Constructing Binomial Models for the Short Rate
©Finbarr Murphy 2007
P(i) = price at time t=0 of a pure discount bond maturing at iΔt
Qi ,i = 12 Qi −1,i −1d i −1,i −1 Qi , − i = 12 Qi −1, − i +1d i −1, − i +1 Qi , j = 12 Qi −1, j −1d i −1, j −1 + 12 Qi −1, j +1d i −1, j +1
MSc
COMPUTATIONAL FINANCE
the BDT90 process becomes (const volatility)
d ln r (t ) = θ ( t ) dt + σdz σj ∆t ri , j = U ( i ) e
1 di, j = 1 + ri , j ∆t P( i + 1) = ∑ Q d i, j
j
i, j
1
Constructing Binomial Models for the Short Rate
©Finbarr Murphy 2007
P(3) = 0.8638
P(2) = 0.9070
P(1) = 0.9524 U(1) = 0.498
Q0,0 = 1 r0,0 = 0.05 d0,0 = 0.9524 P(0) = 1
Q1,1 = 0.4762 r1,1 = 0.055 d1,1 = 0.9479
Q1,1 = 0.4762 r1,1 = 0.045 d1,1 = 0.9569
MSc
COMPUTATIONAL FINANCE
Now We can can repeat say that now values. calculate to Calculate Q1,1for andsubsequent Q1,-1 Q Q = 0.055 1 r1,11,10,0 == and r = 0.045 1/2Q 0,0d0,0 =1,-10.4762
Remember that the outer states are treated a little Q rd0,01,1 ===0.05 0.9479 d1,-1 = 0.569 1/2Q0,0dand 1,-1 0,0 = 0.4762
differently from the inner states. d0,0 = 1/(1+0.05∆t) = 0.9524 1 Solve P( i + 1) = P(2) = = 0.9070 = 2 (1 + 0.05) 1 1 = ∑ Q1, j 1 + U (i ) exp σj ∆t ∆t j = −1
(
)
1
∑Q j = −1
d
1, j 1, j
2