18 TEST FIRST YEAR FROM OLD PAPER
TEST #
DESCRIPTION
1.
EX # 9.1+9.2+9.3
2.
EX # 9.4+10.1+10.2
3.
EX # 10.3+10.4+11.1
4.
EX # 12.1 TO 12.5
5.
EX # 12.6 TO 12.8
6.
UNIT # 13 + UNIT # 14 FULL
7.
UNIT # 1(SHORT QUESTION)
8.
EX # 2.1 TO 2.5
9.
EX # 2.6 TO 2.8 +EX # 3.1
10.
EX # 3.2+3.4+3.5
11.
EX # 3.3
12.
EX # 4.1 TO 4.3
13.
EX # 4.4 TO 4.7
14.
EX # 4.8 TO 4.10 + UNIT # 5 (SHORT QUESTION)
15.
EX # 6.1 TO 6.5
16.
EX # 6.6 TO 6.11
17.
UNIT # 7 FULL
18.
UNIT # 8 FULL
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 9.1 +9.2+9.3 ) TEST#:1 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
1.
Area of sector of circle of radius ๐ is: ๐ ๐ (a) ๐๐ ๐ฝ (b) ๐๐ฝ๐
3. 4. 5. 6. 7.
๐
(d)
๐
๐
๐๐๐ ๐ฝ
60 part of ๐ยฐ is equal to (a) One second (b) One minute (c) 1 Radian (d) ๐
radian Angles with same initial and terminal sides are called: (a) Acute angles(b) Allied Angles (c)Coterminal angles (d) Quadrentel angles ๐๐จ๐ฌ๐๐ ๐ ๐ฝ โ ๐๐จ๐ญ ๐ ๐ฝ is equal to: (a) 0 (b) 1 (c) -1 (d) 2 The point (๐, ๐) lies on the terminal side of angle: (a) ๐ยฐ (b) ๐๐ยฐ (c) ๐๐๐ยฐ (d) ๐๐๐ยฐ th
2.
๐
๐
(c) (๐๐ฝ)๐
(8)
If initial and the terminal side of an angle falls on ๐ โ ๐๐๐๐ ๐๐ ๐ โ ๐๐๐๐ then it is called:
(a) Coterminal angle (b) Quadrantal angl (c) Allied angle
(d) None of these
If ๐๐๐๐ฝ < ๐ and ๐๐๐๐ฝ < ๐ then the terminal arm of angle lies in ___________ Quad.
(a) I
(b) II
๐
๐๐๐๐๐ยฐ + ๐ ๐ช๐๐๐๐๐๐ยฐ =?
8. Q#2
๐
(a) โ๐
๐
(b)
โ๐
(c) III
(d) IV
(c) โ๐
(d) 1
SHORT QUESTION ๐๐
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
SECTION(II)
2.
Find ๐ช๐๐ ๐ฝ ๐๐๐
๐ป๐๐ ๐ฝ if ๐บ๐๐ ๐ฝ =
3.
What is circular measure of the angle between the hands of a watch at 4 Oโclock?
1.
4. 5. 6.
๐
(b)
and the terminal arm of the angle is in quad 1st.
Find ๐, when ๐ = ๐ ๐๐ , ๐ฝ = ๐๐๐
๐๐๐ ๐
Find the radius of the circle, in which the arms of a central angle of measure 1 radian cut off an arc of length 35cm. Find ๐, if ๐๐๐๐ ๐๐ยฐ โ ๐๐๐๐ ๐๐ยฐ = ๐๐๐๐๐ ๐๐ยฐ๐๐๐๐๐ยฐ๐๐๐๐๐ยฐ ๐
๐
๐
๐
Verify ๐๐๐๐ : ๐๐๐๐ : ๐๐๐๐ : ๐๐๐๐ = ๐: ๐: ๐: ๐
Q#3
(a)
๐๐
(12)
๐
๐
๐
๐
๐
LONG QUESTION
SECTION(III)
(10)
If ๐๐๐๐ฝ = and the terminal arm of the angle is in ๐๐ quad., find the value of ๐ ๐๐๐๐๐ฝ+๐๐๐๐๐ฝ ๐๐๐๐ฝโ๐๐๐๐ฝ
.
๐๐ +๐
๐
If ๐๐๐๐ฝ = ๐๐๐
๐ > ๐ (๐ < ๐ฝ < ), find the values of the remaining ๐๐ ๐ trigonometric ratios.
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 9.4+10.1+10.2) TEST#:2 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
1.
2.
3. 4. 5.
6.
7. 8.
๐
๐๐๐ ( โ ๐ท) = ๐
(a) ๐๐๐๐ท
(b) โ ๐๐๐๐ท
(c) ๐๐๐๐ท
๐ถ+๐ท
If ๐ถ, ๐ท and ๐ธ are the angles of a triangle ABC then ๐๐๐ ( (a) ๐ฌ๐ข๐ง
๐ธ
(b) โ ๐ฌ๐ข๐ง
๐
๐ธ
(c) ๐๐จ๐ฌ
๐
๐ธ ๐
๐
(8)
(d) โ ๐๐๐๐ท
)=
(d) โ ๐๐จ๐ฌ
Angles associated with basic angles of measure ๐ฝ to a right angle or its multiple are called:
๐ธ ๐
(a)Coterminal angle (b) angle in standard position (c) Allied angle (d) obtuse angle
๐๐๐๐๐๐ฝ๐๐๐๐ฝ๐๐๐๐ฝ๐๐๐๐ฝ = (a) 1 (b) 0 (c) ๐๐๐๐ฝ (๐๐๐๐ฝ + ๐๐๐๐ฝ)(๐๐๐๐ฝ โ ๐๐๐๐ฝ) = (a) 1 (b) 0 ๐๐๐๐ฝ ๐๐๐๐๐ยฐ+๐๐๐๐๐ยฐ
(d) ๐๐๐๐ฝ
(d) ๐๐๐๐ฝ
=
๐๐๐๐๐ยฐโ๐๐๐๐๐ยฐ (a) ๐๐๐๐๐ยฐ (b) ๐๐๐๐๐ยฐ (c) ๐๐๐๐๐ยฐ (d) ๐๐๐๐๐ยฐ If ๐บ๐๐(๐ถ + ๐ท) is โ ๐๐๐ and ๐ช๐๐(๐ถ + ๐ท) is +๐๐๐ then terminal arm of (๐ถ + ๐ท) lies in
(a) I Quad (b) II Quad (๐๐๐๐ถ + ๐๐๐๐ท)(๐๐๐๐ถ โ ๐๐๐๐ท) =
(c) III Quad
(a) ๐ฌ๐ข๐ง๐ ๐ถ โ ๐ฌ๐ข๐ง๐ ๐ท (b) ๐ฌ๐ข๐ง๐ ๐ถ โ ๐๐จ๐ฌ๐ ๐ท
Q#2
(d) IV Quad
(c) ๐๐จ๐ฌ๐ ๐ถ โ ๐ฌ๐ข๐ง๐ ๐ท (d) None of these
SHORT QUESTION
SECTION(II)
2.
Prove that ๐บ๐๐(๐๐๐ยฐ + ๐ถ)๐บ๐๐(๐๐ยฐ โ ๐ถ) = โ๐บ๐๐๐ถ๐ช๐๐๐ถ
3.
Prove that
1.
4.
5.
6. Q#3
๐ถ+๐ท
If ๐ถ, ๐ท, ๐ธ are angles of triangle ABC, then prove that ๐ช๐๐ ( ๐๐๐๐ยฐโ๐๐๐๐ยฐ ๐๐๐๐ยฐ+๐๐๐๐ยฐ
= ๐๐๐๐๐ยฐ
๐
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(12)
๐ธ
) = ๐บ๐๐ ๐
Prove that (๐๐๐๐ ๐ฝ โ ๐๐๐๐ ๐ฝ) = (๐๐๐๐ฝ โ ๐๐๐๐ฝ)(๐ โ ๐๐๐๐ ๐ฝ๐๐๐๐ ๐ฝ) If ๐ถ, ๐ท, ๐ธ are angles of a triangle ๐จ๐ฉ๐ช , Show that
๐๐๐
๐ถ ๐
๐ท
๐ธ
๐ถ
๐ท
+ ๐๐๐ + ๐๐๐ = ๐๐๐ ๐๐๐ ๐๐๐ ๐
๐
๐
๐
๐ธ ๐
Show that ๐๐๐๐ ๐ฝ + ๐๐๐๐ ๐ฝ = ๐๐๐๐๐๐ ๐ฝ โ ๐๐๐๐๐๐ ๐ฝ
(a)
If ๐๐๐๐ถ = โ
(b)
Prove that
๐๐ ๐๐
, ๐๐๐ ๐ท =
LONG QUESTION ๐
๐๐
SECTION(III)
, then terminal side of the angle of measure of ๐ถ in the II
quadrant and that of ๐ท is in the III quadtant, find the value of ๐๐๐(๐ถ + ๐ท). ๐๐๐๐ฝ+๐๐๐๐ฝโ๐ ๐๐๐๐ฝโ๐๐๐๐ฝ+๐
(10)
= ๐๐๐๐ฝ + ๐๐๐๐ฝ
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 10.3+10.4+unit #11 ) TEST#:3 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
Period of ๐๐๐๐๐ is 1. (a) ๐
(b) ๐๐
(c) โ๐๐
Range of ๐ = ๐๐๐๐ is 2. (๐)๐น (b) ๐ โฅ ๐๐๐ ๐ โค โ๐ ๐๐๐๐๐ถ = ๐๐๐๐๐ถ
3.
4.
(a) ๐+๐๐๐๐ ๐ถ
8.
๐
(d) ๐น โ [โ๐, ๐]
๐ ๐ญ๐๐ง๐ ๐ถ
(d)
๐โ๐ญ๐๐ง๐ ๐ถ
(c) โ๐ ๐ฌ๐ข๐ง (
๐
) ๐ฌ๐ข๐ง (
๐๐๐๐๐๐ฝ๐๐๐๐๐ฝ =
(a)
๐
๐ญ๐๐ง๐ ๐ถ
๐โ๐ญ๐๐ง๐ ๐ถ
๐
Period of ๐๐๐๐ ๐ is
1.
I. II.
)
(a) ๐๐
๐
)
๐ ๐ถโ๐ท
) ๐๐จ๐ฌ (
๐
)
(b)
๐
(b)
๐
(c) โ๐๐
๐
(d)
(c) ๐
๐
SHORT QUESTION
(d) 10๐
SECTION(II)
๐
๐
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(12)
Find the period of ๐๐บ๐๐ ๐ Define the ๐๐๐๐๐๐
๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐
2.
Prove that
3.
Prove that
๐ฝ ๐ฝ ๐ ๐ ๐ฝ ๐ฝ ๐๐๐ โ๐๐๐ ๐ ๐
๐๐๐ +๐๐๐
๐
= ๐๐๐๐ฝ
๐ + ๐๐๐๐ถ ๐๐๐๐๐ถ = ๐๐๐๐๐ถ ๐
๐
5.
Prove that ๐๐๐ ( โ ๐ฝ) ๐๐๐ ( + ๐ฝ) = ๐๐๐๐๐ฝ
6.
Prove the identity :
4.
๐ ๐ถ+๐ท
(d) ๐ ๐๐จ๐ฌ (
๐ถโ๐ท
) ๐ฌ๐ข๐ง (
๐๐๐๐๐๐ฝ + ๐๐๐๐๐ฝ (b) ๐๐๐๐๐ฝ โ ๐๐๐๐๐ฝ (c) ๐๐๐๐๐๐ฝ + ๐๐๐๐๐ฝ (d) ๐๐๐๐๐ฝ โ ๐๐๐๐๐ฝ
Period of ๐๐๐๐๐ is (a) ๐
Q#2
๐ถ+๐ท
(b) ๐ ๐๐จ๐ฌ (
๐ถโ๐ท
๐ถ+๐ท
7.
๐
(๐) ๐๐๐๐๐ถ โ ๐ ๐ฌ๐ข๐ง๐ ๐ถ(b) ๐๐๐๐๐ถ + ๐ ๐ฌ๐ข๐ง๐ ๐ถ (c) ๐๐๐๐๐ถ โ ๐ ๐ฌ๐ข๐ง๐ ๐ถ (d) ๐๐๐๐๐ถ โ ๐ ๐ฌ๐ข๐ง๐ ๐ถ
๐๐๐๐ถ โ ๐๐๐๐ท is equal to: ๐ถ+๐ท ๐ถโ๐ท 5. (a) ๐ ๐ฌ๐ข๐ง ( ๐ ) ๐๐จ๐ฌ ( ๐ ) 6.
(c)
๐โ๐ญ๐๐ง๐ ๐ถ
๐๐๐๐๐ถ =
(d)
(c) โ๐ โค ๐ โค ๐
๐๐๐๐๐ถ
(b)
(8)
Prove that
Q#3
๐
๐
๐บ๐๐๐๐+๐ช๐๐๐๐
๐
= ๐๐๐๐๐
๐ช๐๐๐๐+๐ช๐๐๐๐ ๐๐๐๐ถโ๐๐๐๐ท ๐๐๐๐ถ+๐๐๐๐ท
= ๐๐๐
๐ถโ๐ท
LONG QUESTION
(a)
Prove that
(b)
Prove that
๐๐๐๐๐๐ฝ+๐๐๐๐๐๐๐๐ฝ ๐๐๐๐ฝ
= ๐๐๐
๐
๐ฝ ๐
๐๐๐
๐ถ+๐ท ๐
SECTION(III)
๐บ๐๐๐๐ยฐ๐บ๐๐๐๐ยฐ๐บ๐๐๐๐ยฐ๐บ๐๐๐๐ยฐ =
๐
๐๐
(10)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 12.1 to 12.5) TEST#:4 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
A โTriangleโ has : 1. (a) Two elements (b) ๐ elements If ๐๐๐๐ = ๐. ๐๐๐๐ then ๐ = 2. (a) ๐๐ยฐ๐๐โฒ (b) ๐๐ยฐ๐๐โฒ 3.
(c) ๐ elements
(c) ๐๐ยฐ๐๐โฒ
(8)
(d) ๐ elments
(d) ๐๐ยฐ๐๐โฒ
When we look an object below the horizontal ray, the angle formed is called angle of: (c) incidence (d) reflects (a) Elevation (b) depression
To solve an oblique triangle we use: 4. (a) Law of Sine (b) Law of Cosine
(c) Law of Tangents
(d) All of these
In any triangle ๐จ๐ฉ๐ช, if ๐ท = ๐๐ยฐ , then ๐๐ = ๐๐ + ๐๐ โ ๐๐๐๐๐๐๐ท becomes: 5. (a) Law of sine (b) Law of tangents (c) Law of cosine (d) Pythagoras theorem 6.
In any triangle ๐จ๐ฉ๐ช, โ (a)
7.
๐ถ ๐ฌ๐ข๐ง ๐
In any triangle (a)
๐ธ ๐ฌ๐ข๐ง ๐
๐๐
=
๐ท (b) ๐ฌ๐ข๐ง ๐ (๐โ๐)(๐โ๐) ๐จ๐ฉ๐ช, โ ๐(๐โ๐) =
8. In any triangle ๐จ๐ฉ๐ช, (a)๐๐๐๐ถ Q#2
(๐บโ๐)(๐โ๐)
(b)
๐๐ +๐๐ โ๐๐ ๐๐๐
(c)
๐ธ ๐ฌ๐ข๐ง ๐
๐ธ ๐๐จ๐ฌ ๐
=? (b) ๐๐๐๐ถ
(c)
2. Find ๐ฝ, if ๐๐๐๐ฝ = ๐. ๐๐๐๐ and ๐๐๐๐ฝ = ๐. ๐๐๐
Solve the triangle ๐จ๐ฉ๐ช in which :
6. Find the values of ๐๐๐๐๐ยฐ๐๐โฒ and ๐๐๐๐๐ยฐ๐โฒ Q#3 (a) (b)
(d)
SECTION(II) โฒ
๐ธ ๐๐จ๐ญ ๐
(d) ๐๐๐๐ธ
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(12)
, ๐ท = ๐๐ยฐ๐๐ , ๐ = ๐. ๐๐๐
A vertical pole is ๐๐ high and length of its shadow is ๐๐. What is the angle of elevation of the sun at that moment?
4. Solve the triangle ๐จ๐ฉ๐ช, if ๐ = ๐๐. ๐ , ๐ถ = ๐๐ยฐ๐๐โฒ 5.
๐ธ ๐ญ๐๐ง ๐
(c) ๐๐๐๐ท
SHORT QUESTION
1. Solve the right triangle ๐จ๐ฉ๐ช, in which ๐ธ = ๐๐ยฐ 3.
(d)
๐ถ ๐๐จ๐ฌ ๐
A
LONG QUESTION
, ๐ธ = ๐๐ยฐ๐๐โฒ
๐ = ๐,
๐ = ๐ and ๐ท = ๐๐ยฐ๐๐โฒ
SECTION(III)
(10)
Solve the triangle using first law of tangents and then law of sines: ๐ = ๐๐. ๐ , ๐ = ๐๐. ๐ and ๐ถ = ๐๐ยฐ๐๐โฒ Solve the triangle ๐จ๐ฉ๐ช in which : ๐ = โ๐ โ ๐ , ๐ = โ๐ + ๐ and ๐ธ = ๐๐ยฐ
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 12.6 to 12.8) TEST#:5 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
(8)
To solve an oblique triangles when measure of three sides are given , we can use: 1. (a) Heroโs formula (b) Law of cosine (c) Law of sine (d) Law of tangents In any triangle ๐จ๐ฉ๐ช Area if triangle is : 2. 3. 4.
๐
๐
(a) ๐๐ ๐ฌ๐ข๐ง ๐ถ
(b) ๐๐ ๐๐๐๐ถ
(a) ๐น
(b)
(c) ๐๐ ๐๐๐๐ท
๐
๐
๐
(d)
๐
๐๐๐๐๐๐ธ
The smallest angle of โ๐จ๐ฉ๐ช, when ๐ = ๐๐. ๐๐ , ๐ = ๐. ๐๐ , ๐ = ๐๐. ๐๐ is (a) ๐ถ (b) ๐ท (c) ๐ธ (d) cannot be determined In any triangle ๐จ๐ฉ๐ช, with usual notations, ๐๐๐ ๐ธ = ๐
(c)
๐๐น
๐๐น
(d)
๐
๐น ๐
The point of intersection of the right bisectors of the sides of the triangle is : 5. (a) Circum centre (b) In-centre (c) Escribed center (d) Diameter In any triangle ๐จ๐ฉ๐ช, with usual notation , ๐: ๐น: ๐๐ : ๐๐ : ๐๐ = 6. (a) 3:3:3:2:1 (b) 1:2:2:3:3 (c) 1:2:3:3:3 (d) 1:1:1:1:1 In a triangle ๐จ๐ฉ๐ช, if ๐ท = ๐๐ยฐ , ๐ธ = ๐๐ยฐ then ๐ถ = 7. (๐) ๐๐ยฐ (b) ๐๐๐ยฐ (c) ๐๐๐ยฐ (d) ๐๐๐ยฐ 8.
Q#2
1.
โ
In any triangle ๐จ๐ฉ๐ช, with usual notations, ๐โ๐ = (๐)๐๐
(b) ๐น
(c) ๐๐
SHORT QUESTION
SECTION(II)
(d) ๐๐
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(12)
Find the area of the triangle ๐จ๐ฉ๐ช, in which ๐ = ๐๐. ๐ , ๐ = ๐๐. ๐ and ๐ถ = ๐๐ยฐ๐๐โฒ
3.
The area of the triangle is ๐๐๐๐. If ๐ = ๐๐ and ๐ = ๐๐, then find angle ๐ท.
4.
Solve the triangle , in which
2.
A
Find the measure of the greatest angle , if sides of the angle are ๐๐, ๐๐, ๐๐. ๐=๐,
๐=๐
,
๐=๐
5.
The sides of triangle are ๐๐ + ๐ + ๐, ๐๐ + ๐ and ๐๐ โ ๐. Prove that the greatest angle of
6.
Show that
the triangle is ๐๐๐ยฐ.
Q#3 (a) (b)
๐๐ = ๐ ๐๐๐
๐ท ๐
LONG QUESTION
Prove that ๐๐ + ๐๐ + ๐๐ โ ๐ = ๐๐น Prove that ๐ = ๐ ๐๐๐
๐ถ ๐
๐๐๐
๐ท ๐
๐๐๐
๐ธ ๐
SECTION(III)
(10)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( UNIT # 13 +14) TEST#:6 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
๐ป๐๐โ๐ ๐ = ๐
1. (a) โ ๐ฌ๐๐ โ๐ ๐ ๐
๐ ๐บ๐๐ (๐บ๐๐โ๐ ๐) ๐
2.
(a)
๐
(b)
=
(b)
๐
๐
๐
โ ๐ฌ๐ข๐งโ๐ ๐
๐
๐ช๐๐โ๐ (โ๐) = (a) โ ๐ช๐๐โ๐ ๐ (b) ๐ช๐๐โ๐ ๐ ๐บ๐๐โ๐ ๐จ โ ๐บ๐๐โ๐ ๐ฉ = (a) ๐บ๐๐โ๐ (๐จโ๐ โ ๐ฉ๐ โ ๐ฉโ๐ โ ๐จ๐ ) 4. (c) ๐บ๐๐โ๐ (๐ฉโ๐ โ ๐จ๐ + ๐จโ๐ โ ๐ฉ๐ ) 3.
(c)
๐
๐
โ๐๐จ๐ญ โ๐ ๐
(d) ๐
โ ๐ช๐๐๐
(d) ๐บ๐๐โ๐ (๐จ๐ฉโ(๐ โ ๐จ๐ )(๐ โ ๐ฉ๐ ))
๐
๐ป๐๐โ๐ (โ๐) = (a) โ ๐ป๐๐โ๐ ๐ (b) ๐ป๐๐โ๐ ๐ ๐ป๐๐โ๐ ๐จ + ๐ป๐๐โ๐ ๐ฉ = 8. (a) ๐ป๐๐โ๐ ( ๐จโ๐ฉ ) (b) ๐ป๐๐โ๐ ( ๐จ+๐ฉ ) ๐+๐จ๐ฉ ๐+๐จ๐ฉ 7.
Q#2
1. Prove that
=
๐๐ ๐๐๐โ๐ ๐๐
(d) None
๐
๐
(c) ๐
(c) ๐
โ ๐ป๐๐โ๐ ๐ ๐จ+๐ฉ
(c) ๐ป๐๐โ๐ (๐โ๐จ๐ฉ)
SHORT QUESTION
๐ ๐๐๐๐โ๐ ๐
๐
(b) ๐บ๐๐โ๐ (๐จโ๐ โ ๐จ๐ โ ๐ฉโ๐ โ ๐ฉ๐ )
6.
(b) ๐
๐
(c) ๐
โ ๐ช๐๐โ๐ ๐
๐๐๐๐ = ๐ , ๐ is equal to: ๐
๐
โ ๐๐๐๐๐โ๐ ๐
(d)
Number of solutions of trigonometric function is: (a) Finite (b) Infinite (c) Only one
(a) ๐
๐
(d)
(c) 2
5.
๐
(8)
(d) ๐
(d) ๐
โ ๐ป๐๐๐
๐จ+๐ฉ
(d) ๐ป๐๐โ๐ (๐+๐จ๐ฉ)
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
SECTION(II)
(12)
SECTION(III)
(10)
๐
2. Find the value of ๐๐๐ (๐๐๐โ๐ (โ ๐)) โ๐ โ๐ 3. Show that ๐๐๐ (โ๐) = โ๐๐๐ ๐ ๐
โ๐ 4. Show that ๐๐๐ (๐๐๐ ๐) = โ๐โ๐๐
โ๐ ๐ 5. Show that ๐๐๐(๐๐๐ ๐) = โ๐ โ ๐
6. Solve ๐ + ๐๐๐๐ = ๐ Q#3 (a) (b)
Prove that Prove that
LONG QUESTION
๐๐๐ ๐๐๐โ๐ ๐๐๐ ๐
=
๐๐ ๐๐๐๐โ๐ ๐๐ ๐
๐
๐๐๐โ๐ ๐ + ๐๐๐โ๐ ๐ = ๐๐๐โ๐ ๐๐
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TEST : MATHEMATICS ( unit # 1 )
TIME: 1:10 HOUR
TEST#:7
Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
1.
Every recurring decimal is (a)a rational number
(b) an irrational number (c) a prime number
The set {1,-1} possess closure property ๐. ๐. ๐ (a) Addition (b) multiplication (c) division ๐ Imaginary part of (โ๐ + ๐๐ ) is 3. (a)-2 (b) -3 (c) 26 The product of two conjugate complex numbers is 2.
4.
(๐, ๐)(๐, ๐) is equal to: (a) 15 (b) -15 ๐ (๐, ๐) is equal to: 6. (a) 1 (b) -1 If ๐ is an even integer, then (๐)๐ is equal to: 8.
(d) a whole number
(d) subtraction (d) -8
(a)A real number (b) an imaginary number (c) may be an irrational number (d) not defined
5.
7.
(10)
(๐) ๐
(b) โ ๐
Multiplicative inverse of (โ๐, ๐) ๐
๐
๐
(a) (โ ๐๐ , โ ๐๐)
๐
(b) (๐๐ , โ ๐๐)
(c) (โ
(b) 2
(c) -1
(c) โ๐๐
(d) ๐๐
(c) ๐
(c) ยฑ๐ ๐
โ๐๐
,โ
(d) โ ๐ (d) 1
๐
)
โ๐๐
(d) (
๐
โ๐๐
,โ
๐
)
โ๐๐
Factors of ๐(๐๐ + ๐๐ ) are: 9. (๐) ๐(๐ + ๐)(๐ โ ๐) (b) ๐(๐ + ๐๐)(๐ โ ๐๐)(c) โ๐(๐ + ๐๐)(๐ โ ๐๐) (d) None of these Real part of
10.
(a) 1
๐+๐ ๐
is:
Q#2
๐
=
๐
SHORT QUESTION
<=> ๐๐
= ๐๐
1.
Prove that
2.
Separate into real and imaginary parts
๐
๐
๐ + โ๐๐
3.
Express the complex number
4.
Find the multiplicative inverse of
5. 6. 7. 8. 9. 10.
Simplify ๐๐๐๐
SECTION(II)
and ๐โ๐
๐
๐+๐
into polar form.
(1 , 2)
Define Rational and Irrational numbers. ๐
Show that โ ๐ โ ๐ช , ๐๐ + ๐ ๐๐ ๐ ๐๐๐๐ ๐๐๐๐๐๐. Simplify (๐ โ ๐๐)๐ Prove that
๐ฬ
= ๐ ๐๐๐ ๐ is real.
Simplify by expressing in the form of ๐ + ๐๐ ,
๐
โ๐+โโ๐
๐
(d) ๐
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(20)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 2.1 to 2.5 ) TEST#:8 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
1. 2. 3. 4. 5. 6. 7. 8.
Truth set of a tautology is the (a) Power set (b) Subset (c) Universal set (d) Super set The symbol โโโ is called (a) Universal quantifier (b) Existential quantifier (c) Converse(d) Inverse Truth set of a tautology is (a) Universal set (b) True (c) True (d) False If ๐ = {๐, ๐, ๐, ๐, ๐, โฆ โฆ , ๐๐} and ๐ = {๐, ๐, ๐, โฆ . . , ๐๐} then ๐ โฉ ๐ = (d) ๐โฒ (a) ๐ (b) ๐ (c) โ
If the intersection of two sets is the empty then sets are called (a) Disjoint sets (b) Overlapping Sets (c) Subsets (d) Power sets If ๐จ and ๐ฉ are disjoint sets then : (a) ๐ โฉ ๐ = ๐ (b) ๐ โฉ ๐ โ ๐ (c) ๐ โ ๐ (d) ๐ โ ๐ = ๐ The set of odd integers between 2 and 4 is (a) Null set (b) Power set (c) Singleton set (d) Subset Total number of subsets that can be formed from the set {๐,๐,๐} is (c) 5 (d)2 (a) 1 (b) 8
Q#2
1. 2. 3. 4. 5. 6.
(b)
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
SECTION(II)
(12)
Write the following set in โ๐
๐๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐
โ and โ ๐๐๐๐๐๐๐ ๐๐๐๐โ (a) {๐|๐ โ ๐ต โง ๐ < ๐ฅ < 12} (b) {๐|๐ โ ๐น โง ๐ = ๐} Write down the power set of {๐} and {+, โ, ร,รท}. Let ๐ผ =The set of English alphabet , ๐จ = {๐|๐ is a vowel } and ๐ฉ = {๐|๐ is consonant} Verify (๐จ โช ๐ฉ)โฒ = ๐จโฒ โฉ ๐ฉโฒ Write converse , inverse and contra positive of ~๐ โ ๐ Show that ~(๐ โ ๐) โ ๐ is tautology. Define Absurdity with example.
Q#3 (a)
SHORT QUESTION
(8)
LONG QUESTION
SECTION(III)
Prove that ๐ โจ (โผ ๐ โงโผ ๐) โจ (๐ โง ๐) = ๐ โจ (โผ ๐ โงโผ ๐)
Convert (๐จ โช ๐ฉ) โช ๐ช = ๐จ โช (๐ฉ โช ๐ช) into logical form and prove it by constructing the truth table.
(10)
ILM GROUP OF COLLEGES KHANPUR
NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 2.6 TO 2.8+ 3.1 ) TEST#:9 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
1. 2. 3. 4. 5. 6. 7. 8. Q#2
The range of {(๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐), (๐, ๐)} (a) {๐, ๐, ๐, ๐, ๐} (b) {๐, ๐, ๐, ๐, ๐} (c) {๐, ๐, ๐, ๐, ๐} (d) {๐, ๐, ๐, ๐} Cube root of a number is example of (a) Binary operation (b) Unary operation (c) relation (d) function Inverse and identity of a set ๐บ under binary operation โ is (a) Unique (b) Two (c) Three (d) Four A semi-group having an identity is called Group (b) monoid (c) Closed (d) Not closed In a group the inverse is (b) two (d) three (d) four (a) Unique (๐จ๐ )๐ = (๐) ๐จ๐ (c) โ ๐จ (d) (๐จ๐ )๐ (b) ๐จ Which of the following Sets is a field. (a) R (b) Q (c) C (d) all of these For the square matrix ๐จ = [๐๐๐ ]๐ร๐ then ๐๐๐ , ๐๐๐ , ๐๐๐โฆ ๐๐๐ are: (a) Main diagonal(b) primary diagonal(c) proceding diagonal(d) secondary diagonal SHORT QUESTION
(8)
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
SECTION(II)
(12)
1. For ๐จ = {๐, ๐, ๐, ๐}, find the following relation in ๐จ. State domain and range of the relation. {(๐, ๐)| ๐ + ๐ < ๐} 2. 3. 4.
Prepare a table of addition of the elements of the set of residue classes modulo 4. Prove that (๐๐)โ๐ = ๐โ๐ ๐โ๐ ๐+๐ ๐ ๐ ๐ Find the value of ๐ and ๐ if ] [ ]=[ โ๐ ๐๐ โ ๐ โ๐ ๐
๐ โ๐ ๐ โ๐ Find the matrix ๐จ if ; [ ] ๐จ = [ ๐ ๐] ๐ ๐ 5. ๐ ๐ ๐ ๐ ๐ โ๐ ๐ ๐ ] and ๐จ๐ = [ ], find the values of ๐ and ๐. 6. If ๐จ = [ ๐ ๐ ๐ ๐ Q#3 (a)
(b)
LONG QUESTION
SECTION(III)
(10)
Prove that all ๐ ร๐ non-singular matrices over the real field form a non-abelian group under multiplication. ๐ ๐ ๐ ๐ ๐ ๐ ๐ โ๐ ๐ Find ๐ and ๐ if [ ]=[ ] ] + ๐[ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ โ๐
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 3.2+3.4+3.5 ) TEST#:10 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
1. 2.
In general matrix multiplication is not (a) Commutative (b) Associative A square matrix A is skew- Hermitian if:
(c) Closure
(a) ๐จ๐ = ๐จ
(c) (๐จ) = ๐จ
(b) ๐จ๐ = โ๐จ
(8)
(d) Distributive
๐
๐
(d) (๐จ) = โ๐จ
If A is symmetric (Skew symmetric), then ๐จ๐ must be 3. (a) Singular (b) non singular (c) symmetric (d) non trivial solution The main diagonal elements of a skew hermitian matrix must be: 4. (a) 1 (b) 0 (c) any non-zero number (d) any complex number 5.
A square matrix ๐จ = [๐๐๐ ] for which ๐๐๐ = ๐, ๐ > ๐ then A is called: (a) Upper triangular (b) Lower triangular (c) Symmetric
6.
In a homogeneous system of linear equations , the solution (0,0,0) is: (a) Trivial solution (b) non trivial solution (c) exact solution (d) anti symmetric
7.
(d) Hermitian
If the system ๐ + ๐๐ = ๐; ๐๐ + ๐๐ = ๐ has non-trivial solution, then ๐ is: (a) 4 (b) -4 (c) ยฑ๐ (d) any real number
If the system of linear equations have no solution at all, then it is called a/an 8. (a) Consistent system (b) Inconsistent system (c) Trivial System (d) Non Trivial System Q#2
SHORT QUESTION
1. Solve the following system of linear equations:
SECTION(II)
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(12)
๐๐ โ ๐๐ = ๐ ; โ๐๐ + ๐ = โ๐
๐ 2. If ๐จ is symmetric or skew-symmetric, show that ๐จ is symmetric.
๐
ฬ
)๐ . 3. If ๐จ = [๐ + ๐], find ๐จ(๐จ ๐ If = [ 4. ๐ 5.
๐ ๐+๐ ฬ
)๐ is hermitian. ] , show that ๐จ + (๐จ โ๐
Find the inverse of
๐ If ๐จ = [ ๐ 6. โ๐ Q#3 (a)
(b)
๐๐ [ ๐
๐ ] โ๐
โ๐ ๐ ๐ ๐ ๐ โ๐ ] then find ๐จ๐ ๐จ ๐ ๐ โ๐
LONG QUESTION
SECTION(III)
Solve by using Cramerโs Rule ๐๐ + ๐๐ + ๐ = ๐ ; ๐๐ โ ๐๐ โ ๐๐ = ๐ ; ๐๐ + ๐ โ ๐๐ = ๐
Solve the following matrix equation for ๐จ: [
๐ ๐ ๐ ]๐จ โ [ ๐ ๐ โ๐
โ๐ โ๐ ๐ ]=[ ] ๐ ๐ โ๐
(10)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TEST : MATHEMATICS ( EX# 3.3 )
TIME: 1:10 HOUR
TEST#:11
Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
For any matrix A , it is always true that 1. ฬ
(a) ๐จ = ๐จ๐ (b) โ ๐จ = ๐จ 2. 3. 4. 5.
(c) |๐จ| = |๐จ๐ |
(8)
If all entries of a square matrix of order ๐ is multiplied by ๐, then value of |๐๐จ| is equal to:
(b) ๐๐ |๐จ|
(a) ๐|๐จ|
(c) ๐๐ |๐จ|
For a non-singular matrix it is true that : (a) (๐จโ๐ )โ๐ = ๐จ (b) (๐จ๐ )๐ = ๐จ
ฬฟ=๐จ (c) ๐จ
๐
(d) ๐จโ๐ = ๐จ (d) |๐จ|
(d) all of these
For any non-singular matrices A and B it is true that: (a) (๐จ๐ฉ)โ๐ = ๐ฉโ๐ ๐จโ๐ (b) (๐จ๐ฉ)๐ = ๐ฉ๐ ๐จ๐ (c) ๐จ๐ฉ โ ๐ฉ๐จ (d) all of these
If a square matrix ๐จ has two identical rows or two identical columns then (a) ๐จ = ๐ (b) |๐จ| = ๐ (c) ๐จ๐ = ๐ (d) ๐จ = ๐
If a matrix is in triangular form, then its determinant is product of the entries of its
6. (a)Lower triangular matrix
(b) Upper triangular matrix (c) main diagonal (d) none of these
If ๐จ is non-singular matrix then ๐จโ๐ = 7. ๐ ๐ (๐) ๐๐
๐๐จ (b) โ ๐๐
๐๐จ |๐จ|
|๐จ|
(๐จโ๐ )๐ = 8. (a) ๐จโ๐
(b) (๐จโ๐ )๐
Q#2
|๐จ|
(c) ๐๐
๐๐จ
(c) (๐จ๐ )โ๐
SHORT QUESTION
๐๐ ๐ ๐ 1. Evaluate | ๐ ๐๐ ๐ | ๐ ๐ ๐๐
SECTION(II)
๐
(d) |๐จ|๐๐
๐๐จ
(d) ๐จ๐
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(12)
๐
๐ โ๐ ๐ ๐| ๐ ๐ โ๐ ๐ ๐ ๐๐ 3. Without expansion verify that |๐ ๐ ๐๐| = ๐ ๐ ๐ ๐๐ ๐ ๐ ๐ 4. Find the value of ๐ if |โ๐ ๐ ๐| = โ๐๐ ๐ ๐ ๐ If ๐จ and ๐ฉ are non-singular matrices, then show that (๐จโ๐ )โ๐ = ๐จ 5. 2. Find the determinant of |โ๐
6.
๐
Show that |๐
Q#3
๐
๐ ๐ ๐ ๐ ๐| = ๐ |๐ ๐๐ ๐ ๐
๐ (a) Find the inverse [๐ ๐
(b)
๐+๐ Show that | ๐ ๐
๐ ๐ ๐
๐ ๐|. ๐
LONG QUESTION
SECTION(III)
๐ ๐ โ๐ ๐] and show that ๐จโ๐ ๐จ = ๐๐ . โ๐ ๐
๐ ๐ ๐+๐ ๐ | = ๐๐ (๐ + ๐ + ๐ + ๐) ๐ ๐+๐
(10)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 4.1 to 4.3) TEST#:12 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
(8)
The equation ๐๐๐ + ๐๐ + ๐ = ๐ will be quadratic if: 1. (a) ๐ = ๐, ๐ โ ๐ (b) ๐ โ ๐ (c) ๐ = ๐ = ๐ (d) ๐ = any real number The solution of a quadratic equation are called 2. (a)Roots (b) identity (c) quadratic equation (d) solution Solution set of the equation ๐๐ โ ๐๐ + ๐ = ๐ is: 3. (๐) {๐, โ๐} (b) {๐} (c) {โ๐}
To convert ๐๐+๐ + ๐๐โ๐ = ๐๐ into quadratic , the substitution is: 4. (๐) ๐ = ๐๐โ๐ (b) ๐ = ๐๐+๐ (c) ๐ = ๐๐
(d) {๐, โ๐}
(d) ๐ = ๐โ๐
The equation ๐๐ โ ๐๐๐ + ๐๐๐ โ ๐๐ + ๐ = ๐ is example of 5. (a) Exponential equation (b) Quadratic equation (c) Radical equation (d) Reciprocal equation 6.
To convert ๐๐๐๐ + ๐๐๐ + ๐ = ๐(๐ โ ๐) into quadratic form , the correct substitution is:
(a) ๐ = ๐๐
(b) ๐ = ๐๐
(c) ๐ = ๐โ๐
The equation in which variable occurs in exponent , called: (b) Quadratic equation (c) Reciprocal equation (d) Exponential equation The equations involving redical expressions of the variable are called: 8. (a) Reciprocal equations (b) Redical equations (c) Quadratic functions (d) exponential equation 7. (a) Exponential function
Q#2
1. 2.
SHORT QUESTION ๐ ๐
๐
(d) ๐ = ๐
SECTION(II)
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(12)
Solve by quadratic formula ๐๐๐ + ๐๐๐ โ ๐ = ๐ Solve ๐๐+๐ + ๐๐โ๐ = ๐๐ ๐
๐
3. Solve ๐๐ + ๐ = ๐๐๐ 4. 5. 6.
Solve
โ๐๐ + ๐ + โ๐ + ๐ = ๐
Define โ๐ธ๐๐๐
๐๐๐๐๐ ๐๐๐๐๐๐๐๐โ.
Solve โ๐๐ + ๐ โ ๐ = ๐ and check
Q#3 (a)
(b)
LONG QUESTION
Solve by factorization
๐
๐๐โ๐
+
๐
๐๐โ๐
=๐+๐
SECTION(III) ๐ ๐
;๐โ ,
๐ ๐
Solve (๐ โ ๐)(๐ + ๐)(๐ + ๐)(๐ + ๐) โ ๐๐๐ = ๐
(10)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 4.4 to 4.7 ) TEST#:13 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
The complex fourth roots of unity are โฆโฆ. of each other. (c) square of
1. (a) Additive inverse (b) equal to 2.
The sum of all four fourth roots of 16 is: (a) 16 (b) -16
(8)
(d) None of these
(c) 0
(d) 1
A
B
C
D
A
B
C
D
A
B
C
D
The cube roots of unity are : 3. (a) ๐, โ๐+โ๐๐ , โ๐โโ๐๐ (b) ๐, ๐+โ๐๐ , ๐+โ๐๐ ๐
4.
๐
๐
Product of cube roots of -1 is: (a) 0 (b) -1
๐
(c) โ๐,
๐ โ ๐ is a factor of ๐๐ โ ๐๐ + ๐, if ๐ is: 5. (a) 2 (b) ๐
โ๐+โ๐๐ โ๐+โ๐๐ ๐
,
๐
(d) โ๐,
๐+โ๐๐ ๐+โ๐๐ ๐
,
๐
(c) 1
(d) None
A
B
C
D
(c) 8
(d) -4
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
If ๐ถ and ๐ท are the roots of ๐๐๐ โ ๐๐ + ๐ = ๐, then the value of ๐ถ + ๐ท is: ๐ ๐ ๐ ๐ 6. (a) ๐ (b) โ ๐ (c) ๐ (d) โ ๐ If roots of ๐๐๐ + ๐๐ + ๐ = ๐, (๐ โ ๐) are equal , then 7. (a) Disc= ๐ (b) Disc< ๐ (c) Discโ ๐ The expression ๐๐ โ ๐๐๐ is called: 8. (a) Discriminant (b) Quadratic equation Q#2
(d) None of these
(c) Linear equation
SHORT QUESTION
๐
(d) roots
SECTION(II) ๐
(12) ๐
1. If ๐ is cube root of ๐ + ๐ + ๐ = ๐, show that its other root is ๐ and prove that ๐ = ๐ ๐ 2. If ๐ is cube root of unity , form an equation whose roots are ๐๐ and ๐๐ .
๐ 3. For what values of ๐ will the equation (๐ + ๐)๐ + ๐(๐ + ๐)๐ + ๐๐ + ๐ = ๐ have equal root?
4.
Use synthetic division to find the quotient and the remainder when the polynomial ๐๐ โ ๐๐๐๐ โ ๐๐ + ๐ is divided by ๐ + ๐.
๐ ๐ 5. Use factor theorem to determine if ๐ + ๐ is a factor of ๐ + ๐ , where ๐ is odd integer. ๐ 6. If ๐ถ, ๐ท are the roots of ๐ โ ๐๐ โ ๐ โ ๐ = ๐, prove that (๐ + ๐ถ)(๐ + ๐ท) = ๐ โ ๐
Q#3 (a)
(b)
LONG QUESTION
SECTION(III)
(10)
Use synthetic division to find the values of ๐ and ๐ if ๐ + ๐ and ๐ โ ๐ are factors of the polynomial ๐๐ + ๐๐๐ + ๐๐ + ๐. If ๐ถ and ๐ท are the roots of ๐๐ โ ๐๐ + ๐ = ๐, form the equation whose roots are
๐โ๐ถ
๐โ๐ท
and
๐โ๐ท
.
๐+๐ท
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 4.8 to 4.10+unit #5(short ) TEST#:14 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
(8)
A mixed form of fraction is : (b) a polynomial+improper fraction 1. (a) An integer+ improper fraction (c) a polynomial+proper fraction (d) a polynomial+rational fraction
2.
๐ท(๐)
The quotient of two polynomials ๐ธ(๐) , ๐ธ(๐) โ ๐ is called : (a) Rational fraction
(b) Irrational fraction
(c) Partial fraction
(d) Proper fraction
An open sentence formed by using sign of โ = โ is called a/an 3. (a) Equation (b) Formula (c) Rational fraction
(d) Theorem
When a rational fraction is separated into partial fractions, then result is always : (b) an identity 4. (a) A conditional equations (c) a partial fraction (d) an improper fraction
5.
6.
๐๐
The number of Partial fraction of ๐(๐+๐)(๐๐โ๐)are: (a) 2
(b) 3
๐๐๐ is ๐๐ โ๐
an (a) Improper fraction
(b) Proper fraction
(c) 4
(d) 6
(c) Polynomial
(d) equation
A quadratic factor which cannot written as a product of linear factors with real coefficients is called:
7. (a) An irreducible factor (b) reducible factor 8.
Which is a reducible factor: (a) ๐๐ โ ๐๐๐ + ๐๐
Q#2
1. 2.
(b) ๐๐ + ๐๐๐
(c) ๐๐ + ๐๐ โ ๐
SHORT QUESTION
(d) all of these
SECTION(II) ๐๐
The sum of a positive number and its reciprocal is
๐
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(12)
. Find the number.
Solve the following systems of equations. ๐๐ โ ๐๐ = ๐๐ ; ๐๐ = ๐๐
3. Resolve 4. Resolve 5.
(c) an irrational factor (d) an improper factor
A
Write the
๐๐+๐ (๐+๐)(๐+๐) ๐
๐๐ โ๐
into Partial fraction.
into Partial fraction.
๐๐+๐
(๐๐ +๐)(๐+๐)
into Partial fraction.
6. Define rational fraction and improper fraction . Q#3 (a) (b)
LONG QUESTION
SECTION(III)
Solve the following systems of equations. ๐+๐=๐ ; ๐๐ + ๐๐๐ = ๐๐ The sum of a positive number and its square is 380. Find the number.
(10)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX# 6.1 to 6.5) TEST#:15 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
(8)
The next two terms of the sequence ๐, โ๐, ๐, โ๐, ๐, โ๐๐, โฆ are 1. (๐) ๐๐, ๐๐ (b) โ๐๐, โ๐๐ (c) ๐๐, โ๐๐ (d) โ๐๐, ๐๐ ๐ If ๐๐ = {๐ + (โ๐) }, then ๐๐๐ = 2. (a) 10 (b) 11 (c) 12 (d) 13 n๐๐ term of an A.P is ๐๐ โ ๐ then 10th term is : 3. (a) 9 (b) 29 (c) 12 4.
(d) cannot determined
The arithmetic mean between โ๐ and ๐โ๐ is: ๐ (b) (c) โ๐ (a) ๐โ๐
(d) none of these
โ๐
๐๐ง +๐๐ง ๐งโ๐ ๐ +๐ ๐งโ๐
may be the A.M between ๐ and ๐ if 5. (a) ๐ง = ๐ (b) ๐ง = ๐ (c) ๐ง > ๐ Sum of ๐ โterm of an Arithmetic series ๐บ๐ is equal to: ๐ง ๐ง ๐ง 6. (๐) [๐๐ + (๐ง โ ๐)๐] (b) [๐ + (๐ง โ ๐)๐] (c) ๐ [๐๐ + (๐ง + ๐)๐] ๐ ๐ Forth partial sum of the sequence {๐๐ } is called: (a) 16 (b) 1+4+9+16 (c) 8 If ๐๐โ๐ , ๐๐ , ๐๐+๐ are in A.P, then ๐๐ is 8. (a) A.M (b) G.M 7.
Q#2
๐ ๐
๐ ๐
(d) ๐ [๐๐ + ๐ฅ] (d) 1+2+3
(c) H.M
SHORT QUESTION
โ๐, ๐, ๐๐, ๐๐, โฆ.
1. Find the next two terms of
๐ง
(d) ๐ง < ๐
(d) Mid point
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
SECTION(II)
(12)
๐๐ ๐
2. Find the ๐th term of the sequence , ( ) , ( ) , ( ) , โฆ ๐
๐
๐
3. Find the ๐๐th term of the sequence ๐, ๐, ๐ โ ๐, ๐ โ ๐๐, โฆ
4. How many terms of the series โ ๐ + (โ๐) + (โ๐) + โฏ amount to 65? 5. Find the sum of 20 terms of the series whose ๐th term is ๐๐ + ๐. 6. Sum the series Q#3 (a)
(b)
๐
โ๐
+ ๐โ๐ +
๐
โ๐
+ โฏ + ๐๐๐
LONG QUESTION
SECTION(III)
If ๐th term of an A.P., is 16 and the ๐๐th term is 46, what is its ๐๐th term? If ๐บ๐ , ๐บ๐ , ๐บ๐ are the sums of ๐๐, ๐๐, ๐๐ terms of an A.P., show that ๐บ๐ = ๐(๐บ๐ โ ๐บ๐ )
(10)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TIME: 1:10 HOUR TEST : MATHEMATICS ( EX#6.6 to 6.11 ) TEST#:16 Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
For any ๐ฎ. ๐ท., the common ratio ๐ is equal to: ๐ ๐ 1. (a) ๐๐ (b) ๐๐โ๐ (c) ๐ ๐ ๐ 2.
๐+๐
๐
Geometric mean between 4 and 16 is 3. (๐) ยฑ ๐ (b) ยฑ๐
(c) ๐๐ = ๐๐๐+๐
If the reciprocal of the terms a sequence form an ๐จ. ๐ท., then it is called: 4. (a) ๐ฏ. ๐ท (b) ๐ฎ. ๐ท (c) ๐จ. ๐ท (c) ยฑ๐
๐
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
(d) all of these
A
B
C
D
(d) Geometric series
A
B
C
D
A
B
C
D
(d) None of these
(c) ยฑ๐
Harmonic mean between ๐ and ๐ is: ๐๐ 5. (a) 5 (b)
A
(d) ๐๐+๐ โ ๐๐ , ๐ โ ๐ต, ๐ > ๐
๐โ๐
The general term of a ๐ฎ. ๐ท., is : (a) ๐๐ = ๐๐๐โ๐ (b) ๐๐ = ๐๐๐
(8)
(d) ยฑ๐ (d) sequence ๐
(d) ๐๐
If ๐จ, ๐ฎ and ๐ฏ are Arithmetic , Geometric and Harmonic means between two positive numbers then
6. (a) ๐ฎ๐ = ๐จ๐ฏ
(b) ๐จ, ๐ฎ, ๐ฏ ๐๐๐ ๐๐ ๐ฎ. ๐ท (c) ๐จ > ๐ฎ > ๐ฏ
If sum of series is not defined then it is called: 7. (a) Convergent series (b) Divergent series (c) finite series No term of a ๐ฎ. ๐ท., is: 8. (a) 0
(b) 1
(c) negative
Q#2
SHORT QUESTION ๐ ๐
(d) imaginary number SECTION(II)
๐
(12)
๐
1. If ๐ , ๐ and ๐ are in G.P. show that the common ratio is ยฑโ ๐ . ๐
2. Find the ๐๐th term of the sequence, ๐ + ๐, ๐, ๐+๐ , โฆ ๐+๐
๐+๐
๐ ๐ 3. Which term of the sequence: ๐ โ ๐ , ๐ + ๐, ๐โ๐ , โฆ is (๐โ๐)๐ ?
4. Insert four real geometric means between ๐ and ๐๐. ๐
5. Sum the series ๐ + (๐ โ ๐) + ( ) + โฏ to 8 terms. ๐ ๐ ๐ ๐
6. Find the ๐th and ๐th term of ๐ , ๐ , ๐ , โฆ Q#3 (a)
(b)
LONG QUESTION
For what value ๐ , ๐
๐
If ๐ = ๐ + ๐๐ + ๐
๐
๐๐ +๐๐
๐๐โ๐ +๐๐โ๐
๐
๐๐
SECTION(III)
(10)
is the positive geometric mean between ๐ and ๐? ๐
๐๐ + โฏ and if ๐ < ๐ฅ < , then ๐
show that ๐ =
๐๐
๐(๐+๐)
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TEST : MATHEMATICS ( UNIT # 7 )
TIME: 1:10 HOUR
TEST#:17
Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
1. 2.
๐! ๐!
=
(a) 8
(b) 7
๐ ๐ท๐ =
๐
(c) 56
๐!
(a) ๐!
(b) ๐!
In how many ways three books can be arranged? 3. (๐)๐! ways (b) ๐! ways
(8)
(d) ๐
๐!
(d) ๐!
(c) (๐โ๐)!
(c) ๐! ways
(d) ๐! ways
How many arrangement of the word โMATHEMATICSโ can be made ๐๐ ๐๐ (a) 11! (b) ( ) (c) ( ) (d) ๐๐! ๐, ๐, ๐, ๐, ๐, ๐, ๐ ๐, ๐, ๐, ๐, ๐, ๐, ๐, ๐ How many signals can be given by 5 flags of different colors , using 3 at a time 5. (a) 120 (b) 60 (c) 24 (d) 15 4.
For complementary combination ๐๐ช๐ = 6. (a) ๐ (b) ๐๐ช๐โ๐ ๐ช๐ ๐๐ช = 7. (a) ๐๐!
(b) ๐!
If ๐๐ช๐ = ๐๐ช๐๐ then ๐ = 8. (a) 10 (b) 20 Q#2
(c) ๐๐ช๐
(d) None of these
(c) ๐
(d) 0
(c) 30 SHORT QUESTION
(d) 40
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
SECTION(II)
(12)
20.19.18.17 1. Write in factorial form: 2. Find the value of ๐๐๐๐ = ๐๐. ๐๐. ๐ 3. How many necklace can be made from 6 beads of different colors ? ๐๐ร๐๐
4. Find the value of ๐, when ๐๐ช๐๐ = ๐! 5. How many (a) diagonals and (b) triangles can be formed by joining the vertices of the polygon having 8 sides. 6. Make a Sample space for tossing 3 coin . Q#3 (a)
(b)
LONG QUESTION
SECTION(III)
(10)
How many 5-digit multiplies of 5 can be formed from the digits 2,3,5,7,9, when no digit is repeated. Prove that ๐๐ท๐ = ๐ โ ๐๐ท๐ + ๐. ๐ โ ๐๐ท๐โ๐
ILM GROUP OF COLLEGES KHANPUR NAME:____________________________ CLASS: 1ST YEAR ROLL# _______ MARKS: 30, TEST : MATHEMATICS ( UNIT # 8)
TIME: 1:10 HOUR
TEST#:18
Q#1 Each question has four options. Fill the right option from given MCQS SECTION(I)
The method of induction was given by Francesco who lived from: 1. (a) 1494-1575 (b) 1500-1575 (c) 1498-1575 ๐ The statement ๐ < ๐! is true, when 2. (a) ๐ = 2 (b) ๐ = 4 (c) ๐ = 6
(8)
(d) 1494-1570 (d) ๐ > 6
The statement ๐๐ + ๐๐ + ๐ =6 is true when : (a) ๐ = 0 (b) ๐ = 1 (c) ๐ โฅ 2 (d) ๐ is any +iv integer ๐ General term in the expansion of (๐ + ๐) is: 4. ๐ ๐ (a) (๐+1 (b)(๐โ1 (c) (๐+1 (d) (๐๐)๐๐โ๐ ๐ฅ ๐ )๐๐โ๐ ๐ฅ^๐ )๐๐โ๐ ๐ฅ ๐ )๐๐โ๐ ๐ฅ ๐ ๐ 3.
A
B
C
D
A
B
C
D
A
B
C
D
A
B
C
D
The number of terms in the expansion of (๐ + ๐)๐ are: 5. (a) ๐ (b) ๐ + 1 (c) 2๐
(d) 2๐โ1
A
B
C
D
A
B
C
D
Middle term/s in the expansion of (๐ โ ๐๐)๐๐ is/are : 7. (a) ๐7 (b) ๐8 (c) ๐6 &๐7
(d) ๐7 &๐8
A
B
C
D
A
B
C
D
The number of terms in the expansion of (๐ + ๐)๐๐ is: 6. (a) 18 (b) 20 (c) 21
8.
๐ + ๐ + ๐๐ + ๐๐ + โฏ (a) (1 + ๐ฅ)โ1
(b) (1 โ ๐ฅ)โ1
Q#2
(d) 19
(c) (1 + ๐ฅ)โ2
SHORT QUESTION
๐ 1. Using binomial theorem expand (๐ + ๐๐) ๐ 2. Calculate (๐. ๐๐)
SECTION(II)
(d) (1 โ ๐ฅ)โ2
(12)
๐
3. Use Binomial theorem find the value of (. ๐๐)๐ ๐ 4. Use Binomial theorem find the value of โ๐๐ ๐ ๐๐+๐
5. Determine the middle term in (๐๐ โ ๐๐)
6. State fundamental law of MATHEMATICAL INDUCTION Q#3
LONG QUESTION
(a)
Prove by mathematical induction that all positive integral values of ๐ ๐ ๐
(b)
๐
๐ + + + โฏ+ ๐
๐
๐๐โ๐
= ๐ [๐ โ
SECTION(III)
๐
๐๐
]
Prove by mathematical induction that all positive integral values of ๐ ๐ + ๐๐ + ๐๐ + โฏ + ๐๐ =
๐(๐โ๐๐ ) ๐โ๐
,๐ โ ๐
(10)