Concept & Formulae

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Concept & Formulae as PDF for free.

More details

  • Words: 2,019
  • Pages: 8
Concept & Formula

4

2

8

128 16

64 32

3

Concept & Formula GIVEN FORMULAE / POINTS TO NOTE

CONCEPT & Formulae to remember 1

FUNCTIONS



Relations : one to one, one to many, many to one, many to many.



Functions , f(x) = y,



Composite functions; fg, gf, f 2



Inverse Functions ; f



Absolute functions f(x) = y

f: x

x = object , y = image

y

f –1 (2) = x  2 = f(x)

–1

- Graf y = ax + b

if  y  = k  y = ax + b

,

y = k or y = –k

b

-b a

2

QUADRATIC EQUATIONS



ax2 + bx + c = 0



x 2 – (a + b)x + ab = 0

sum of roots =  b

a

x2 – ( sum of roots)x + (product of roots) = 0 

b2-4ac >0

2 distinct real roots

b2-4ac = 0

2 equal real roots

b2-4ac < 0

no roots

product of roots =

 

Find the roots : factorisation, completing square, using formula Form quadratic equation: given roots  and .

3

QUADRATIC FUNCTIONS



f(x) = a(x + p)2 + q  completing the square form



Equation of axis of symmetry , x   b

x

c a

 b  b2  4ac 2a

max /min point  (– p , q)

2a

 

Sketch Graph : Shape : Max/min point: Two other points seen Inequalities : if there are two inequalities solve using graph or number line.

4

SILMULTANEOUS EQUATIONS



Use SUBSTITUTION method. 5 types - simple , one line , with fraction - solutions given with different unknown. - find the intersections points



5

INDICES & LOGARITHM



Rule of Indices:



Rule of Logarithms:



Change base: x

a<0

a

, a>0

b x>b

x
a

a<x < b

check answers by substituting values into the non-linear equation.

a m x an = a m + n , am  an = a m – n , (a m) n = a m n



If y = a



Solving index and logarithms equations

log m + log n = log mn l og m – log n = log m/n log mn = n log m

loga y = x and vice versa.



log a x 

Formula not given / important concept 4

log b x log b a

b

Concept & Formula GIVEN FORMULAE / POINTS TO NOTE

CONCEPT & Formulae to remember 6

STATISTICS



Ungrouped data: mean, median, mode, range, interquartile range, standard deviation, variance.



Grouped Data : (written in class) mean - use the midpoint of class median - use formula or orgive mod - use Histogram Interquartile range - use formula or orgive standard deviation & variance - use formula

x

x N ( x  x )2  N

 

x 2  x2 N

x

 fx f

 

 f ( x  x )2  f

 fx2  x2 f

1NF C m  L 2  f  m  



Effects on Changes in data .

7

COORDINATE GEOMETRY



distance between 2 points

AB =



midpoint

x  x y  y2 midpoint  ( 1 2 , 1 ) 2 2

 

see NOTES

gradient , m  y1  y 2 x1  x 2 Equation of straight line: ax + by + c = 0 (general) y = mx + c (gradient form) x y  1 a b

(intercept form)



find equation of straight line: y – y1 = m (x – x1), y = mx+c



Parallel : m1 = m2



equation of locus : use the distance formula



area of polygon

( x1  x2 )2  ( y1  y2 )2

point that divides a line segment in m: n ny1  my2   nx1  mx2 ,   mn   mn

perpendicular : m. m2 = – 1 area of triangle = 1 ( x1 y2  x2 y3  x3 y1)  ( x2 y1  x3 y2  x1 y3 ) 2

8 DIFFERENTIATION 

Idea of limit

 x = x + x



First derivative using first principle.

 Find lim

x 0

 



dy  nax n1 dx dy y = (ax+b)n ;  naax  b n 1 dx u y = uv and y  v

y = axn ;

dy dy du   dx du dx



If y = u, and x = u , thus



2 Second derivative, d y  d  dy  2

dx

dy dv du u v dx dx dx dy  dx

dx  dx 

5

v

and

y x

du dv  u dx dx v2

y = y + y

Concept & Formula GIVEN FORMULAE / POINTS TO NOTE

CONCEPT & Formulae to remember [Differentiation]  APPLICATIONS: - Equation of tangent and normal use y = mx + c or y – y1 = m (x – x1) where m = gradient of tangent -

Problems on Maximum / Minimum

 dy/dx = gradient of tangent  m NORMAL  m TANGENT = –1

dy/dx = 0

d2y

max point when

dx 2 d2y

min point when -

-

Rate of change ,

0

dy/dt = dy/dx  dx/dt

small changes / approximate change , y  dy/dx . x

use negative values for decreasing changes.

9

CIRCULAR MEASURES



 radians = 180



arc length, s = r , the angle is in radian

s = r



area of sector, A = ½ R2  , angle is in radian



Area of segment = ½ r2 ( - sin )

A = ½ r2 

10

dx 2

0

90 =  , 60 =  , 45 =  , 30 =  2

3

4

PROGRESSIONS

 AP: a, a+ d, a+ 2d ….

 GP: a, ar, ar2, ar3 …





common difference,

common ratio r  T2 T1

d = T2 – T1

GP : Tn = ar n – 1

 nth term : Tn  Sum of the first n terms: Sn n( a  l )  Sum:: Sn  2  a = T1 = S1

AP : Tn = a + (n – 1)d Sn  n2 ( 2a  ( n  1 )d )

Sn 

 Sum to infinity

 Tn = Sn – Sn-1

a( 1  r n ) a( r n  1 )  , r 1 1 r r 1

S 

a 1 r

 Sa m = Sm – Sa --1

11 LINEAR LAW   

Convert to linear form, Y = mX + c draw line of best fit. find unknown from graph

always show table when drawing graphs

6

6

Concept & Formula GIVEN FORMULAE / POINTS TO NOTE

CONCEPT & Formulae to remember 12 INTEGRATION 

 f ( x)  g ( x)  c





(ax  b) n dx 

(ax  b) n1 c (a)( n  1)

Luas 



dy dx  Equation of curve y  dx (integrate the gradient fxn.)  Area under graph  Generated volume when area revolved 360 about



b

b

y dx atau

a



Isipadu

 x dy a

 y b

2

dx

2

dy

a



: x- axis

b

 x a

: y - axis 13 VECTORS 

   

vectors a parallel to b : a = k b, k = constant Law of triangle, parallelogram, polygon addition and substraction of vectors multiply scalar with vectors.  x vectors in Cartesan coordinate r  xi  y j     y - magnitude r,

r  x2  y2

- vector unit in the direction of r,

rˆ 

xi  yj x2  y2

14

TRIGONOMETRIC FUNCTIONS



positive and negative angles



functions: sin, cos, tan, sec, cosec, cot



Graph sine, cosine and tangent



Basic identity



Double angle: sin 2A, cos 2A and tan 2A



Addition formula: sin (A B), cos(A B), tan(AB)



Solving dan Proofing



 

sin2 A + cos2A = 1 cosec2A = 1 + cot2A sec2 A = 1 + tan2 A sin (AB) = sin AcosB  cosAsinB cos(AB) = cos AcosB  sin Asin B tan(AB) = tan A  tan B 1  tan A tan B sin 2A = 2 sin A cos A

sin A tan A  cos A 1 1 1 cos ec A  , sec A  , cot A  sin A cos A tan A

cos 2A = cos2A – sin2A = 2 cos2A – 1 = 1 – 2sin2 A tan 2A =

special angles : SEE NOTES

7

2 tan A . 1 – tan2A

Concept & Formula GIVEN FORMULAE / POINTS TO NOTE

CONCEPT & Formulae to remember 15 PERMUTATION & COMBINATIONS  Permutation : choose r objects from n objects ( the order is important) - permutations under given conditions 

16

Combinations : the order of choosing is not important. - combinations under given conditions

n

Pr 

n! ( n  r )!

n

Cr 

n! ( n  r )! r!

PROBABILITY



Probability, P  A  n A



Event A or B

P(A) + P(B)



Event A and B

P(A)  P(B)



Probability of 2 combine events ( non-mutually exclusive)

nS 

P(AB) = P(A) + P(B) – P(AB)

17 PROBABILITY DISTRIBUTIONS 

Binomial Distributions:

P(X=r) = nCr pr q n – r ,

- Binomial Distributions Probability

p+q=1

Mean,  = np

- Graph of Binomial Distributions - mean, variance & standard deviation

 =  npq variance = npq



Normal Distributions:

Z

- Graph of Standard Normal Distribution

X μ σ

- Normal Distributions Probability 18 SOLUTIONS TO TRAINGLE

a b c   sin A sin B sin C



Sine Rule - Ambiguous Case



Cosine Rule

a2 = b2 + c2 – 2bc kos A



Area of triangle

A = ½ ab sin C where C is included angle

19 INDEX NUMBERS  Nombor indeks : o Indeks Harga :

I

P1  100 P0

 Indeks harga pada tahun asas, I0 = 100  Indeks gubahan

8

I

Q1  100 Q0

I

Wi I i Wi

Concept & Formula GIVEN FORMULAE / POINTS TO NOTE

CONCEPT & Formulae to remember

20 PENGATURCARAAN LINEAR 

write inequalities that satisfy the condition given.



draw and find the region that satisfies the inequalities



find the max / min values within the region.



21 MOTION IN A STRAIGHT LINE o

s

Displacement:

 v dt

- return to O : s = 0 ds 0 dt

- maximum displacement ;

v =0

- distant traveled in the nth second: dist = s n – s n–1 o

velocity: v  ds dt

- maximum velocity: dv  0

a=0

dt

- constant velocity : a = 0 o

acceleration: a 

dv , dt

- maximum acceleration:

a

d 2s dt 2

da 0 dt

9

Concept & Formula

EFFECTS ON CHANGES IN DATA each data is added with

each data is multiplied by

+p

k

mean

+p

k

mode

+p

k

median

+p

k

range

no change

k

interquartile range

no change

k

standard deviation

no change

k

variance

no change

 k2

The new value of

TRIGONOMETRIC SPECIAL ANGLES

0

30

45

sin A

0



1

cos A

1

3 2

1

tan A

0

1 3

2

2

1

60 3 2

 3

10

90

180

270

360

1

0

–1

0

0

1

0

1



0

–1

0

Related Documents

Concept & Formulae
June 2020 12
Formulae
April 2020 17
Tenses Formulae
May 2020 8
Physics Formulae
May 2020 8
Formulae Ee
May 2020 5
Excel Formulae
May 2020 21