Cours De Matrices

  • Uploaded by: abdorez
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cours De Matrices as PDF for free.

More details

  • Words: 2,292
  • Pages: 28
CE 311 K - Introduction to Computer Methods

Matrices

Matrices  Variety of engineering problems lead to the 

need to solve systems of linear equations  Ax = b

 a11 a12   a21 a22 A =     am1 am 2

matrix

a1n   x1   b1       a2 n   x2   b2  x =   b =             am3  amn   xn   bm  a13 a23



column vectors

Matrix  Matrix

- a rectangular array of numbers arranged into m rows and n columns: Rows, i = 1, …, m

 a11 a12   a21 a22     am1 am 2

a1n   a23 a2 n      am3  amn  a13

Columns, j = 1, …, n



Examples  These

are valid matrices 1 0  0 1   

 These

a b  c e  

1 2 3  0 1 0   

are not

1 2 3   

 4  5 6  

 11   7    8 9  10   

Row and Column Matrices (vectors)  row

matrix (or row vector) is a matrix with one row r = ( r1 r2

 column

r3  rn )

vector is a matrix with only one

column  c1    c  c =  2     cm 

Square Matrix  When

the row and column dimensions of a matrix are equal (m = n) then the matrix is called square  a11 a12  a1n    a2 n   a21 a22 A =        an1 an 2  ann 

Transportation  Given

a list of cities (or destinations, nodes, etc) and flights (or roads, connections, etc) from city a to city b  Build a square matrix M with the cities indexing each side of the matrix – – –

M[a,b] = 1 if there is a connection from a to b M[b,a] = 1 if there is a reverse connection from b to a M[a,b] = 0 if there is no connection from a to b

Example 

– – – – – – – –

B to N, P, W, D A to N, W N to B, P, W, R, D, L P to N, B, W, R W to B, A, N, R, P, L R to N, P, W D to B, N L to N, W

Make a graph of this information where vertices represent cities and every edge represents a flight.



Albany (A), Boston (B), New York (N), Philly (P), Wash (W), Richmond (R), Detroit (D), and Las Vegas (L)

B 0 0 1 0 1 0 1 0

B A N P W R D L



A 0 0 0 0 1 0 0 0

N 1 1 0 1 1 1 1 1

P 1 0 1 0 1 1 0 0

W 1 1 1 1 0 1 0 1

R 0 0 1 1 1 0 0 0

D 1 0 1 0 0 0 0 0

Examine the matrix to see if there is a round trip between every city that is connected by a flight.

L 0 0 1 0 1 0 0 0

Matrix Transpose 

The transpose of the (m x n) matrix A is the (n x m) matrix formed by interchanging the rows and columns such that row i becomes column i of the transposed matrix  a11  a A =  21   a  m1

a12



a22 am 2

 

a1n   a2 n    amn  

 a11 a21  am1    a22 am 2  a AT =  12       a1n a2n  amn 

Example - Transpose 1 3 A=  2 5

1 3 4  A=  0 1 0 

1 2 T A =  3 5

1 0  AT = 3 1   4 0

Matrix Equality  Two

(m x n) matrices A and B are equal if and only if each of their elements are equal. That is A=B if and only if

aij = bij for i = 1,...,m; j = 1,...,n

Vector Addition  The

sum of two (m x 1) column vectors a and

b is  a1   b1   a1 + b1        a b a + b      2  a + b =  2 +  2 =  2            am   bm   am + bm 

Examples - Vector Addition 1 3 − 3 5 u=  v=  2  − 1 4 − 2      1   3   1 + 3   4 − 3  5  − 3 + 5 2 =  u+v =  +  =   2   − 1   2 − 1  1   4   − 2   4 − 2   2        

1  5  − 3 − 15  5u = 5  =   2   10   4   20     

Matrix Addition  a11   a21 A + B =    a  m1

a12 a22 am 2

 a11   a21 =   a  m1

 a1n   b11   a2 n   b21 +        b  amn   m1 + b11 a12 + b12 + b21 a22 + b22  + bm1 am 2 + bm 2

b12 b22 bm 2

 b1n   b2 n      bmn 

a1n + b1n   a2 n + b2 n       amn + bmn  

Examples - Matrix Addition 1 2 3  A = 2 1 4   1 4 3

 3 2 1 B = − 4 1 2    2 3 1 

1 2 3   3 2 1   4 4 4  A + B =  2 1 4 +  − 4 1 2  = − 2 2 6        1 4 3  2 3 1   3 7 4

 The

following matrix addition is not defined 1 2 2 4 6 5 2 + 1 3 5 = ? (not defined!)    

Scalar – Matrix Multiplication  Multiplication

defined as

 Examples

of a matrix A by a scalar is  αa11 αa12  αa1n    α a α a α a  22 2n  αA =  21       αam1 αam 2  αamn 

α = 4,

1 2 4 8  A=  , αA =  0 4  0 1    

1 4 1  − 2 − 8 − 2 α = −2, A =   , αA =  − 4 0 − 6  2 0 3    

Matrix – Matrix Multiplication 

The product of two matrices A and B is defined only if –



the number of columns of A is equal to the number of rows of B.

If A is (m x p) and B is (p x n), the product is an (m x n) matrix C C mxn = Amxp B pxn

Matrix – Matrix Multiplication  a11 a12  a1 p  b11 b12  b1n     a1 p  b21 b22 b1n   a21 a22 C = AB =              am1 am 2  amp  b p1 b p 2  b pn      a11b11 +  + a1 p b p1 a11b12 +  + a1 p b p 2  a11b1n +  + a1 p b pn    a21b1n +  + a2 p b pn   a21b11 +  + a2 p b p1 a21b12 +  + a2 p b p 2 =         am1b11 +  + amp b p1 am1b12 +  + amp b p 2  am1b1n +  + amp b pn    p

cij = ∑ aik bkj k =1

Example - Matrix Multiplication

a = (a1, a2 ,, an )

 b1     b2  b=      bn 

c1x1 = a1xn bnx1 (scalar)

 b1     b2  c = a ⋅ b = (a1, a2 ,, an )  = a1b1 + a2b2 +  + an bn     bn 

Example - Matrix Multiplication  a11 a12  a1n  a a22  a2n  21  A=    a   n1 an 2  ann 

 b1     b2  b=      bn 

c nx1 = Anxn bnx1

 a11 a12  a1n  b1  a11b1 + a12b2 +  a1n bn   a  21 a22  a2n   b2  a11b1 + a22b2 +  a2n bn  c = Ab = =         a   n1 an 2  ann  bn  an1b1 + an 2b2 +  ann bn

Example - Matrix Multiplication

1 3  A=  2 4

 2 1 B=  3 5

C 2 x 2 = A2 x 2 B2 x 2

1 3 2 1  1 ⋅ 2 + 3 ⋅ 3 1 ⋅1 + 3 ⋅ 5  11 16  C = A⋅ B =  = =      2 4 3 5 2 ⋅ 2 + 4 ⋅ 3 2 ⋅1 + 4 ⋅ 5 16 22

Example - Matrix Multiplication 1 2 3  A =  2 1 4   1 4 3

2 1  B = 1 2    2 1 

1 2 3   2 1  C 3 x 2 = A3 x3 B3 x 2 C = A ⋅ B =  2 1 4 1 2    1 4 3 2 1  1 ⋅ 2 + 2 ⋅1 + 3 ⋅ 2 1 ⋅1 + 2 ⋅ 2 + 3 ⋅1 10 8  = 2 ⋅ 2 + 1 ⋅1 + 4 ⋅ 2 2 ⋅1 + 1 ⋅ 2 + 4 ⋅1 = 13 8      1 ⋅ 2 + 4 ⋅1 + 3 ⋅ 2 1 ⋅1 + 4 ⋅ 2 + 3 ⋅1 12 12

Example - Matrix Multiplication 3 0  A = 1 1    5 2

4 7  B=  6 8  C 3 x 2 = A3 x 2 B2 x 2

3 0  12 21 4 7    C = A⋅ B = 1 1  = 10 15    6 8    5 2 32 51

Diagonal Matrices





Diagonal Matrix

Tridiagonal Matrix

0  a11 0   0 a22 0 A =  0 0   0 0  0  a11 a12   a21 a22 A =  0 a32  0  0  0 0 

0 a23  0

0   0  0   ann  0 0   a54

0   0  0   a45  a55 

Identity Matrix 



Identity Matrix 1 0 I = 0 0 

0

0

1 0

0 1

0

0

0 0  0 1 

The identity matrix has the property that if A is a square matrix, then IA = AI = A

Matrix Inverse  If

A is an (n x n) square matrix and there is a matrix X with the property that AX = I

X

is defined to be the inverse of A and is denoted A-1 AA−1 = I

A−1 A = I

Example - Matrix Inverse

AA −1 = I

• Example (2 x 2) matrix  a11 a12  A =  a a  21 22 

A−1 =

 a22 − a12  1 a11a22 − a12 a21 − a21 a11 

Special Matrices



Upper Triangular Matrix



Lower Trangular Matrix

u11 u12    0 u22 U= 0  0  0 0 

u13 u14  u23 u24   u33 u34  0 u44 

0  L11    L21 L22 L=  L31 L32 L  41 L42

0 0 L33 L43

0  0   0  L44 

Related Documents

Cours De Matrices
November 2019 3
Matrices
November 2019 36
Matrices
May 2020 19
Matrices
June 2020 18
Matrices
December 2019 30
Matrices
November 2019 34

More Documents from ""

Cours De Matrices
November 2019 3