Cubic Equations

  • Uploaded by: William Greco
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cubic Equations as PDF for free.

More details

  • Words: 1,214
  • Pages: 4
Solution To The Depressed Cubic By William Greco

Page 1 of 4

8/09

A depressed cubic is an algebraic expression that is a third degree equation which lacks it’s second degree quadratic term. The equation shown below is an example of a depressed cubic. the depressed  ax 3  bx  c cubic

The main goal of this report is to solve for the x variable of the depressed cubic and arrive at a general solution for values of x, excluding complex numbers. One solution of x follows: subtract ax 3  bx  c  ax 3  bx  c  c  c  ax 3  bx  c  0 c  b  substitute  y    for x   3ay  3   b     b  ay   y      c  0    3ay 3ay       b3 simplify ay3  c  0 27a 2 y3 b3 0 27au multiply  27au 2  27acu  b3  0 by 27au

substitute u  ay3

u-c

3 2 1 27 a 4b  27ac  27ac  u   54 a 54a apply quadratic equation

3 2 1 27 a 4b  27ac   c   u    54 a  2 divide 27ac 54a

3 2 1 27 a 4b  27ac  c  u   54 a 2   a  a

multiply

 u 3 2



27 a 4b  27ac 1 by 54 a



27 a 4b3  27ac2  c  54a 2

33 a 4b3  27ac 2  c  u   54a 2 factor 27a

3 3a 4b3  27ac 2  c  u   54a 2 a 2b  a b

Solution To The Depressed Cubic By William Greco

Page 2 of 4

8/09

3a 4b3  27ac 2  c  u   18a 2 divide 18 3 54

12ab3  81a 2 c 2 c  18a 2

multiply  u 3a 4b3  27ac2





c 81a 2 c 2  12ab3  u   2 18a c 81a 2 c 2  12ab3 definition of u 3  ay   ay3 2 18a re-order terms

c 81a 2 c 2  12ab3  a y3 divide both 18a   2 sides by a a a 9a 9ac  81a 2 c 2  12ab3 common 3 2 18a 9a c   9ac  y  denominator 18a a 9ac  81a 2 c 2  12ab3  1  9ac  81a 2 c 2  12ab3 3 18a  y   y  18a 18a 2 a a multiply right hand side by 1 a

cube root  of both sides

y

3

3

y3 

3 3

b 3

y

3

3

9ac  81a 2 c 2  12ab3 18a 2

9ac  81a 2 c 2  12ab3 18a 2

  y a 3a 3

2

9ac  81a 2 c 2  12ab3 3

b

18a 2

9ac  81a 2 c 2  12ab3 3

18a

2

x y -    3a y 

3 subtract  x  b  -  from both sides  3a 

original definition of y   b 

9ac  81a 2 c 2  12ab3 3

18a 2



b  3 9ac  81a 2 c 2  12ab3 3a  3  18a 2 

   

Solution To The Depressed Cubic By William Greco

Page 3 of 4

8/09

x 3

x

9ac  81a 2 c 2  12ab3 3

18a 2



b  3 9ac  81a 2 c 2  12ab3 3a  3  18a 2 

equation-1a 

   

and 3

x

9ac  81a 2 c2  12ab3 3

18a

2



b  3 9ac  81a 2 c 2  12ab3 3a  3  18a 2 

equation-1b 

   

check  a  3, b  7, c  14 by equation-1a 3

x

2

2

9 314   813 14   12 373 3

2



18 3

7 3 2 2 3  9 314  813  14   12 37 3 3 2 3 18 3  

    

 1.221

by equation-1b 3

x

2

2

9 314   813 14   12 373 3

18 3

ax3  bx  c 3

2

3 1.221  7 1.221  14



7 3 2 2 3  9 314  813 14   12 37 3 3 2 3 18 3  

    

 1.221

Solution To The Depressed Cubic By William Greco

Page 4 of 4

8/09

by equation-1a 3

2

2

9 314   813 14   12 373 3

2

 1.683

18 3

7 3 2 2 3  9 314  813 14   12 37 3 3 2 3 18 3  

    

 0.462

1.683  0.462  1.221 by equation-1b 3

x

2

2

9 3 14   813  14   12 373 3

7

 0.462

2

3 2 2 3  9 314  813 14   12 37 3 3 2 3 18 3  

18 3

0.462  1.683  1.221 Other forms of the equation include but are not limited to the following: 1

 27ac 2  4b3 3   c  a  x    2a  6 3a    

b 1

 27ac 2  4b 3 3   c a 3a     2a  6 3a     1  

  3  1c 1  3  1 b 3 2  x=      4b  27c a  3   1   2  a  18  3     2  3  a     1  c  1  3  a       4b3  27c 2 a  3           2  a  18  a 2        1   3 2 2   4b  27c a    1    a2 x= 108c  12 3  6a  a     

William Greco 2404 Greensward N. Warrington, Pa. 18976

1 3

2

[email protected]

b 1   3 2 2   4b  27c a       a2  108c  12 3  a      

1 3

    

  1.683

Related Documents

Cubic Equations
May 2020 24
Equations
November 2019 31
Equations
October 2019 28
Equations
July 2020 19

More Documents from "Patrick Mulcahy"