Malang Study Club
1. Given f : R 6 R define by x2 – 2x + 1. a. Determine f(2), f(0), f(a), f(b2), f(2a + b), f(x + 5)! b. If f(p) = 16, find p! c. Determine the range of f, if the domain given as below : i.
Df = {x : -1 ≤ x < 2, x Є R}
iii. Df = {x : -1 < x < 3, x Є R}
ii. Df = {x : -2 ≤ x ≤ 3, x Є R}
iv. Df = {x : x Є R}
x −1
2. Given f : R 6 R define by
x
x − 1 . Determine the domain 2
and g : R 6 R define by
and range for : a. f
d. f – g
b. g
e.
c. f + g 3. Given
{(4,7),(1,2),(0,-1),(-1,3)}
f :R 6 R
f g
and
g : R 6 R {(2,1),(3,4),(6,-1),(7,0)}.
Determine : a. gf b. fg c. domain and range of gf and fg 4. Given f : R 6 R
x+4 x −6
and g : R 6 R(2 x − 1) . Calculate :
a. fg
c. f2
e. f-1
g. (fg)-1
i.
f(1)
k. f-1(0)
b. gf
d. g2
f.
g-1
h. (gf)-1
j.
g2(1)
l.
(gf)-1(0)
5. Find f! a. f-1 =
2x
x −6 2
b. f-1 =
3−x
5
6. Find the other function! a.
g : R 6 R(2 x + 1) and gf = 6 x + 4 x − 7 2
⎛1− x ⎞ b. f : R 6 R ⎜ ⎟ and fg = 7 x ⎝ 2x ⎠
(
)
c.
g : R 6 R 10 x − 3 and fg = 30 x − 15
d.
f : R 6 R⎜
7. If f =
2
g : R 6 R( x + 3) and ( gf ) =
f.
f : R 6 R( x − 3) and ( gf ) =
−1
2
x+3 2 1 2
x +1
x −5 ⎛ x −5⎞ ⎟ and gf = x −1 ⎝ x ⎠
2
x + 1 and fg =
8. Given f = 2x – 3, g = 9. If g = 2x + 1 and gf =
10. If f =
−1
e.
4x − 1 2 − 3x
1
2
x−2
x − 4 x + 5 , determine g(x-3)!
x + 2 , and h = x3 + x2. Calculate hgf(1)! 2x − 3 x+2
, determine f-1(1)!
is inverse of g, find fg(1)!
11. If g = x2 – 4x + 6 and gf = 4x2 – 4x + 3, and f(2) = -1. Find f! 12. Given f = x – a, g = 3x + b. gf(0) = 1, fg (1) = (gf)-1 (1). Calculate f-1 (1) + g(1)!
Latihan Matematika SMA XI IPA
Composite and Inverse
Malang Study Club
13. Find a! a. f = x2 – 2, g = sin x, and fg (a) = −
7 4
, 0 ≤ a ≤ 2π
b. f = 3 + 2x, g = 2 + x, h = 2x, and (fgh)-1 (a) = -1 c. f = 2x2 + 3x + a and f-1 (1) = 3 d. f = x2, g = 1 – 2x, and fg(a) = 25 14. If f = 52x, calculate f-1(25)! 15. Given f =
5x + 3 2x − 1
,x ≠
1 2
and g = 3 x + 2 . Determine f-1g!
Latihan Matematika SMA XI IPA
Composite and Inverse