ = ๐Ÿ•๐Ÿ— and ๐’„ = ๐Ÿ—๐Ÿ•, then find angle ๐œท.

4.

Solve the triangle , in which

2.

A

Find the measure of the greatest angle , if sides of the angle are ๐Ÿ๐Ÿ”, ๐Ÿ๐ŸŽ, ๐Ÿ‘๐Ÿ‘. ๐’‚=๐Ÿ•,

๐’ƒ=๐Ÿ•

,

๐’„=๐Ÿ—

5.

The sides of triangle are ๐’™๐Ÿ + ๐’™ + ๐Ÿ, ๐Ÿ๐’™ + ๐Ÿ and ๐’™๐Ÿ โˆ’ ๐Ÿ. Prove that the greatest angle of

6.

Show that

the triangle is ๐Ÿ๐Ÿ๐ŸŽยฐ.

Q#3 (a) (b)

๐’“๐Ÿ = ๐’” ๐’•๐’‚๐’

๐œท ๐Ÿ

LONG QUESTION

Prove that ๐’“๐Ÿ + ๐’“๐Ÿ + ๐’“๐Ÿ‘ โˆ’ ๐’“ = ๐Ÿ’๐‘น Prove that ๐’“ = ๐’” ๐’•๐’‚๐’

๐œถ ๐Ÿ

๐’•๐’‚๐’

๐œท ๐Ÿ

๐’•๐’‚๐’

๐œธ ๐Ÿ

SECTION(III)

(10)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( UNIT # 13 +14) TEST#:6 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

๐‘ป๐’‚๐’โˆ’๐Ÿ ๐’™ = ๐… 1. (a) โˆ’ ๐ฌ๐ž๐œ โˆ’๐Ÿ ๐’™ ๐Ÿ

๐Ÿ ๐‘บ๐’Š๐’ (๐‘บ๐’Š๐’โˆ’๐Ÿ ๐Ÿ) ๐Ÿ

2.

(a)

๐Ÿ

(b)

=

(b)

๐… ๐Ÿ

๐Ÿ

โˆ’ ๐ฌ๐ข๐งโˆ’๐Ÿ ๐’™

๐Ÿ‘

๐‘ช๐’๐’”โˆ’๐Ÿ (โˆ’๐’™) = (a) โ€“ ๐‘ช๐’๐’”โˆ’๐Ÿ ๐’™ (b) ๐‘ช๐’๐’”โˆ’๐Ÿ ๐’™ ๐‘บ๐’Š๐’โˆ’๐Ÿ ๐‘จ โˆ’ ๐‘บ๐’Š๐’โˆ’๐Ÿ ๐‘ฉ = (a) ๐‘บ๐’Š๐’โˆ’๐Ÿ (๐‘จโˆš๐Ÿ โˆ’ ๐‘ฉ๐Ÿ โˆ’ ๐‘ฉโˆš๐Ÿ โˆ’ ๐‘จ๐Ÿ ) 4. (c) ๐‘บ๐’Š๐’โˆ’๐Ÿ (๐‘ฉโˆš๐Ÿ โˆ’ ๐‘จ๐Ÿ + ๐‘จโˆš๐Ÿ โˆ’ ๐‘ฉ๐Ÿ ) 3.

(c)

๐… ๐Ÿ

โˆ’๐œ๐จ๐ญ โˆ’๐Ÿ ๐’™

(d) ๐… โˆ’ ๐‘ช๐’๐’”๐’™

(d) ๐‘บ๐’Š๐’โˆ’๐Ÿ (๐‘จ๐‘ฉโˆš(๐Ÿ โˆ’ ๐‘จ๐Ÿ )(๐Ÿ โˆ’ ๐‘ฉ๐Ÿ ))

๐…

๐‘ป๐’‚๐’โˆ’๐Ÿ (โˆ’๐’™) = (a) โ€“ ๐‘ป๐’‚๐’โˆ’๐Ÿ ๐’™ (b) ๐‘ป๐’‚๐’โˆ’๐Ÿ ๐’™ ๐‘ป๐’‚๐’โˆ’๐Ÿ ๐‘จ + ๐‘ป๐’‚๐’โˆ’๐Ÿ ๐‘ฉ = 8. (a) ๐‘ป๐’‚๐’โˆ’๐Ÿ ( ๐‘จโˆ’๐‘ฉ ) (b) ๐‘ป๐’‚๐’โˆ’๐Ÿ ( ๐‘จ+๐‘ฉ ) ๐Ÿ+๐‘จ๐‘ฉ ๐Ÿ+๐‘จ๐‘ฉ 7.

Q#2

1. Prove that

=

๐Ÿ๐Ÿ’ ๐’”๐’Š๐’โˆ’๐Ÿ ๐Ÿ๐Ÿ“

(d) None

๐…

๐…

(c) ๐Ÿ’

(c) ๐… โˆ’ ๐‘ป๐’‚๐’โˆ’๐Ÿ ๐’™ ๐‘จ+๐‘ฉ

(c) ๐‘ป๐’‚๐’โˆ’๐Ÿ (๐Ÿโˆ’๐‘จ๐‘ฉ)

SHORT QUESTION

๐Ÿ’ ๐Ÿ๐’„๐’๐’”โˆ’๐Ÿ ๐Ÿ“

๐Ÿ‘

(b) ๐‘บ๐’Š๐’โˆ’๐Ÿ (๐‘จโˆš๐Ÿ โˆ’ ๐‘จ๐Ÿ โˆ’ ๐‘ฉโˆš๐Ÿ โˆ’ ๐‘ฉ๐Ÿ )

6.

(b) ๐Ÿ”

๐Ÿ

(c) ๐… โˆ’ ๐‘ช๐’๐’”โˆ’๐Ÿ ๐’™

๐’”๐’Š๐’๐’™ = ๐Ÿ , ๐’™ is equal to: ๐…

๐Ÿ

โˆ’ ๐’„๐’๐’”๐’†๐’„โˆ’๐Ÿ ๐’™

(d)

Number of solutions of trigonometric function is: (a) Finite (b) Infinite (c) Only one

(a) ๐Ÿ

๐…

(d)

(c) 2

5.

๐Ÿ

(8)

(d) ๐Ÿ‘

(d) ๐… โˆ’ ๐‘ป๐’‚๐’๐’™

๐‘จ+๐‘ฉ

(d) ๐‘ป๐’‚๐’โˆ’๐Ÿ (๐Ÿ+๐‘จ๐‘ฉ)

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

SECTION(II)

(12)

SECTION(III)

(10)

๐Ÿ

2. Find the value of ๐’•๐’‚๐’ (๐’”๐’Š๐’โˆ’๐Ÿ (โˆ’ ๐Ÿ)) โˆ’๐Ÿ โˆ’๐Ÿ 3. Show that ๐’•๐’‚๐’ (โˆ’๐’™) = โˆ’๐’•๐’‚๐’ ๐’™ ๐’™

โˆ’๐Ÿ 4. Show that ๐’•๐’‚๐’ (๐’”๐’Š๐’ ๐’™) = โˆš๐Ÿโˆ’๐’™๐Ÿ

โˆ’๐Ÿ ๐Ÿ 5. Show that ๐’„๐’๐’”(๐’”๐’Š๐’ ๐’™) = โˆš๐Ÿ โˆ’ ๐’™

6. Solve ๐Ÿ + ๐’„๐’๐’”๐’™ = ๐ŸŽ Q#3 (a) (b)

Prove that Prove that

LONG QUESTION

๐Ÿ๐Ÿ๐ŸŽ ๐’•๐’‚๐’โˆ’๐Ÿ ๐Ÿ๐Ÿ๐Ÿ— ๐Ÿ

=

๐Ÿ๐Ÿ ๐Ÿ๐’„๐’๐’”โˆ’๐Ÿ ๐Ÿ๐Ÿ‘ ๐Ÿ

๐Ÿ—

๐’•๐’‚๐’โˆ’๐Ÿ ๐Ÿ’ + ๐’•๐’‚๐’โˆ’๐Ÿ ๐Ÿ“ = ๐’•๐’‚๐’โˆ’๐Ÿ ๐Ÿ๐Ÿ—

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TEST : MATHEMATICS ( unit # 1 )

TIME: 1:10 HOUR

TEST#:7

Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

1.

Every recurring decimal is (a)a rational number

(b) an irrational number (c) a prime number

The set {1,-1} possess closure property ๐’˜. ๐’“. ๐’• (a) Addition (b) multiplication (c) division ๐Ÿ‘ Imaginary part of (โˆ’๐Ÿ + ๐Ÿ‘๐’Š ) is 3. (a)-2 (b) -3 (c) 26 The product of two conjugate complex numbers is 2.

4.

(๐ŸŽ, ๐Ÿ‘)(๐ŸŽ, ๐Ÿ“) is equal to: (a) 15 (b) -15 ๐Ÿ‘ (๐ŸŽ, ๐Ÿ) is equal to: 6. (a) 1 (b) -1 If ๐’ is an even integer, then (๐’Š)๐’ is equal to: 8.

(d) a whole number

(d) subtraction (d) -8

(a)A real number (b) an imaginary number (c) may be an irrational number (d) not defined

5.

7.

(10)

(๐’‚) ๐’Š

(b) โ€“ ๐’Š

Multiplicative inverse of (โˆ’๐Ÿ’, ๐Ÿ•) ๐Ÿ’

๐Ÿ•

๐Ÿ’

(a) (โˆ’ ๐Ÿ”๐Ÿ“ , โˆ’ ๐Ÿ”๐Ÿ“)

๐Ÿ•

(b) (๐Ÿ”๐Ÿ“ , โˆ’ ๐Ÿ”๐Ÿ“)

(c) (โˆ’

(b) 2

(c) -1

(c) โˆ’๐Ÿ–๐’Š

(d) ๐Ÿ–๐’Š

(c) ๐’Š

(c) ยฑ๐Ÿ ๐Ÿ’

โˆš๐Ÿ”๐Ÿ“

,โˆ’

(d) โ€“ ๐’Š (d) 1

๐Ÿ•

)

โˆš๐Ÿ”๐Ÿ“

(d) (

๐Ÿ’

โˆš๐Ÿ”๐Ÿ“

,โˆ’

๐Ÿ•

)

โˆš๐Ÿ”๐Ÿ“

Factors of ๐Ÿ‘(๐’™๐Ÿ + ๐’š๐Ÿ ) are: 9. (๐’‚) ๐Ÿ‘(๐’™ + ๐’š)(๐’™ โˆ’ ๐’š) (b) ๐Ÿ‘(๐’™ + ๐’Š๐’š)(๐’™ โˆ’ ๐’Š๐’š)(c) โˆš๐Ÿ‘(๐’™ + ๐’Š๐’š)(๐’™ โˆ’ ๐’Š๐’š) (d) None of these Real part of

10.

(a) 1

๐Ÿ+๐’Š ๐’Š

is:

Q#2

๐’‚

=

๐’„

SHORT QUESTION

<=> ๐’‚๐’… = ๐’ƒ๐’„

1.

Prove that

2.

Separate into real and imaginary parts

๐’ƒ

๐’…

๐Ÿ + โˆš๐Ÿ‘๐’Š

3.

Express the complex number

4.

Find the multiplicative inverse of

5. 6. 7. 8. 9. 10.

Simplify ๐’Š๐Ÿ๐ŸŽ๐Ÿ

SECTION(II)

and ๐’Šโˆ’๐Ÿ‘

๐’Š

๐Ÿ+๐’Š

into polar form.

(1 , 2)

Define Rational and Irrational numbers. ๐Ÿ

Show that โˆ€ ๐’› โˆˆ ๐‘ช , ๐’›๐Ÿ + ๐’› ๐’Š๐’” ๐’‚ ๐’“๐’†๐’‚๐’ ๐’๐’–๐’Ž๐’ƒ๐’†๐’“. Simplify (๐’‚ โˆ’ ๐’Š๐’ƒ)๐Ÿ‘ Prove that

๐’›ฬ… = ๐’› ๐’Š๐’‡๐’‡ ๐’› is real.

Simplify by expressing in the form of ๐’‚ + ๐’ƒ๐’Š ,

๐Ÿ

โˆš๐Ÿ“+โˆšโˆ’๐Ÿ–

๐Ÿ

(d) ๐Ÿ

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(20)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 2.1 to 2.5 ) TEST#:8 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

1. 2. 3. 4. 5. 6. 7. 8.

Truth set of a tautology is the (a) Power set (b) Subset (c) Universal set (d) Super set The symbol โ€œโˆ€โ€ is called (a) Universal quantifier (b) Existential quantifier (c) Converse(d) Inverse Truth set of a tautology is (a) Universal set (b) True (c) True (d) False If ๐” = {๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐Ÿ’, ๐Ÿ“, โ€ฆ โ€ฆ , ๐Ÿ๐ŸŽ} and ๐€ = {๐Ÿ, ๐Ÿ‘, ๐Ÿ“, โ€ฆ . . , ๐Ÿ๐Ÿ—} then ๐€ โˆฉ ๐” = (d) ๐€โ€ฒ (a) ๐€ (b) ๐” (c) โˆ… If the intersection of two sets is the empty then sets are called (a) Disjoint sets (b) Overlapping Sets (c) Subsets (d) Power sets If ๐‘จ and ๐‘ฉ are disjoint sets then : (a) ๐€ โˆฉ ๐ = ๐›— (b) ๐€ โˆฉ ๐ โ‰  ๐›— (c) ๐€ โŠ‚ ๐ (d) ๐€ โˆ’ ๐ = ๐›— The set of odd integers between 2 and 4 is (a) Null set (b) Power set (c) Singleton set (d) Subset Total number of subsets that can be formed from the set {๐’™,๐’š,๐’›} is (c) 5 (d)2 (a) 1 (b) 8

Q#2

1. 2. 3. 4. 5. 6.

(b)

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

SECTION(II)

(12)

Write the following set in โ€œ๐’…๐’†๐’”๐’„๐’“๐’Š๐’‘๐’•๐’Š๐’—๐’† ๐’Ž๐’†๐’•๐’‰๐’๐’…โ€ and โ€œ ๐’•๐’‚๐’ƒ๐’–๐’๐’‚๐’“ ๐’‡๐’๐’“๐’Žโ€ (a) {๐’™|๐’™ โˆˆ ๐‘ต โˆง ๐Ÿ’ < ๐‘ฅ < 12} (b) {๐’™|๐’™ โˆˆ ๐‘น โˆง ๐’™ = ๐’™} Write down the power set of {๐‹} and {+, โˆ’, ร—,รท}. Let ๐‘ผ =The set of English alphabet , ๐‘จ = {๐’™|๐’™ is a vowel } and ๐‘ฉ = {๐’š|๐’š is consonant} Verify (๐‘จ โˆช ๐‘ฉ)โ€ฒ = ๐‘จโ€ฒ โˆฉ ๐‘ฉโ€ฒ Write converse , inverse and contra positive of ~๐’‘ โ†’ ๐’’ Show that ~(๐’‘ โ†’ ๐’’) โ†’ ๐’‘ is tautology. Define Absurdity with example.

Q#3 (a)

SHORT QUESTION

(8)

LONG QUESTION

SECTION(III)

Prove that ๐’‘ โˆจ (โˆผ ๐’‘ โˆงโˆผ ๐’’) โˆจ (๐’‘ โˆง ๐’’) = ๐’‘ โˆจ (โˆผ ๐’‘ โˆงโˆผ ๐’’)

Convert (๐‘จ โˆช ๐‘ฉ) โˆช ๐‘ช = ๐‘จ โˆช (๐‘ฉ โˆช ๐‘ช) into logical form and prove it by constructing the truth table.

(10)

ILM GROUP OF COLLEGES KHANPUR

NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 2.6 TO 2.8+ 3.1 ) TEST#:9 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

1. 2. 3. 4. 5. 6. 7. 8. Q#2

The range of {(๐Ÿ, ๐Ÿ), (๐Ÿ‘, ๐Ÿ), (๐Ÿ’, ๐Ÿ‘), (๐Ÿ“, ๐Ÿ’), (๐Ÿ”, ๐Ÿ“)} (a) {๐Ÿ, ๐Ÿ‘, ๐Ÿ’, ๐Ÿ“, ๐Ÿ”} (b) {๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐Ÿ’, ๐Ÿ“} (c) {๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐Ÿ, ๐Ÿ’} (d) {๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐Ÿ“} Cube root of a number is example of (a) Binary operation (b) Unary operation (c) relation (d) function Inverse and identity of a set ๐‘บ under binary operation โˆ— is (a) Unique (b) Two (c) Three (d) Four A semi-group having an identity is called Group (b) monoid (c) Closed (d) Not closed In a group the inverse is (b) two (d) three (d) four (a) Unique (๐‘จ๐’• )๐’• = (๐’‚) ๐‘จ๐’• (c) โ€“ ๐‘จ (d) (๐‘จ๐’• )๐’• (b) ๐‘จ Which of the following Sets is a field. (a) R (b) Q (c) C (d) all of these For the square matrix ๐‘จ = [๐’‚๐’Š๐’‹ ]๐’ร—๐’ then ๐’‚๐Ÿ๐Ÿ , ๐’‚๐Ÿ๐Ÿ , ๐’‚๐Ÿ‘๐Ÿ‘โ€ฆ ๐’‚๐’๐’ are: (a) Main diagonal(b) primary diagonal(c) proceding diagonal(d) secondary diagonal SHORT QUESTION

(8)

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

SECTION(II)

(12)

1. For ๐‘จ = {๐Ÿ, ๐Ÿ, ๐Ÿ‘, ๐Ÿ’}, find the following relation in ๐‘จ. State domain and range of the relation. {(๐’™, ๐’š)| ๐’™ + ๐’š < ๐Ÿ“} 2. 3. 4.

Prepare a table of addition of the elements of the set of residue classes modulo 4. Prove that (๐’‚๐’ƒ)โˆ’๐Ÿ = ๐’ƒโˆ’๐Ÿ ๐’‚โˆ’๐Ÿ ๐’™+๐Ÿ‘ ๐Ÿ ๐Ÿ ๐Ÿ Find the value of ๐’™ and ๐’š if ] [ ]=[ โˆ’๐Ÿ‘ ๐Ÿ‘๐’š โˆ’ ๐Ÿ’ โˆ’๐Ÿ‘ ๐Ÿ

๐Ÿ‘ โˆ’๐Ÿ• ๐Ÿ“ โˆ’๐Ÿ Find the matrix ๐‘จ if ; [ ] ๐‘จ = [ ๐ŸŽ ๐ŸŽ] ๐ŸŽ ๐ŸŽ 5. ๐Ÿ• ๐Ÿ ๐Ÿ‘ ๐Ÿ ๐Ÿ โˆ’๐Ÿ ๐Ÿ ๐ŸŽ ] and ๐‘จ๐Ÿ = [ ], find the values of ๐’‚ and ๐’ƒ. 6. If ๐‘จ = [ ๐’‚ ๐’ƒ ๐ŸŽ ๐Ÿ Q#3 (a)

(b)

LONG QUESTION

SECTION(III)

(10)

Prove that all ๐Ÿ ร—๐Ÿ non-singular matrices over the real field form a non-abelian group under multiplication. ๐Ÿ ๐ŸŽ ๐’™ ๐Ÿ ๐’™ ๐’š ๐Ÿ’ โˆ’๐Ÿ ๐Ÿ‘ Find ๐’™ and ๐’š if [ ]=[ ] ] + ๐Ÿ[ ๐Ÿ ๐’š ๐Ÿ‘ ๐Ÿ ๐Ÿ” ๐Ÿ ๐ŸŽ ๐Ÿ โˆ’๐Ÿ

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 3.2+3.4+3.5 ) TEST#:10 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

1. 2.

In general matrix multiplication is not (a) Commutative (b) Associative A square matrix A is skew- Hermitian if:

(c) Closure

(a) ๐‘จ๐’• = ๐‘จ

(c) (๐‘จ) = ๐‘จ

(b) ๐‘จ๐’• = โˆ’๐‘จ

(8)

(d) Distributive

๐’•

๐’•

(d) (๐‘จ) = โˆ’๐‘จ

If A is symmetric (Skew symmetric), then ๐‘จ๐Ÿ must be 3. (a) Singular (b) non singular (c) symmetric (d) non trivial solution The main diagonal elements of a skew hermitian matrix must be: 4. (a) 1 (b) 0 (c) any non-zero number (d) any complex number 5.

A square matrix ๐‘จ = [๐’‚๐’Š๐’‹ ] for which ๐’‚๐’Š๐’‹ = ๐ŸŽ, ๐’Š > ๐’‹ then A is called: (a) Upper triangular (b) Lower triangular (c) Symmetric

6.

In a homogeneous system of linear equations , the solution (0,0,0) is: (a) Trivial solution (b) non trivial solution (c) exact solution (d) anti symmetric

7.

(d) Hermitian

If the system ๐’™ + ๐Ÿ๐’š = ๐ŸŽ; ๐Ÿ๐’™ + ๐€๐’š = ๐ŸŽ has non-trivial solution, then ๐€ is: (a) 4 (b) -4 (c) ยฑ๐Ÿ’ (d) any real number

If the system of linear equations have no solution at all, then it is called a/an 8. (a) Consistent system (b) Inconsistent system (c) Trivial System (d) Non Trivial System Q#2

SHORT QUESTION

1. Solve the following system of linear equations:

SECTION(II)

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(12)

๐Ÿ‘๐’™ โˆ’ ๐Ÿ“๐’š = ๐Ÿ ; โˆ’๐Ÿ๐’™ + ๐’š = โˆ’๐Ÿ‘

๐Ÿ 2. If ๐‘จ is symmetric or skew-symmetric, show that ๐‘จ is symmetric.

๐Ÿ

ฬ… )๐’• . 3. If ๐‘จ = [๐Ÿ + ๐’Š], find ๐‘จ(๐‘จ ๐’Š If = [ 4. ๐Ÿ 5.

๐’Š ๐Ÿ+๐’Š ฬ… )๐’• is hermitian. ] , show that ๐‘จ + (๐‘จ โˆ’๐’Š

Find the inverse of

๐Ÿ If ๐‘จ = [ ๐Ÿ 6. โˆ’๐Ÿ‘ Q#3 (a)

(b)

๐Ÿ๐’Š [ ๐’Š

๐’Š ] โˆ’๐’Š

โˆ’๐Ÿ ๐Ÿ‘ ๐ŸŽ ๐ŸŽ ๐Ÿ’ โˆ’๐Ÿ ] then find ๐‘จ๐’• ๐‘จ ๐Ÿ“ ๐Ÿ โˆ’๐Ÿ

LONG QUESTION

SECTION(III)

Solve by using Cramerโ€™s Rule ๐Ÿ๐’™ + ๐Ÿ๐’š + ๐’› = ๐Ÿ‘ ; ๐Ÿ‘๐’™ โˆ’ ๐Ÿ๐’š โˆ’ ๐Ÿ๐’› = ๐Ÿ ; ๐Ÿ“๐’™ + ๐’š โˆ’ ๐Ÿ‘๐’› = ๐Ÿ

Solve the following matrix equation for ๐‘จ: [

๐Ÿ’ ๐Ÿ‘ ๐Ÿ ]๐‘จ โˆ’ [ ๐Ÿ ๐Ÿ โˆ’๐Ÿ

โˆ’๐Ÿ โˆ’๐Ÿ’ ๐Ÿ‘ ]=[ ] ๐Ÿ‘ ๐Ÿ” โˆ’๐Ÿ

(10)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TEST : MATHEMATICS ( EX# 3.3 )

TIME: 1:10 HOUR

TEST#:11

Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

For any matrix A , it is always true that 1. ฬ… (a) ๐‘จ = ๐‘จ๐’• (b) โ€“ ๐‘จ = ๐‘จ 2. 3. 4. 5.

(c) |๐‘จ| = |๐‘จ๐’• |

(8)

If all entries of a square matrix of order ๐Ÿ‘ is multiplied by ๐’Œ, then value of |๐’Œ๐‘จ| is equal to:

(b) ๐’Œ๐Ÿ |๐‘จ|

(a) ๐’Œ|๐‘จ|

(c) ๐’Œ๐Ÿ‘ |๐‘จ|

For a non-singular matrix it is true that : (a) (๐‘จโˆ’๐Ÿ )โˆ’๐Ÿ = ๐‘จ (b) (๐‘จ๐’• )๐’• = ๐‘จ

ฬฟ=๐‘จ (c) ๐‘จ

๐Ÿ

(d) ๐‘จโˆ’๐Ÿ = ๐‘จ (d) |๐‘จ|

(d) all of these

For any non-singular matrices A and B it is true that: (a) (๐‘จ๐‘ฉ)โˆ’๐Ÿ = ๐‘ฉโˆ’๐Ÿ ๐‘จโˆ’๐Ÿ (b) (๐‘จ๐‘ฉ)๐’• = ๐‘ฉ๐’• ๐‘จ๐’• (c) ๐‘จ๐‘ฉ โ‰  ๐‘ฉ๐‘จ (d) all of these

If a square matrix ๐‘จ has two identical rows or two identical columns then (a) ๐‘จ = ๐ŸŽ (b) |๐‘จ| = ๐ŸŽ (c) ๐‘จ๐’• = ๐ŸŽ (d) ๐‘จ = ๐Ÿ

If a matrix is in triangular form, then its determinant is product of the entries of its

6. (a)Lower triangular matrix

(b) Upper triangular matrix (c) main diagonal (d) none of these

If ๐‘จ is non-singular matrix then ๐‘จโˆ’๐Ÿ = 7. ๐Ÿ ๐Ÿ (๐’‚) ๐’‚๐’…๐’‹๐‘จ (b) โˆ’ ๐’‚๐’…๐’‹๐‘จ |๐‘จ|

|๐‘จ|

(๐‘จโˆ’๐Ÿ )๐’• = 8. (a) ๐‘จโˆ’๐Ÿ

(b) (๐‘จโˆ’๐Ÿ )๐’•

Q#2

|๐‘จ|

(c) ๐’‚๐’…๐’‹๐‘จ

(c) (๐‘จ๐’• )โˆ’๐Ÿ

SHORT QUESTION

๐Ÿ๐’‚ ๐’‚ ๐’‚ 1. Evaluate | ๐’ƒ ๐Ÿ๐’ƒ ๐’ƒ | ๐’„ ๐’„ ๐Ÿ๐’„

SECTION(II)

๐Ÿ

(d) |๐‘จ|๐’‚๐’…๐’‹๐‘จ

(d) ๐‘จ๐’•

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(12)

๐Ÿ

๐Ÿ โˆ’๐Ÿ ๐Ÿ ๐Ÿ‘| ๐Ÿ ๐Ÿ’ โˆ’๐Ÿ ๐Ÿ ๐Ÿ ๐Ÿ‘๐’™ 3. Without expansion verify that |๐Ÿ ๐Ÿ‘ ๐Ÿ”๐’™| = ๐ŸŽ ๐Ÿ‘ ๐Ÿ“ ๐Ÿ—๐’™ ๐Ÿ‘ ๐Ÿ ๐’™ 4. Find the value of ๐’™ if |โˆ’๐Ÿ ๐Ÿ‘ ๐Ÿ’| = โˆ’๐Ÿ‘๐ŸŽ ๐’™ ๐Ÿ ๐ŸŽ If ๐‘จ and ๐‘ฉ are non-singular matrices, then show that (๐‘จโˆ’๐Ÿ )โˆ’๐Ÿ = ๐‘จ 5. 2. Find the determinant of |โˆ’๐Ÿ

6.

๐Ÿ

Show that |๐Ÿ‘

Q#3

๐Ÿ

๐Ÿ‘ ๐ŸŽ ๐Ÿ ๐Ÿ— ๐Ÿ”| = ๐Ÿ— |๐Ÿ ๐Ÿ๐Ÿ“ ๐Ÿ ๐Ÿ

๐Ÿ (a) Find the inverse [๐Ÿ ๐Ÿ

(b)

๐’‚+๐€ Show that | ๐’‚ ๐’‚

๐Ÿ ๐Ÿ ๐Ÿ“

๐ŸŽ ๐Ÿ|. ๐Ÿ

LONG QUESTION

SECTION(III)

๐Ÿ ๐Ÿ— โˆ’๐Ÿ ๐Ÿ‘] and show that ๐‘จโˆ’๐Ÿ ๐‘จ = ๐’๐Ÿ‘ . โˆ’๐Ÿ’ ๐Ÿ

๐’ƒ ๐’„ ๐’ƒ+๐€ ๐’„ | = ๐€๐Ÿ (๐’‚ + ๐’ƒ + ๐’„ + ๐€) ๐’ƒ ๐’„+๐€

(10)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 4.1 to 4.3) TEST#:12 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

(8)

The equation ๐’‚๐’™๐Ÿ + ๐’ƒ๐’™ + ๐’„ = ๐ŸŽ will be quadratic if: 1. (a) ๐’‚ = ๐ŸŽ, ๐’ƒ โ‰  ๐ŸŽ (b) ๐’‚ โ‰  ๐ŸŽ (c) ๐’‚ = ๐’ƒ = ๐ŸŽ (d) ๐’ƒ = any real number The solution of a quadratic equation are called 2. (a)Roots (b) identity (c) quadratic equation (d) solution Solution set of the equation ๐’™๐Ÿ โˆ’ ๐Ÿ’๐’™ + ๐Ÿ’ = ๐ŸŽ is: 3. (๐’‚) {๐Ÿ, โˆ’๐Ÿ} (b) {๐Ÿ} (c) {โˆ’๐Ÿ}

To convert ๐Ÿ’๐Ÿ+๐’™ + ๐Ÿ’๐Ÿโˆ’๐’™ = ๐Ÿ๐ŸŽ into quadratic , the substitution is: 4. (๐’‚) ๐’š = ๐’™๐Ÿโˆ’๐’™ (b) ๐’š = ๐Ÿ’๐Ÿ+๐’™ (c) ๐’š = ๐Ÿ’๐’™

(d) {๐Ÿ’, โˆ’๐Ÿ’}

(d) ๐’š = ๐Ÿ’โˆ’๐’™

The equation ๐’™๐Ÿ’ โˆ’ ๐Ÿ‘๐’™๐Ÿ‘ + ๐Ÿ’๐’™๐Ÿ โˆ’ ๐Ÿ‘๐’™ + ๐Ÿ = ๐ŸŽ is example of 5. (a) Exponential equation (b) Quadratic equation (c) Radical equation (d) Reciprocal equation 6.

To convert ๐’‚๐’™๐Ÿ๐’ + ๐’ƒ๐’™๐’ + ๐’„ = ๐ŸŽ(๐’‚ โ‰  ๐ŸŽ) into quadratic form , the correct substitution is:

(a) ๐’š = ๐’™๐’

(b) ๐’™ = ๐’š๐’

(c) ๐’š = ๐’™โˆ’๐’

The equation in which variable occurs in exponent , called: (b) Quadratic equation (c) Reciprocal equation (d) Exponential equation The equations involving redical expressions of the variable are called: 8. (a) Reciprocal equations (b) Redical equations (c) Quadratic functions (d) exponential equation 7. (a) Exponential function

Q#2

1. 2.

SHORT QUESTION ๐Ÿ ๐Ÿ

๐Ÿ

(d) ๐’š = ๐’™

SECTION(II)

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(12)

Solve by quadratic formula ๐Ÿ๐Ÿ“๐’™ + ๐Ÿ๐’‚๐’™ โˆ’ ๐’‚ = ๐ŸŽ Solve ๐Ÿ’๐Ÿ+๐’™ + ๐Ÿ’๐Ÿโˆ’๐’™ = ๐Ÿ๐ŸŽ ๐Ÿ

๐Ÿ

3. Solve ๐’™๐Ÿ“ + ๐Ÿ– = ๐Ÿ”๐’™๐Ÿ“ 4. 5. 6.

Solve

โˆš๐Ÿ๐’™ + ๐Ÿ– + โˆš๐’™ + ๐Ÿ“ = ๐Ÿ•

Define โ€œ๐‘ธ๐’–๐’‚๐’…๐’“๐’‚๐’•๐’Š๐’„ ๐’†๐’’๐’–๐’‚๐’•๐’Š๐’๐’โ€.

Solve โˆš๐’™๐Ÿ + ๐’™ โˆ’ ๐Ÿ = ๐Ÿ and check

Q#3 (a)

(b)

LONG QUESTION

Solve by factorization

๐’‚

๐’‚๐’™โˆ’๐Ÿ

+

๐’ƒ

๐’ƒ๐’™โˆ’๐Ÿ

=๐’‚+๐’ƒ

SECTION(III) ๐Ÿ ๐Ÿ

;๐’™โ‰  ,

๐’‚ ๐’ƒ

Solve (๐’™ โˆ’ ๐Ÿ)(๐’™ + ๐Ÿ“)(๐’™ + ๐Ÿ–)(๐’™ + ๐Ÿ) โˆ’ ๐Ÿ–๐Ÿ–๐ŸŽ = ๐ŸŽ

(10)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 4.4 to 4.7 ) TEST#:13 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

The complex fourth roots of unity are โ€ฆโ€ฆ. of each other. (c) square of

1. (a) Additive inverse (b) equal to 2.

The sum of all four fourth roots of 16 is: (a) 16 (b) -16

(8)

(d) None of these

(c) 0

(d) 1

A

B

C

D

A

B

C

D

A

B

C

D

The cube roots of unity are : 3. (a) ๐Ÿ, โˆ’๐Ÿ+โˆš๐Ÿ‘๐’Š , โˆ’๐Ÿโˆ’โˆš๐Ÿ‘๐’Š (b) ๐Ÿ, ๐Ÿ+โˆš๐Ÿ‘๐’Š , ๐Ÿ+โˆš๐Ÿ‘๐’Š ๐Ÿ

4.

๐Ÿ

๐Ÿ

Product of cube roots of -1 is: (a) 0 (b) -1

๐Ÿ

(c) โˆ’๐Ÿ,

๐’™ โˆ’ ๐Ÿ is a factor of ๐’™๐Ÿ โˆ’ ๐’Œ๐’™ + ๐Ÿ’, if ๐’Œ is: 5. (a) 2 (b) ๐Ÿ’

โˆ’๐Ÿ+โˆš๐Ÿ‘๐’Š โˆ’๐Ÿ+โˆš๐Ÿ‘๐’Š ๐Ÿ

,

๐Ÿ

(d) โˆ’๐Ÿ,

๐Ÿ+โˆš๐Ÿ‘๐’Š ๐Ÿ+โˆš๐Ÿ‘๐’Š ๐Ÿ

,

๐Ÿ

(c) 1

(d) None

A

B

C

D

(c) 8

(d) -4

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

If ๐œถ and ๐œท are the roots of ๐Ÿ‘๐’™๐Ÿ โˆ’ ๐Ÿ๐’™ + ๐Ÿ’ = ๐ŸŽ, then the value of ๐œถ + ๐œท is: ๐Ÿ ๐Ÿ ๐Ÿ’ ๐Ÿ’ 6. (a) ๐Ÿ‘ (b) โˆ’ ๐Ÿ‘ (c) ๐Ÿ‘ (d) โˆ’ ๐Ÿ‘ If roots of ๐’‚๐’™๐Ÿ + ๐’ƒ๐’™ + ๐’„ = ๐ŸŽ, (๐’‚ โ‰  ๐ŸŽ) are equal , then 7. (a) Disc= ๐ŸŽ (b) Disc< ๐ŸŽ (c) Discโ‰  ๐ŸŽ The expression ๐’ƒ๐Ÿ โˆ’ ๐Ÿ’๐’‚๐’„ is called: 8. (a) Discriminant (b) Quadratic equation Q#2

(d) None of these

(c) Linear equation

SHORT QUESTION

๐Ÿ

(d) roots

SECTION(II) ๐Ÿ

(12) ๐Ÿ‘

1. If ๐Ž is cube root of ๐’™ + ๐’™ + ๐Ÿ = ๐ŸŽ, show that its other root is ๐Ž and prove that ๐Ž = ๐Ÿ ๐Ÿ 2. If ๐Ž is cube root of unity , form an equation whose roots are ๐Ÿ๐Ž and ๐Ÿ๐Ž .

๐Ÿ 3. For what values of ๐’Ž will the equation (๐’Ž + ๐Ÿ)๐’™ + ๐Ÿ(๐’Ž + ๐Ÿ‘)๐’™ + ๐Ÿ๐’Ž + ๐Ÿ‘ = ๐ŸŽ have equal root?

4.

Use synthetic division to find the quotient and the remainder when the polynomial ๐’™๐Ÿ’ โˆ’ ๐Ÿ๐ŸŽ๐’™๐Ÿ โˆ’ ๐Ÿ๐’™ + ๐Ÿ’ is divided by ๐’™ + ๐Ÿ‘.

๐’ ๐’ 5. Use factor theorem to determine if ๐’™ + ๐’‚ is a factor of ๐’™ + ๐’‚ , where ๐’ is odd integer. ๐Ÿ 6. If ๐œถ, ๐œท are the roots of ๐’™ โˆ’ ๐’‘๐’™ โˆ’ ๐’‘ โˆ’ ๐’„ = ๐ŸŽ, prove that (๐Ÿ + ๐œถ)(๐Ÿ + ๐œท) = ๐Ÿ โˆ’ ๐’„

Q#3 (a)

(b)

LONG QUESTION

SECTION(III)

(10)

Use synthetic division to find the values of ๐’‘ and ๐’’ if ๐’™ + ๐Ÿ and ๐’™ โˆ’ ๐Ÿ are factors of the polynomial ๐’™๐Ÿ‘ + ๐’‘๐’™๐Ÿ + ๐’’๐’™ + ๐Ÿ”. If ๐œถ and ๐œท are the roots of ๐’™๐Ÿ โˆ’ ๐Ÿ‘๐’™ + ๐Ÿ“ = ๐ŸŽ, form the equation whose roots are

๐Ÿโˆ’๐œถ

๐Ÿโˆ’๐œท

and

๐Ÿโˆ’๐œท

.

๐Ÿ+๐œท

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 4.8 to 4.10+unit #5(short ) TEST#:14 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

(8)

A mixed form of fraction is : (b) a polynomial+improper fraction 1. (a) An integer+ improper fraction (c) a polynomial+proper fraction (d) a polynomial+rational fraction

2.

๐‘ท(๐’™)

The quotient of two polynomials ๐‘ธ(๐’™) , ๐‘ธ(๐’™) โ‰  ๐ŸŽ is called : (a) Rational fraction

(b) Irrational fraction

(c) Partial fraction

(d) Proper fraction

An open sentence formed by using sign of โ€œ = โ€ is called a/an 3. (a) Equation (b) Formula (c) Rational fraction

(d) Theorem

When a rational fraction is separated into partial fractions, then result is always : (b) an identity 4. (a) A conditional equations (c) a partial fraction (d) an improper fraction

5.

6.

๐’™๐Ÿ“

The number of Partial fraction of ๐’™(๐’™+๐Ÿ)(๐’™๐Ÿโˆ’๐Ÿ’)are: (a) 2

(b) 3

๐Ÿ—๐’™๐Ÿ is ๐’™๐Ÿ‘ โˆ’๐Ÿ

an (a) Improper fraction

(b) Proper fraction

(c) 4

(d) 6

(c) Polynomial

(d) equation

A quadratic factor which cannot written as a product of linear factors with real coefficients is called:

7. (a) An irreducible factor (b) reducible factor 8.

Which is a reducible factor: (a) ๐’™๐Ÿ‘ โˆ’ ๐Ÿ”๐’™๐Ÿ + ๐Ÿ–๐’™

Q#2

1. 2.

(b) ๐’™๐Ÿ + ๐Ÿ๐Ÿ”๐’™

(c) ๐’™๐Ÿ + ๐Ÿ“๐’™ โˆ’ ๐Ÿ”

SHORT QUESTION

(d) all of these

SECTION(II) ๐Ÿ๐Ÿ”

The sum of a positive number and its reciprocal is

๐Ÿ“

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(12)

. Find the number.

Solve the following systems of equations. ๐’™๐Ÿ โˆ’ ๐’š๐Ÿ = ๐Ÿ๐Ÿ” ; ๐’™๐’š = ๐Ÿ๐Ÿ“

3. Resolve 4. Resolve 5.

(c) an irrational factor (d) an improper factor

A

Write the

๐Ÿ•๐’™+๐Ÿ“ (๐’™+๐Ÿ‘)(๐’™+๐Ÿ’) ๐Ÿ

๐’™๐Ÿ โˆ’๐Ÿ

into Partial fraction.

into Partial fraction.

๐Ÿ‘๐’™+๐Ÿ•

(๐’™๐Ÿ +๐Ÿ’)(๐’™+๐Ÿ‘)

into Partial fraction.

6. Define rational fraction and improper fraction . Q#3 (a) (b)

LONG QUESTION

SECTION(III)

Solve the following systems of equations. ๐’™+๐’š=๐Ÿ“ ; ๐’™๐Ÿ + ๐Ÿ๐’š๐Ÿ = ๐Ÿ๐Ÿ• The sum of a positive number and its square is 380. Find the number.

(10)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 6.1 to 6.5) TEST#:15 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

(8)

The next two terms of the sequence ๐Ÿ, โˆ’๐Ÿ‘, ๐Ÿ“, โˆ’๐Ÿ•, ๐Ÿ—, โˆ’๐Ÿ๐Ÿ, โ€ฆ are 1. (๐’‚) ๐Ÿ๐Ÿ‘, ๐Ÿ๐Ÿ“ (b) โˆ’๐Ÿ๐Ÿ‘, โˆ’๐Ÿ๐Ÿ“ (c) ๐Ÿ๐Ÿ‘, โˆ’๐Ÿ๐Ÿ“ (d) โˆ’๐Ÿ๐Ÿ‘, ๐Ÿ๐Ÿ“ ๐’ If ๐’‚๐’ = {๐’ + (โˆ’๐Ÿ) }, then ๐’‚๐Ÿ๐ŸŽ = 2. (a) 10 (b) 11 (c) 12 (d) 13 n๐’•๐’‰ term of an A.P is ๐Ÿ‘๐’ โˆ’ ๐Ÿ then 10th term is : 3. (a) 9 (b) 29 (c) 12 4.

(d) cannot determined

The arithmetic mean between โˆš๐Ÿ and ๐Ÿ‘โˆš๐Ÿ is: ๐Ÿ’ (b) (c) โˆš๐Ÿ (a) ๐Ÿ’โˆš๐Ÿ

(d) none of these

โˆš๐Ÿ

๐š๐ง +๐›๐ง ๐งโˆ’๐Ÿ ๐š +๐› ๐งโˆ’๐Ÿ

may be the A.M between ๐š and ๐› if 5. (a) ๐ง = ๐Ÿ (b) ๐ง = ๐ŸŽ (c) ๐ง > ๐Ÿ Sum of ๐’ โˆ’term of an Arithmetic series ๐‘บ๐’ is equal to: ๐ง ๐ง ๐ง 6. (๐š) [๐Ÿ๐š + (๐ง โˆ’ ๐Ÿ)๐] (b) [๐š + (๐ง โˆ’ ๐Ÿ)๐] (c) ๐Ÿ [๐Ÿ๐š + (๐ง + ๐Ÿ)๐] ๐Ÿ ๐Ÿ Forth partial sum of the sequence {๐’๐Ÿ } is called: (a) 16 (b) 1+4+9+16 (c) 8 If ๐’‚๐’โˆ’๐Ÿ , ๐’‚๐’ , ๐’‚๐’+๐Ÿ are in A.P, then ๐’‚๐’ is 8. (a) A.M (b) G.M 7.

Q#2

๐Ÿ’ ๐Ÿ

๐Ÿ• ๐Ÿ

(d) ๐Ÿ [๐Ÿ๐š + ๐ฅ] (d) 1+2+3

(c) H.M

SHORT QUESTION

โˆ’๐Ÿ, ๐Ÿ, ๐Ÿ๐Ÿ, ๐Ÿ’๐ŸŽ, โ€ฆ.

1. Find the next two terms of

๐ง

(d) ๐ง < ๐Ÿ

(d) Mid point

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

SECTION(II)

(12)

๐Ÿ๐ŸŽ ๐Ÿ

2. Find the ๐’th term of the sequence , ( ) , ( ) , ( ) , โ€ฆ ๐Ÿ‘

๐Ÿ‘

๐Ÿ‘

3. Find the ๐Ÿ๐Ÿ‘th term of the sequence ๐’™, ๐Ÿ, ๐Ÿ โˆ’ ๐’™, ๐Ÿ‘ โˆ’ ๐Ÿ๐’™, โ€ฆ

4. How many terms of the series โ€“ ๐Ÿ• + (โˆ’๐Ÿ“) + (โˆ’๐Ÿ‘) + โ‹ฏ amount to 65? 5. Find the sum of 20 terms of the series whose ๐’“th term is ๐Ÿ‘๐’“ + ๐Ÿ. 6. Sum the series Q#3 (a)

(b)

๐Ÿ‘

โˆš๐Ÿ

+ ๐Ÿโˆš๐Ÿ +

๐Ÿ“

โˆš๐Ÿ

+ โ‹ฏ + ๐’‚๐Ÿ๐Ÿ‘

LONG QUESTION

SECTION(III)

If ๐Ÿ“th term of an A.P., is 16 and the ๐Ÿ๐ŸŽth term is 46, what is its ๐Ÿ๐Ÿth term? If ๐‘บ๐Ÿ , ๐‘บ๐Ÿ‘ , ๐‘บ๐Ÿ“ are the sums of ๐Ÿ๐’, ๐Ÿ‘๐’, ๐Ÿ“๐’ terms of an A.P., show that ๐‘บ๐Ÿ“ = ๐Ÿ“(๐‘บ๐Ÿ‘ โˆ’ ๐‘บ๐Ÿ )

(10)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX#6.6 to 6.11 ) TEST#:16 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

For any ๐‘ฎ. ๐‘ท., the common ratio ๐’“ is equal to: ๐’‚ ๐’‚ 1. (a) ๐’‚๐’ (b) ๐’‚๐’โˆ’๐Ÿ (c) ๐’‚ ๐’ ๐’‚ 2.

๐’+๐Ÿ

๐’

Geometric mean between 4 and 16 is 3. (๐’‚) ยฑ ๐Ÿ (b) ยฑ๐Ÿ’

(c) ๐’‚๐’ = ๐’‚๐’“๐’+๐Ÿ

If the reciprocal of the terms a sequence form an ๐‘จ. ๐‘ท., then it is called: 4. (a) ๐‘ฏ. ๐‘ท (b) ๐‘ฎ. ๐‘ท (c) ๐‘จ. ๐‘ท (c) ยฑ๐Ÿ’

๐Ÿ“

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

(d) all of these

A

B

C

D

(d) Geometric series

A

B

C

D

A

B

C

D

(d) None of these

(c) ยฑ๐Ÿ”

Harmonic mean between ๐Ÿ and ๐Ÿ– is: ๐Ÿ๐Ÿ” 5. (a) 5 (b)

A

(d) ๐’‚๐’+๐Ÿ โˆ’ ๐’‚๐’ , ๐’ โˆˆ ๐‘ต, ๐’ > ๐Ÿ

๐’โˆ’๐Ÿ

The general term of a ๐‘ฎ. ๐‘ท., is : (a) ๐’‚๐’ = ๐’‚๐’“๐’โˆ’๐Ÿ (b) ๐’‚๐’ = ๐’‚๐’“๐’

(8)

(d) ยฑ๐Ÿ– (d) sequence ๐Ÿ“

(d) ๐Ÿ๐Ÿ”

If ๐‘จ, ๐‘ฎ and ๐‘ฏ are Arithmetic , Geometric and Harmonic means between two positive numbers then

6. (a) ๐‘ฎ๐Ÿ = ๐‘จ๐‘ฏ

(b) ๐‘จ, ๐‘ฎ, ๐‘ฏ ๐’‚๐’“๐’† ๐’Š๐’ ๐‘ฎ. ๐‘ท (c) ๐‘จ > ๐‘ฎ > ๐‘ฏ

If sum of series is not defined then it is called: 7. (a) Convergent series (b) Divergent series (c) finite series No term of a ๐‘ฎ. ๐‘ท., is: 8. (a) 0

(b) 1

(c) negative

Q#2

SHORT QUESTION ๐Ÿ ๐Ÿ

(d) imaginary number SECTION(II)

๐Ÿ

(12)

๐’‚

1. If ๐’‚ , ๐’ƒ and ๐’„ are in G.P. show that the common ratio is ยฑโˆš ๐’„ . ๐Ÿ’

2. Find the ๐Ÿ๐Ÿth term of the sequence, ๐Ÿ + ๐’Š, ๐Ÿ, ๐Ÿ+๐’Š , โ€ฆ ๐’™+๐’š

๐’™+๐’š

๐Ÿ ๐Ÿ 3. Which term of the sequence: ๐’™ โˆ’ ๐’š , ๐’™ + ๐’š, ๐’™โˆ’๐’š , โ€ฆ is (๐’™โˆ’๐’š)๐Ÿ— ?

4. Insert four real geometric means between ๐Ÿ‘ and ๐Ÿ—๐Ÿ”. ๐Ÿ

5. Sum the series ๐Ÿ + (๐Ÿ โˆ’ ๐’Š) + ( ) + โ‹ฏ to 8 terms. ๐’Š ๐Ÿ ๐Ÿ ๐Ÿ

6. Find the ๐’th and ๐Ÿ–th term of ๐Ÿ , ๐Ÿ“ , ๐Ÿ– , โ€ฆ Q#3 (a)

(b)

LONG QUESTION

For what value ๐’ , ๐Ÿ

๐Ÿ’

If ๐’š = ๐’™ + ๐’™๐Ÿ + ๐Ÿ‘

๐Ÿ—

๐’‚๐’ +๐’ƒ๐’

๐’‚๐’โˆ’๐Ÿ +๐’ƒ๐’โˆ’๐Ÿ

๐Ÿ–

๐Ÿ๐Ÿ•

SECTION(III)

(10)

is the positive geometric mean between ๐’‚ and ๐’ƒ? ๐Ÿ‘

๐’™๐Ÿ‘ + โ‹ฏ and if ๐ŸŽ < ๐‘ฅ < , then ๐Ÿ

show that ๐’™ =

๐Ÿ‘๐’š

๐Ÿ(๐Ÿ+๐’š)

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TEST : MATHEMATICS ( UNIT # 7 )

TIME: 1:10 HOUR

TEST#:17

Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

1. 2.

๐Ÿ–! ๐Ÿ•!

=

(a) 8

(b) 7

๐’ ๐‘ท๐’“ =

๐Ÿ–

(c) 56

๐’!

(a) ๐’!

(b) ๐’“!

In how many ways three books can be arranged? 3. (๐’‚)๐Ÿ! ways (b) ๐Ÿ‘! ways

(8)

(d) ๐Ÿ•

๐’!

(d) ๐’“!

(c) (๐’โˆ’๐’“)!

(c) ๐Ÿ’! ways

(d) ๐Ÿ“! ways

How many arrangement of the word โ€œMATHEMATICSโ€ can be made ๐Ÿ๐Ÿ ๐Ÿ๐Ÿ (a) 11! (b) ( ) (c) ( ) (d) ๐Ÿ๐ŸŽ! ๐Ÿ‘, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ, ๐Ÿ How many signals can be given by 5 flags of different colors , using 3 at a time 5. (a) 120 (b) 60 (c) 24 (d) 15 4.

For complementary combination ๐’๐‘ช๐’“ = 6. (a) ๐’ (b) ๐’๐‘ช๐’โˆ’๐’“ ๐‘ช๐’ ๐’๐‘ช = 7. (a) ๐’๐’!

(b) ๐ŸŽ!

If ๐’๐‘ช๐Ÿ– = ๐’๐‘ช๐Ÿ๐Ÿ then ๐’ = 8. (a) 10 (b) 20 Q#2

(c) ๐’๐‘ช๐’“

(d) None of these

(c) ๐Ÿ

(d) 0

(c) 30 SHORT QUESTION

(d) 40

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

SECTION(II)

(12)

20.19.18.17 1. Write in factorial form: 2. Find the value of ๐Ÿ๐Ÿ๐’‘๐’ = ๐Ÿ๐Ÿ. ๐Ÿ๐ŸŽ. ๐Ÿ— 3. How many necklace can be made from 6 beads of different colors ? ๐Ÿ๐Ÿร—๐Ÿ๐Ÿ

4. Find the value of ๐’, when ๐’๐‘ช๐Ÿ๐ŸŽ = ๐Ÿ! 5. How many (a) diagonals and (b) triangles can be formed by joining the vertices of the polygon having 8 sides. 6. Make a Sample space for tossing 3 coin . Q#3 (a)

(b)

LONG QUESTION

SECTION(III)

(10)

How many 5-digit multiplies of 5 can be formed from the digits 2,3,5,7,9, when no digit is repeated. Prove that ๐’๐‘ท๐’“ = ๐’ โˆ’ ๐Ÿ๐‘ท๐’“ + ๐’“. ๐’ โˆ’ ๐Ÿ๐‘ท๐’“โˆ’๐Ÿ

ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TEST : MATHEMATICS ( UNIT # 8)

TIME: 1:10 HOUR

TEST#:18

Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)

The method of induction was given by Francesco who lived from: 1. (a) 1494-1575 (b) 1500-1575 (c) 1498-1575 ๐’ The statement ๐Ÿ‘ < ๐‘›! is true, when 2. (a) ๐‘› = 2 (b) ๐‘› = 4 (c) ๐‘› = 6

(8)

(d) 1494-1570 (d) ๐‘› > 6

The statement ๐Ÿ’๐’ + ๐Ÿ‘๐’ + ๐Ÿ’ =6 is true when : (a) ๐‘› = 0 (b) ๐‘› = 1 (c) ๐‘› โ‰ฅ 2 (d) ๐‘› is any +iv integer ๐’ General term in the expansion of (๐’‚ + ๐’ƒ) is: 4. ๐‘› ๐‘› (a) (๐‘›+1 (b)(๐‘Ÿโˆ’1 (c) (๐‘Ÿ+1 (d) (๐‘›๐‘Ÿ)๐‘Ž๐‘›โˆ’๐‘Ÿ ๐‘ฅ ๐‘Ÿ )๐‘Ž๐‘›โˆ’๐‘Ÿ ๐‘ฅ^๐‘Ÿ )๐‘Ž๐‘›โˆ’๐‘Ÿ ๐‘ฅ ๐‘Ÿ )๐‘Ž๐‘›โˆ’๐‘Ÿ ๐‘ฅ ๐‘Ÿ ๐‘Ÿ 3.

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

The number of terms in the expansion of (๐’‚ + ๐’ƒ)๐’ are: 5. (a) ๐‘› (b) ๐‘› + 1 (c) 2๐‘›

(d) 2๐‘›โˆ’1

A

B

C

D

A

B

C

D

Middle term/s in the expansion of (๐’‚ โˆ’ ๐Ÿ‘๐’™)๐Ÿ๐Ÿ’ is/are : 7. (a) ๐‘‡7 (b) ๐‘‡8 (c) ๐‘‡6 &๐‘‡7

(d) ๐‘‡7 &๐‘‡8

A

B

C

D

A

B

C

D

The number of terms in the expansion of (๐’‚ + ๐’ƒ)๐Ÿ๐ŸŽ is: 6. (a) 18 (b) 20 (c) 21

8.

๐Ÿ + ๐’™ + ๐’™๐Ÿ + ๐’™๐Ÿ‘ + โ‹ฏ (a) (1 + ๐‘ฅ)โˆ’1

(b) (1 โˆ’ ๐‘ฅ)โˆ’1

Q#2

(d) 19

(c) (1 + ๐‘ฅ)โˆ’2

SHORT QUESTION

๐Ÿ“ 1. Using binomial theorem expand (๐’‚ + ๐Ÿ๐’ƒ) ๐Ÿ’ 2. Calculate (๐Ÿ. ๐ŸŽ๐Ÿ)

SECTION(II)

(d) (1 โˆ’ ๐‘ฅ)โˆ’2

(12)

๐Ÿ

3. Use Binomial theorem find the value of (. ๐Ÿ—๐Ÿ–)๐Ÿ ๐Ÿ“ 4. Use Binomial theorem find the value of โˆš๐Ÿ‘๐Ÿ ๐Ÿ ๐Ÿ๐’Ž+๐Ÿ

5. Determine the middle term in (๐Ÿ๐’™ โˆ’ ๐Ÿ๐’™)

6. State fundamental law of MATHEMATICAL INDUCTION Q#3

LONG QUESTION

(a)

Prove by mathematical induction that all positive integral values of ๐’ ๐Ÿ ๐Ÿ

(b)

๐Ÿ

๐Ÿ + + + โ‹ฏ+ ๐Ÿ’

๐Ÿ

๐Ÿ๐’โˆ’๐Ÿ

= ๐Ÿ [๐Ÿ โˆ’

SECTION(III)

๐Ÿ

๐Ÿ๐’

]

Prove by mathematical induction that all positive integral values of ๐’ ๐’“ + ๐’“๐Ÿ + ๐’“๐Ÿ‘ + โ‹ฏ + ๐’“๐’ =

๐’“(๐Ÿโˆ’๐’“๐’ ) ๐Ÿโˆ’๐’“

,๐’“ โ‰  ๐Ÿ

(10)

Related Documents

Test #18
May 2020 1
Fuel Test Date
May 2020 14
Test Pdf Test
June 2020 6
Test Pdf Test
June 2020 7
Test Test Test
May 2020 76

More Documents from ""