In[37]:=
Linear Regression 266.5 118 700.9209 513.5 211 324.09 307 204.14 ; tblData = 766.5 1011.5 399 209.1409 1263.5 492 846.1209 lm = LinearModelFit@tblData, x, xD PanelBShowBListPlot@tblDataD, Plot@lm@xD, 8x, 0, 1400, PlotLabel ® "Velocity squared vs. DX ">FF PrintB"Y Intercept = ", lm@0D , " mm", "sec2 "F CorrelationData = Correlation@tblDataD; Print@"Correlation = ", CorrelationData@@1, 2DDD H*Extract correlation constant from 2 dimensional data table*L PrintB"R2 = ", lm@"RSquared"DF PrintA"Vinitial = ", Sqrt@lm@0DD, " mmsec"E
Out[37]=
Linear Regression
Out[39]=
FittedModelB 18 730.3 + 375.673 x F
v2 Hmm2 sec2 L
Velocity squared vs. DX
500 000 400 000 300 000 200 000 100 000 200
400
600
800 1000 1200 1400
Y Intercept = 18 730.3 mmsec2 Correlation = 0.999995 R2 = 0.999989 Vinitial = 136.859 mmsec
Dx = x-x0