Cuagulation

  • Uploaded by: daw022
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cuagulation as PDF for free.

More details

  • Words: 1,052
  • Pages: 43
BLOOD COAGULATION: AT THE INTERFACE BETWEEN PHYSICAL AND CHEMICAL KINETICS

©2006 UpToDate®

e-mail this to a colleague

©2006 UpToDate® • www.uptodate.com • Contact Us

©2006 UpToDate®

e-mail this to a colleague

©2006 UpToDate® • www.uptodate.com • Contact Us

FUSTER et al, 2005

FUSTER et al., 2005

Local homeostasis maintained by continuous adjustments to changes

threshold Tissue PERTURBATION RESPONSE “COAGULATION” Hemostasis thrombophilia hemophilia Disseminated coagulation

REACTION RATE CHANGE

“INFLAMMATION” Immunity hypersensitivity autoimmunity Immunodeficiency

PLASMA COAGULATION/FIBRINOLYSIS

FLOW

PROCOAGULANT SURFACES

COAGULATION CONTROL INHIBITORS HEPARIN (Glycosaminoglycans) Warfarin (Vit.-K antagonist) Anti-platelets PROCOAGULANTS COAGULATION FACTORS BLOOD TRANSFUSIONS

STATINS ? Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A Reduce cholesterol levels and cardiovascular disease

but Under the best circumstances 2/3 cardiovascular events remain.

Bradikinin -tPA Plasminogen Fibrin Plasmin FIBRINOLYSIS Hereditary angioedema

Contact activator “autoactivation of fXII Pre to kallikrein H-kininogen to bradikinin B1 and B2 receptors Of endothelial cells PLA2->PG->cAMP Ca2+->eNOS->NO-> cGMP RELAXATION

Spaan J. A. E. et al., 2003

Spaan J. A. E. et al., 2003

Spaan J. A. E. et al., 2003

Spaan J. A. E. et al., 2003

Spaan J. A. E. et al., 2003

Spaan J. A. E. et al., 2003

A + B ↔ AB →PRODUCT (1nmol ~ 1014 molecules)

FLUX : convective → pressure gradient diffusive→ concentration gradients FLOW-DEPENDENT TRANSFER?

SURFACE DIFFUSION ON CELLS?

PROTOTYPE REACTION SCHEME

Kf

KA A+B

PRODUCTS

[AB] Kd

K eff = KA.Kf / Kd + Kf

K f >>

Kd

K eff = K A

MODULAR STRUCTURE OF COAGULATION ZYMOGENS

Growth factor-like domain

Gla Domain Gamma-carboxylated Glutamic acid residues

Serine proteinase Domain Aspartic acid Histidine SERINE

DIFFUSION-CONTROLLED REACTIONS IN BIOLOGICAL SYSTEMS Soluble enzyme kinetics Steady-state diffusion-controlled reaction (Smoluchowski) Influence of intermolecular forces (Kramers, Debye) Hydrodynamics effects (Friedman, Deutch) (osmotic stress techniques?) Convective flow (Levich, Delichatsios) Diffusion toward an array of reactive traps. Spherical Influence of chemical reaction on diffusion in the reactive system

Mean first passage times.

Glycosaminoglycans role in the local regulation of interstitial fluid volume

Local hydration = competitive affinity of macromolecules for water Glycosaminoglycans form hydrophilic gels that store “dehydration energy” In vivo manifested as a dehydrating potential. In vitro detected as swelling pressure CARTILAGE VASCULATURE

Polymer rubber elasticity

Polymer­polymer  affinity H20 H+    Pressure

OSMOTIC FORCES

GALACTOSAMINOGLYCANS

Vsat

K1/2

AT + GAG

AT·GAG+fXa

AT·GAG-fXa

GAG

AT-fXa

Antithrombin surface

 

Water activity

1.4 Å  under  4.0 Å

 

K ΔG/Π = ΔV

20 18 16 DS (0.5 atm) DS (standard)

14

DD (0.5 atm)

Factor Xa nM

DD (standard)

12

Heparan (0.5 atm) Heparan (standard)

10 8 6 4 2 0

0

5

10

15 20 25 30 TIME (seconds)

35

40

45

50

20.2 20

G ( kcal/mol)

19.8 19.6 19.4 19.2 19 18.8

0

.5

1

1.5

Osmotic Pressure (atm)

2

2.5

TABLE 1 (kcal/mol/atm)

(water mol/mol)

Probe radius, (Å) PEG: 300

4

-0.072 ± 0.011

165 ± 25

600

7

-0.221 ± 0.060

508 ± 138

1500

9

-0.336 ± 0.031

772 ± 71

3400

17

-1.16 ± 0.11

2667 ± 252

8000

26

-1.083 ± 0.207

2489 ± 475

Dextran T10

24

-1.287 ± 0.113

2958 ± 260

PVP 40

NA

- 1.314 ± 0.176

3028 ± 404

Water Transfer by Osmotic Stress Technique with Polymers of Different Size and Chemical Structure

A

B

PI

C-sheet

RCL

hH B-sheet hG hD

hA

hB

hl

hE A-sheet

hF hC

C

1 140

RATE s-1 X103

120 1 1 100

80 60 40 20 0

0

20

40

60

Dermatan Sulfate, μM

80

100

120

120

RATE s-1 X 103

100 80 60 40 20 0

0

5

10

15

20

Dermatan Disulfate, μM

25

30

35

GAG solution

Standard

Osmotic Stress (0.5 atm)

CSE in:

K1/2, (µΜ)

Vsat (s-1 x 103)

K1/2, (µΜ)

Vsat (s-1 x 103)

0.15 N, NaCl

3.3 ± 1.9

5.3 ± 1.3

4.3 ± 1.6

16 ± 3

0.15 N, NaCl, 2mM CaCl2

2.7 ± 0.8

5.7 ± 0.7

2.9 ± 0.4

20 ± 1

0.075 N NaCl

4.3 ± 2.8

6.1 ± 1.8

5.2 ± 2.3

15 ± 3

0.075 N NaCl,2mM CaCl2

1.3 ± 0.4

13.8 ± 0.1

0.34 ± .05

44 ± 1

0.15 N NaCl, 5mM CaCl2

4.8 ± 0.8

13.2 ± 0.1

2.7 ± 0.4

34 ± 2

0.15 N, NaCl

4.0 ± 0.6

48 ± 4

5.5 ± 0.9

104 ± 10

15 N, NaCl, 2mM CaCl2

6.9 ± 0.9

97 ± 5

6.3 ± 0.4

189 ± 5

.075 N NaCl

6.6 ± 0.8

78 ± 4

4.8 ± 0.3

119 ± 3

.075 N NaCl, 2mM CaCl2

9.2 ± 1.8

204 ± 19.4

5.1 ± 0.8

283 ± 17

HS in:

Standard

GAG solution DS in:

K1/2, (µΜ)

Vsat (s-1 x 103)

Osmotic Stress (0.5 atm) K1/2, (µΜ)

Vsat (s-1 x 103)

0.15 N, NaCl

74 ± 7

84 ± 5

37 ± 6

120 ± 8

0.15 N, NaCl, 2mM CaCl2

17 ± 3

97 ± 6

16 ± 1

136 ± 5

0.075 N NaCl

62 ± 4

125 ± 5

26 ± 2

136 ± 5

0.075 N NaCl,2mM CaCl2

19 ± 6

163 ± 21

3±1

116 ± 8

0.15 N, NaCl

17 ± 3

56 ± 5

9.4 ± 2

104 ± 10

15 N, NaCl, 2mM CaCl2

5.1 ± 0.4

73 ± 2

1.7 ± 0.3

106 ± 5

.075 N NaCl

7.5 ± 0.6

56 ± 2

3.8 ± 0.2

97 ± 2

.075 N NaCl, 2mM CaCl2

2.1 ± 0.2

73 ± 2.5

0.4 ± 0.8

107 ± 1

DDS in:

TABLE 3 Disaccharide Structure and Anticoagulant Function. Increased Efficiency with Osmotic Stress and Calcium Dermatan Sulfate Dermatan Disulfate Chondroitin Sulfate E Heparan Sulfate

Hexuronic Acid Hexosamine sulfation pattern Iduronic C4 Iduronic C4, C6 Glucuronic C4, C6 Iduronic C2, N (variable)

Efficiency M-1 s-1 4 X 104 (34) 2 X 105 (81) 1 X 105 (81) 5 X 104 (5)

Efficiency was estimated as the ratio between Vsat and K1/2 determined in titrations of antithrombin activity, under an osmotic stress of 0.5 atm, with the indicated glycosaminoglycans in TRIS buffer pH 7.4, 0.075 N NaCl and 2mM CaCl2 The increases in efficiency relative to reactions in standard TRIS buffer pH 7.4, 0.15N NaCl are indicated in parentheses.

GLYCOSAMINOGLYCANS REGULATE REACTIONS IN BIOGELS

Qui alium sequitur, nihil invenit, immo nee quaerit.                                                                                   SENECA

(“He who follows another not only discover nothing, but is not even  investigating.” Translation by RG Gummere)

Related Documents

Cuagulation
May 2020 15

More Documents from "daw022"

Cardiac Physiology
May 2020 23
Cuagulation
May 2020 15
Ans
May 2020 22
New Dental Pulp
June 2020 8