Column.pdf

  • Uploaded by: Cyrus Hong
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Column.pdf as PDF for free.

More details

  • Words: 4,416
  • Pages: 32
1.0 INTRODUCTION Column is the structural component that transfers compression load from beams to the footings. In other words, column is a compression member. Columns are divided into two classification namely short column or long column. This classification depends on the slenderness ratio of the column. Short column will fail by crushing while long column will fail in buckling. Thus, it is important to determine the classification of the column as long column is prone to buckling. When the column buckles, it will exert additional moment to the section which will eventually leads to failure. This report only covers the design of short column using Eurocode 2 column design chart.

2.0 PROCEDURE (ONLY FOR SHORT COLUMN) Step 1. Determine whether the column is a short or long column by computing slenderness ratio (𝝀)

πœ†=

𝑙0 𝑖

=

𝑙0

[Equation 1]

√𝐼/𝐴

Where 𝑙0 is the effective height of the column. 𝑖 is the radius of gyration about the axis considered. 𝐼 is the second moment of area of the section about the axis. 𝐴 is the cross-sectional area of column

- 𝑙0 for braced members (Note that only braced members is covered in the course)can be computed with the following formula: 𝑙0

π‘˜

π‘˜

1 2 = 0.5 𝑙 √(1 + 0.45+π‘˜ ) (1 + 0.45+π‘˜ ) 1

[Equation 2]

2

Where 𝑙 is the clear height of the column between end restraint. π‘˜1 and π‘˜2 is the relative flexibilities of the rotational restraints at ends β€˜1’ and β€˜2’ of the column respectively. π‘˜

2 For column connected to footing, assume (1 + 0.45+π‘˜ )=2 2

k=

π‘π‘œπ‘™π‘’π‘šπ‘› 𝑠𝑑𝑖𝑓𝑓𝑛𝑒𝑠𝑠 βˆ‘ π‘π‘’π‘Žπ‘š 𝑠𝑑𝑖𝑓𝑓𝑛𝑒𝑠𝑠

(𝐸𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

=βˆ‘

2(𝐸𝐼/𝑙)π‘π‘’π‘Žπ‘š

(𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

=βˆ‘

2(𝐼/𝑙)π‘π‘’π‘Žπ‘š

1

- Then, compare πœ† with πœ†π‘šπ‘–π‘› .

πœ†π‘šπ‘–π‘› = 26.2 / βˆšπ‘πΈπ· /𝐴𝑐 𝑓𝑐𝑑

[Equation 3]

- If πœ† > πœ†π‘šπ‘–π‘› , then the column is a long column. - If πœ† < πœ†π‘šπ‘–π‘› , then the column is a short column. Step 2. Find the loadings on the column. - First, the load distribution of the slab must be determined. - Then using the load distributed to the beam from the slab, half of the load will be transferred to the column, while the other half of the load is transferred to the adjacent column. Half length

Half length

Figure 1 Load transfer from beam to column - Note that to have the worst case scenario, for interior column, the longer beam has to be under maximum loading (1.35Gk + 1.5Qk) while the short beam has to be under minimum loading (1.35Gk).

Max (1.35Gk + 1.5Qk)

Max (1.35Gk + 1.5Qk) Min (1.35Gk)

Corner Column

Interior Column

Figure 2 worst case scenarios for corner column and interior column 2

Step 3. Find the moment (𝑀𝑧 π‘Žπ‘›π‘‘ 𝑀𝑦 ) acting on the column - Using the load on the beam, find Fixed End Moment (FEM) = w𝐿2 /12.

Max (1.35Gk + 1.5Qk) Min (1.35Gk)

FEM = w𝐿2 /12

FEM = w𝐿2 /12

- For an example, we start from the z-z axis. - Using the net moment, multiply it with the distribution factor, k and add k=

π‘π‘œπ‘™π‘’π‘šπ‘› 𝑠𝑑𝑖𝑓𝑓𝑛𝑒𝑠𝑠 βˆ‘ π‘π‘’π‘Žπ‘š 𝑠𝑑𝑖𝑓𝑓𝑛𝑒𝑠𝑠

(𝐸𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

=βˆ‘

2(𝐸𝐼/𝑙)π‘π‘’π‘Žπ‘š

𝑁𝐸𝐷 𝑙0 400

to get 𝑀𝑧 .

(𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

=βˆ‘

2(𝐼/𝑙)π‘π‘’π‘Žπ‘š

- Repeat the same steps for the y-y axis to get 𝑀𝑦 Step 3. Check for biaxial bending - Note that for a normal frame, moment will always come from two different axis (z or y-axis) - Thus, it is important to check for biaxial bending. - First, find the eccentricities of both axis (𝑒𝑧 π‘Žπ‘›π‘‘ 𝑒𝑦 )

𝑒𝑧 =

𝑀𝑧 𝑁𝐸𝐷,𝑧

,

𝑒𝑦 =

𝑀𝑦

[Equation 4]

𝑁𝐸𝐷,𝑦

- Then, check the ratio of the corresponding eccentricities that satisfies one of the conditions. Either

𝑒𝑧 β„Ž

/

𝑒𝑦 𝑏

≀ 0.2

or

𝑒𝑦 𝑏

/

𝑒𝑧 β„Ž

≀ 0.2

- If either one of the condition is satisfied, then there is a biaxial bending.

3

Step 4. Compute 𝑴𝑬𝑫 Y

d’

h Z

Z

h’

Mz

b’

d2

b My Y

Figure 3 Section of column with biaxial bending

- Then check for the dominating moment: If

𝑀𝑧 β„Žβ€²

β‰₯

𝑀𝑦 𝑏′

Then 𝑀𝐸𝐷 = 𝑀 β€² 𝑧 = 𝑀𝑧 + 𝛽

If

𝑀𝑧 β„Žβ€²

≀

β„Žβ€² 𝑏′

Γ— 𝑀𝑦

[Equation 5]

Γ— 𝑀𝑧

[Equation 6]

𝑀𝑦 𝑏′

Then 𝑀𝐸𝐷 = 𝑀 β€² 𝑦 = 𝑀𝑦 + 𝛽

Where 𝛽 = 1 βˆ’

𝑏′ β„Žβ€²

𝑁𝐸𝐷 π‘β„Žπ‘“π‘π‘˜

4

Step 5. Compute 𝑨𝒔,π’“π’†π’’π’–π’Šπ’“π’†π’… - Using values of

𝑁𝐸𝐷 π‘β„Žπ‘“π‘π‘˜

and

𝑀𝐸𝐷 π‘β„Ž2 𝑓

π‘π‘˜

, to find

𝐴𝑠 π‘“π‘¦π‘˜ π‘β„Žπ‘“π‘π‘˜

from the column chart.

- To determine which chart to use, you have to check d’/h ratio, each ratio has a different chart. 𝐴𝑠 π‘“π‘¦π‘˜

- Once obtain the value of π‘β„Žπ‘“ , 𝐴𝑠 can be computed by substituting all the other known π‘π‘˜

values. 𝐴𝑠 π‘“π‘¦π‘˜

- If π‘β„Žπ‘“ = 0, then 𝐴𝑠 = minimum area of reinforcement allowed = 0.002bh. π‘π‘˜ - Do check for maximum area of reinforcement = 0.08bh.

Figure 4 Column Design Chart for d2/h = 0.25

5

3.0 DATA & RESULT

B

A 6.069m

C 6.069m

D 6.069m

1 3.069m

2 3.069m

3 Figure 5 Plan View

beam

300mm

v 600mm

b =300mm

Assume h =300mm

h =3m

Figure 6 Cross Section of Column and Beam

Figure 7. Section of Column

- π‘“π‘π‘˜ = 30𝑁/π‘šπ‘š2 π‘“π‘¦π‘˜ = 500𝑁/π‘šπ‘š2 Diameter of main steel bar = 16mm - It can be seen that there are four columns to be designed: 1. Column A1, A3, D1, D3 2. Column B1, B3, C1, C3 3. Column A2 and D2 4. Column B2 and C2

6

3.1 Design of Column A1, A3, D1, D3 - Note that the loading on the beams are taken from progress report 2. 6.069m

3.069m

38.96kN/m

28.39kN/m

Z-Z axis

Y-Y axis Figure 8 Loading on Column A1, A3, D1, D3

Step 1. Determine whether the column is a short or long column. Although column is has a square cross section; however the beam connected to the column from Z-Z axis (6.069m) is longer than the beam from Y-Y axis (3.069m). Thus, the more critical case will be from Z-Z axis. Therefore the checking is done for Z-Z axis of the column.

𝑙 = 3.0 – 0.6 = 2.4m πΌπ‘π‘œπ‘™π‘’π‘šπ‘›

π‘β„Ž3 = 12

=

πΌπ‘π‘’π‘Žπ‘š

300 Γ—3003

π‘β„Ž3 = 12 =

12 πŸ”

= πŸ”πŸ•πŸ“ Γ— 𝟏𝟎 π’Žπ’Ž

πŸ’

300 Γ—6003 12

= πŸ“πŸ’πŸŽπŸŽ Γ— πŸπŸŽπŸ” π’Žπ’ŽπŸ’

(𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

π‘˜1 = βˆ‘ =

2(𝐼/𝑙)π‘π‘’π‘Žπ‘š πŸ”πŸ•πŸ“Γ—πŸπŸŽπŸ” /2400

2(5400Γ—106 π‘šπ‘š4 )/6069

= 0.158

7

𝑙0

π‘˜

π‘˜

1 2 = 0.5 𝑙 √(1 + 0.45+π‘˜ ) (1 + 0.45+π‘˜ ) 1

= 0.5 (2400)√(1 +

𝑖 = √𝐼/𝐴

2

0.158 0.45+0.158

= √675 Γ— 106 /(300 Γ— 300) = 86.60mm

) (2)

= 1904.84mm Assume that (1 +

πœ†= =

𝑙0

π‘˜2 0.45+π‘˜2

) = 2 as

the column is connected to footing.

𝑖 1904.84 86.60

= 22

𝑁𝐸𝐷,𝑍 =

38.96 Γ— 6.069

2 = 118.22kN

𝑁𝐸𝐷,π‘Œ =

28.39 Γ— 3.069

2 = 43.56kN

𝑁𝐸𝐷 = 𝑁𝐸𝐷,𝑍 + 𝑁𝐸𝐷,π‘Œ = 118.22 + 43.56 = 161.78kN

πœ†π‘šπ‘–π‘› = 26.2 / βˆšπ‘πΈπ· /𝐴𝑐 𝑓𝑐𝑑 30

= 26.2 / √161.78 Γ— 103 /300 Γ— 300 Γ— (0.85 Γ— 1.5) = 80.57 > 𝝀 = 22 ∴ The column is a short column.

8

Step 2. Find the loadings on the column.

𝑁𝐸𝐷 = 161.78kN (found from step 1) Step 3. Find the moment (𝑴𝒛 𝒂𝒏𝒅 π‘΄π’š ) acting on the column 6.069m

3.069m

38.96kN/m

28.39kN/m

FEM = w𝐿2 /12

FEM = w𝐿2 /12

Z-Z axis

Y-Y axis Figure 9 FEM from beam to Column A1, A3, D1, D3

For moment 𝑴𝒛 Member stiffness: π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› = (𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘› = 675 Γ— 106 /2400 = 281250

π‘˜π‘π‘’π‘Žπ‘š = 0.5(𝐼/𝑙)π‘π‘’π‘Žπ‘š = 0.5(5400 Γ— 106 π‘šπ‘š4 )/6069 = 444883.84

Distribution Factor for the column = =

π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› βˆ‘π‘˜

281250 281250+ 444883.84

= 0.387 πΉπΈπ‘€π‘βˆ’π‘ =

=

w𝐿2 12

(38.96)(6.069)2

12 = 119.58kNm

𝑀𝑧 = πΉπΈπ‘€π‘βˆ’π‘ Γ— Distribution Factor + = 119.58 Γ— 0.387 +

𝑁𝐸𝐷,𝑧 𝑙0

400 118.22(1904.84 Γ— 10βˆ’3 ) 400

= 46.84kNm 9

For moment 𝑴𝒀 Member stiffness: π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› = (𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘› = 675 Γ— 106 /2400 = 281250

π‘˜π‘π‘’π‘Žπ‘š =0.5 (𝐼/𝑙)π‘π‘’π‘Žπ‘š = 0.5(5400 Γ— 106 π‘šπ‘š4 )/3069 = 879,765.40

Distribution Factor for the column =

π‘˜π‘π‘œπ‘™π‘’π‘šπ‘›

=

βˆ‘π‘˜

281250 281250+ 879,765.40

= 0.242 w𝐿2

πΉπΈπ‘€π‘Œβˆ’π‘Œ =

=

π‘€π‘Œ = πΉπΈπ‘€π‘Œβˆ’π‘Œ Γ— Distribution Factor +

12

(28.39)(3.069)2

= 22.28 Γ— 0.242 +

12

= 22.28kNm

𝑁𝐸𝐷,𝑦 𝑙0

400 43.56(1904.84 Γ— 10βˆ’3 ) 400

= 5.60kNm

Step 3. Check for biaxial bending

𝑒𝑧 =

=

𝑒𝑧 β„Ž

𝑀𝑧

𝑒𝑦 =

𝑁𝐸𝐷,𝑍

46.84

=

118.22

𝑀𝑦 𝑁𝐸𝐷,π‘Œ

5.60 43.56

= 0.396m

= 0.129m

= 396mm

= 129mm

/

𝑒𝑦 𝑏

=

396 300

/

129

𝑒𝑦

300

𝑏

𝑒𝑧 β„Ž

/

𝑒𝑦 𝑏

> 0.2 and

𝑒𝑧 β„Ž

=

129 300

/

396 300

= 0.33 >0.2

= 3.07 > 0.2 ∴ Since

/

𝑒𝑦 𝑏

/

𝑒𝑧 β„Ž

> 0.2, thus there is biaxial bending.

10

Step 4. Compute 𝑴𝑬𝑫 Y

d’

300mm Z

Z

h’

Mz

𝑑2

b’ 300mm

My Y

Figure 3 Section of column with biaxial bending (re-illustrated for easy reference) d’ = 𝑑2 = Cover + βˆ…/2 = 55 + 16/2 = 63mm

𝑀𝑧

=

β„Žβ€² 𝑀𝑦 𝑏′

As

=

𝑀𝑧 β„Žβ€²

46.84 Γ—106 237 5.60 Γ—106 237

β‰₯

𝑀𝑦 𝑏′

b’ = b -𝑑2

h’ = h – d’ = 300 -63 = 237mm

= 300 – 63 = 237mm

= 197.64 Γ— πŸπŸŽπŸ‘N

= 23.63 Γ— πŸπŸŽπŸ‘ N

, thus:

𝑀𝐸𝐷 = 𝑀′ 𝑧 = 𝑀𝑧 + 𝛽

β„Žβ€² 𝑏′

Γ— 𝑀𝑦

= 46.84 + 0.94 = 52.10kNm

237 237

Γ— 5.60

𝛽=1βˆ’

𝑁𝐸𝐷 π‘β„Žπ‘“π‘π‘˜

=1βˆ’

161.78Γ—103 (300)(300)30

= 0.94

11

Step 5. Compute As, required. 𝑁𝐸𝐷 π‘β„Žπ‘“π‘π‘˜

161.78Γ—103 = (300)(300)30

= 0.06 52.10Γ—106 = π‘β„Ž2 π‘“π‘π‘˜ (300)(3002 )30 𝑀𝐸𝐷

= 0.06 Check: 𝑑 β€² /β„Ž = 63/300 = 0.21 ∴ Use 𝑑′ /𝒉 = 0.25 chart

From Column Design Chart 𝐴𝑠 π‘“π‘¦π‘˜ π‘β„Žπ‘“π‘π‘˜

= 0.10

𝐴𝑠,π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ =

0.10Γ— 300 Γ—300Γ— 30

= 540π’Žπ’Ž

500

𝟐

𝐴𝑠,π‘šπ‘–π‘› = minimum area of reinforcement allowed = 0.002(300)(300) = 180π‘šπ‘š2 𝐴𝑠,π‘šπ‘Žπ‘₯ = maximum area of reinforcement allowed = 0.08(300)(300) = 7200π‘šπ‘š2 Number of steel bars to be provided: For rectangular column, a minimum of four bars is required (one in each corner).Bar diameter should not be less than 12mm. ∴ As 𝐴𝑠,π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ is so small, 4 bars of steel bar (H16) is adequate. 𝐴𝑠,π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 4 Γ— πœ‹ 162 /4 = 804.25π’Žπ’ŽπŸ Maximum shear link spacing = min {20 Γ— size of compression bar; least lateral dimension of the column; 400mm} = min {20 Γ— 16 = 320mm; 300mm; 400mm} = 300mm ∴ Provide Shear link (H10) with spacing 300mm c/c. 12

3.2 Design of Column B1, B3, C1, C3 - Note that the loading on the beams are taken from progress report 2.

6.069m 3.069m

6.069m 38.96kN/m 28.43kN/m

56.78kN/m

Z-Z axis

Y-Y axis

Figure 10 Loading on Column B1, B3, C1, C3 Step 1. Determine whether the column is a short or long column. Although column is has a square cross section; however the beam connected to the column from Z-Z axis (6.069m) is longer than the beam from Y-Y axis (3.069m). Thus, the more critical case will be from Z-Z axis. Therefore the checking is done for Z-Z axis of the column.

𝑙 = 3.0 – 0.6 = 2.4m πΌπ‘π‘œπ‘™π‘’π‘šπ‘›

π‘β„Ž3 = 12

=

πΌπ‘π‘’π‘Žπ‘š

300 Γ—3003

π‘β„Ž3 = 12 =

12

= πŸ”πŸ•πŸ“ Γ— πŸπŸŽπŸ” π’Žπ’ŽπŸ’

300 Γ—6003 12

=πŸ“πŸ’πŸŽπŸŽ Γ— πŸπŸŽπŸ” π’Žπ’ŽπŸ’

(𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

π‘˜1 = βˆ‘ =

2(𝐼/𝑙)π‘π‘’π‘Žπ‘š

πŸ”πŸ•πŸ“Γ—πŸπŸŽπŸ” /2400

2[

2(5400Γ—106 π‘šπ‘š4 ) 6069

]

= 0.08 13

𝑙0

π‘˜

π‘˜

1 2 = 0.5 𝑙 √(1 + 0.45+π‘˜ ) (1 + 0.45+π‘˜ ) 1

= 0.5 (2400)√(1 +

𝑖 = √𝐼/𝐴

2

0.08 0.45+0.08

= √675 Γ— 106 /(300 Γ— 300) = 86.60mm

) (2)

= 1820.64mm Assume that (1 +

πœ†= =

𝑙0

π‘˜2 0.45+π‘˜2

) = 2 as

the column is connected to footing.

𝑖 1820.64 86.60

= 21.02

𝑁𝐸𝐷,𝑍 = =

𝑀1 𝐿

+

𝑀2 𝐿

2 2 38.96 Γ— 6.069

2 = 204.5kN

𝑁𝐸𝐷,π‘Œ =

+

28.43 Γ— 6.069 2

=

𝑀𝐿 2 56.78 Γ— 3.069

2 = 87.13kN

𝑁𝐸𝐷 = 𝑁𝐸𝐷,𝑍 + 𝑁𝐸𝐷,π‘Œ = 204.5 + 87.13 = 291.63kN

πœ†π‘šπ‘–π‘› = 26.2 / βˆšπ‘πΈπ· /𝐴𝑐 𝑓𝑐𝑑 30

= 26.2 / √291.63 Γ— 103 /300 Γ— 300 Γ— (0.85 Γ— 1.5) = 60 > 𝝀 = 21.02 ∴ The column is a short column.

14

Step 2. Find the loadings on the column.

𝑁𝐸𝐷 = 291.63kN (found from step 1) Step 3. Find the moment (𝑴𝒛 𝒂𝒏𝒅 π‘΄π’š ) acting on the column 6.069m

3.069m 6.069m 56.78kN/m

38.96kN/m 28.43kN/m

FEM = w𝐿2 /12 FEM = w𝐿2 /12

FEM = w𝐿2 /12

Z-Z axis

Y-Y axis Figure 11 FEM from beam to Column B1, B3, C1, C3

For moment 𝑴𝒛 Member stiffness: π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› = (𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘› = 675 Γ— 106 /2400 = 281250

π‘˜π‘π‘’π‘Žπ‘š = 0.5(𝐼/𝑙)π‘π‘’π‘Žπ‘š = 0.5(5400 Γ— 106 π‘šπ‘š4 )/6069 = 444,883.84

Distribution Factor for the column =

π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› βˆ‘π‘˜

=

281250 281250+ 2 Γ— 444,883.84

= 0.24 πΉπΈπ‘€π‘βˆ’π‘ = =

w1 𝐿2 w2 𝐿2 12

-

𝑀𝑧 = πΉπΈπ‘€π‘βˆ’π‘ Γ— Distribution Factor +

12

(38.96)(6.069)2

12 = 32.32kNm

βˆ’

(28.43)(6.069) 12

2

= 32.32 Γ— 0.24 +

𝑁𝐸𝐷,𝑧 𝑙0

400 204.5 Γ—1820.64 Γ— 10βˆ’3 400

= 8.69kNm 15

For moment 𝑴𝒀 Member stiffness: π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› = (𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

π‘˜π‘π‘’π‘Žπ‘š = (𝐼/𝑙)π‘π‘’π‘Žπ‘š = 0.5(5400 Γ— 106 π‘šπ‘š4 )/3069 = 879,765.40

6

= 675 Γ— 10 /2400 = 281250

Distribution Factor for the column =

π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› βˆ‘π‘˜ 281250

=

281250+ 879,765.40

= 0.24 w𝐿2

πΉπΈπ‘€π‘Œβˆ’π‘Œ =

π‘€π‘Œ = πΉπΈπ‘€π‘Œβˆ’π‘Œ Γ— Distribution Factor +

12

(56.78)(3.069)2

=

12

= 44.57 Γ— 0.24 +

= 44.57kNm

𝑁𝐸𝐷,𝑦 𝑙0

400 87.13 Γ—1820.64 Γ— 10βˆ’3 400

= 11.09kNm

Step 3. Check for biaxial bending

𝑒𝑧 = =

𝑀𝑧

𝑒𝑦 =

𝑁𝐸𝐷,𝑧 8.69

=

204.5

= 0.04m

β„Ž

/

𝑒𝑦 𝑏

= 𝑒𝑧

40 300

β„Ž

/

87.13

= 127mm

/

127

𝑒𝑦

300

𝑏

𝑒𝑦 𝑏

> 0.2 and

/

𝑒𝑧 β„Ž

=

127 300

/

40 300

= 3.175 > 0.2

= 0.31 > 0.2 ∴ Since

𝑁𝐸𝐷,𝑦 11.09

= 0.127m

= 40mm 𝑒𝑧

𝑀𝑦

𝑒𝑦 𝑏

/

𝑒𝑧 β„Ž

> 0.2, thus there is biaxial bending.

16

Step 4. Compute 𝑴𝑬𝑫 Y

d’

300mm Z

Z

h’

Mz

𝑑2

b’ 300mm

My Y

Figure 3 Section of column with biaxial bending (re-illustrated for easy reference) d’ = 𝑑2 = Cover + βˆ…/2 = 55 + 16/2 = 63mm

𝑀𝑧 β„Žβ€² 𝑀𝑦 𝑏′

As

= =

𝑀𝑦 𝑏′

8.69 Γ—106 237

β‰₯ π‘€β„Žβ€²π‘§

= 300 – 63 = 237mm

= 36.67Γ— πŸπŸŽπŸ‘ N

11.09 Γ—106 237

b’ = b -𝑑2

h’ = h – d’ = 300 -63 = 237mm

= 46.79 Γ— πŸπŸŽπŸ‘N

thus:

𝑀𝐸𝐷 = 𝑀′ 𝑦 = 𝑀𝑦 + 𝛽

𝑏′ β„Žβ€²

Γ— 𝑀𝑧

237

= 11.09 + 0.89 237 Γ— 8.69 = 18.82kNm

𝛽=1βˆ’

𝑁𝐸𝐷 π‘β„Žπ‘“π‘π‘˜

=1βˆ’

291.63Γ—103 (300)(300)30

= 0.89

17

Step 5. Compute As, required. 291.63Γ—103

𝑁𝐸𝐷

= (300)(300)30

π‘β„Žπ‘“π‘π‘˜

= 0.11 18.82Γ—106

𝑀𝐸𝐷 π‘β„Ž2 π‘“π‘π‘˜

= (300)(3002 )30 = 0.02

Check: 𝑑 β€² /β„Ž = 63/300 = 0.21 ∴ Use 𝑑′ /𝒉 = 0.25 chart

From Column Design Chart 𝐴𝑠 π‘“π‘¦π‘˜ π‘β„Žπ‘“π‘π‘˜

=0

𝐴𝑠,π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ = minimum area of reinforcement allowed = 0.002(300)(300) = 180π’Žπ’ŽπŸ 𝐴𝑠,π‘šπ‘Žπ‘₯ = maximum area of reinforcement allowed = 0.08(300)(300) = 7200π‘šπ‘š2 Number of steel bars to be provided: For rectangular column, a minimum of four bars is required (one in each corner).Bar diameter should not be less than 12mm ∴ As 𝐴𝑠,π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ is so small, 4 bars of steel bar (H16) is adequate. 𝐴𝑠,π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 4 Γ— πœ‹ 162 /4 = 804.25π’Žπ’ŽπŸ

Maximum shear link spacing = min {20 Γ— size of compression bar; least lateral dimension of the column; 400mm} = min {20 Γ— 16 = 320mm; 300mm; 400mm} = 300mm ∴ Provide Shear link (H10) with spacing 300mm c/c.

18

3.3 Design of Column A2 and D2 - Note that the loading on the beams are taken from progress report 2.

3.069m

6.069m

3.069m 28.39kN/m

77.91kN/m

20.72kN/m

Z-Z axis

Y-Y axis Figure 12 Loading on Column A2 and D2

Step 1. Determine whether the column is a short or long column. Although column is has a square cross section; however the beam connected to the column from Z-Z axis (6.069m) is longer than the beam from Y-Y axis (3.069m). Thus, the more critical case will be from Z-Z axis. Therefore the checking is done for Z-Z axis of the column.

𝑙 = 3.0 – 0.6 = 2.4m πΌπ‘π‘œπ‘™π‘’π‘šπ‘›

π‘β„Ž3 = 12

=

300 Γ—3003 12

= πŸ”πŸ•πŸ“ Γ— πŸπŸŽπŸ” π’Žπ’ŽπŸ’

πΌπ‘π‘’π‘Žπ‘š

π‘β„Ž3 = 12 =

300 Γ—6003 12

=πŸ“πŸ’πŸŽπŸŽ Γ— πŸπŸŽπŸ” π’Žπ’ŽπŸ’

(𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

π‘˜1 = βˆ‘ =

2(𝐼/𝑙)π‘π‘’π‘Žπ‘š

πŸ”πŸ•πŸ“Γ—πŸπŸŽπŸ” /2400 2(5400Γ—106 π‘šπ‘š4 ) 6069

= 0.158 19

𝑙0

π‘˜

𝑖 = √𝐼/𝐴

π‘˜

1 2 = 0.5 𝑙 √(1 + 0.45+π‘˜ ) (1 + 0.45+π‘˜ ) 1

= 0.5 (2400)√(1 +

2

0.158 0.45+0.158

= √675 Γ— 106 /(300 Γ— 300) = 86.60mm

) (2)

= 1904.84mm Assume that (1 +

πœ†= =

𝑙0

π‘˜2 0.45+π‘˜2

) = 2 as

the column is connected to footing.

𝑖 1904.84 86.60

= 22

𝑁𝐸𝐷,𝑍 = =

𝑀𝐿 2 77.91 Γ— 6.069

𝑁𝐸𝐷,π‘Œ =

2 = 236.42kN

=

𝑀1 𝐿

+

𝑀2 𝐿

2 2 28.39 Γ— 3.069

2 = 75.36kN

+

20.72 Γ— 3.069 2

𝑁𝐸𝐷 = 𝑁𝐸𝐷,𝑍 + 𝑁𝐸𝐷,π‘Œ = 236.42 + 75.36 = 311.78kN

πœ†π‘šπ‘–π‘› = 26.2 / βˆšπ‘πΈπ· /𝐴𝑐 𝑓𝑐𝑑 30

= 26.2 / √311.78 Γ— 103 /300 Γ— 300 Γ— (0.85 Γ— 1.5) = 58.04 > 𝝀 = 21.02 ∴ The column is a short column.

20

Step 2. Find the loadings on the column.

𝑁𝐸𝐷 = 311.78kN (found from step 1)

Step 3. Find the moment (𝑴𝒛 𝒂𝒏𝒅 π‘΄π’š ) acting on the column

3.069m

6.069m

3.069m 28.39kN/m

77.91kN/m

20.72kN/m

FEM = w𝐿2 /12

FEM = w𝐿2 /12 FEM = w𝐿2 /12

Z-Z axis

Y-Y axis Figure 13 FEM on Column A2 and D2

For moment 𝑴𝒛 Member stiffness: π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› = (𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘› = 675 Γ— 106 /2400 = 281250

π‘˜π‘π‘’π‘Žπ‘š = 0.5(𝐼/𝑙)π‘π‘’π‘Žπ‘š = 0.5(5400 Γ— 106 π‘šπ‘š4 )/6069 = 444,883.84

Distribution Factor for the column =

π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› βˆ‘π‘˜ 281250

=

281250+ 444,883.84

= 0.387

21

πΉπΈπ‘€π‘βˆ’π‘ = =

w𝐿2

𝑀𝑧 = πΉπΈπ‘€π‘βˆ’π‘ Γ— Distribution Factor +

12

(77.91)(6.069)2

= 239.14 Γ— 0.387 +

12 = 239.14kN

𝑁𝐸𝐷,𝑧 𝑙0

400 236.42 Γ—1904.84 Γ— 10βˆ’3 400

=93.67kNm

For moment 𝑴𝒀 Member stiffness: π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› = (𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

π‘˜π‘π‘’π‘Žπ‘š = (𝐼/𝑙)π‘π‘’π‘Žπ‘š = 0.5(5400 Γ— 106 π‘šπ‘š4 )/3069 = 879,765.40

6

= 675 Γ— 10 /2400 = 281250

Distribution Factor for the column =

π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› βˆ‘π‘˜

=

281250 281250+ 2 Γ— 879,765.40

= 0.138 w 𝐿2 w2 𝐿2

1 𝑁𝐸𝐷,𝑦 𝑙0 πΉπΈπ‘€π‘Œβˆ’π‘Œ = 12 π‘€π‘Œ = πΉπΈπ‘€π‘Œβˆ’π‘Œ Γ— Distribution Factor + 12 400 (28.39)(3.069)2 (20.72)(3.069)2 75.36 Γ—1904.84 Γ— 10βˆ’3 = βˆ’ = 6.02 Γ— 0.138 + 12 12 400 = 1.19kNm = 6.02kNm

Step 3. Check for biaxial bending

𝑒𝑧 = =

𝑀𝑧

𝑒𝑦 =

𝑁𝐸𝐷,𝑧 93.67

=

236.42

= 0.396m

β„Ž

/

𝑒𝑦 𝑏

= 𝑒𝑧

396 300

β„Ž

/

75.36

= 16mm

/

16

𝑒𝑦

300

𝑏

= 24.75 > 0.2 ∴ Since

𝑁𝐸𝐷,𝑦 1.19

= 0.016m

= 396mm 𝑒𝑧

𝑀𝑦

𝑒𝑦 𝑏

/

𝑒𝑧 β„Ž

=

16 300

/

396 300

= 0.04

> 0.2, thus there is biaxial bending.

22

Step 4. Compute 𝑴𝑬𝑫 Y

d’

300mm Z

Z

h’

Mz

𝑑2

b’ 300mm

My Y

Figure 3 Section of column with biaxial bending (re-illustrated for easy reference) d’ = 𝑑2 = Cover + βˆ…/2 = 55 + 16/2 = 63mm

𝑀𝑧

=

β„Žβ€² 𝑀𝑦 𝑏′

As

=

𝑀𝑧 β„Žβ€²

93.67 Γ—106 237 1.19 Γ—106 237

β‰₯

𝑀𝑦 𝑏′

b’ = b -𝑑2

h’ = h – d’ = 300 -63 = 237mm

= 300 – 63 = 237mm

= 395.23 Γ— πŸπŸŽπŸ‘ N

= 5.02

Γ— πŸπŸŽπŸ‘ N

thus:

𝑀𝐸𝐷 = 𝑀′ 𝑧 = 𝑀𝑧 + 𝛽

β„Žβ€² 𝑏

Γ— 𝑀𝑦

237

= 93.67 + 0.88 237 Γ— 1.19 = 94.72kNm

𝛽=1βˆ’

𝑁𝐸𝐷 π‘β„Žπ‘“π‘π‘˜

=1βˆ’

311.78Γ—103 (300)(300)30

= 0.88

23

Step 5. Compute As, required. 311.78Γ—103

𝑁𝐸𝐷

= (300)(300)30

π‘β„Žπ‘“π‘π‘˜

= 0.12 94.72Γ—106

𝑀𝐸𝐷 π‘β„Ž2 π‘“π‘π‘˜

= (300)(3002 )30 = 0.12

Check: 𝑑 β€² /β„Ž = 63/300 = 0.21 ∴ Use 𝑑′ /𝒉 = 0.20 chart for 6 steel bar

From Column Design Chart 𝐴𝑠 π‘“π‘¦π‘˜ π‘β„Žπ‘“π‘π‘˜

= 0.2

𝐴𝑠,π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ =

0.2Γ— 300 Γ—300Γ— 30 500

= 1080π’Žπ’ŽπŸ

𝐴𝑠,π‘šπ‘–π‘› = minimum area of reinforcement allowed = 0.002(300)(300) = 180π’Žπ’ŽπŸ 𝐴𝑠,π‘šπ‘Žπ‘₯ = maximum area of reinforcement allowed = 0.08(300)(300) = 7200π‘šπ‘š2 Number of steel bars to be provided: According to the chart, 6 steel bars are required. For our project H16 is used. 𝐴𝑠,π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 6 Γ— πœ‹ 162 /4 = 1206.37π’Žπ’ŽπŸ Maximum shear link spacing = min {20 Γ— size of compression bar; least lateral dimension of the column; 400mm} = min {20 Γ— 16 = 320mm; 300mm; 400mm} = 300mm ∴ Provide Shear link (H10) with spacing 300mm c/c.

24

3.4 Design of Column B2 and C2 - Note that the loading on the beams are taken from progress report 2.

6.069m 6.069m 77.91kN/m 56.85kN/m

Z-Z axis 3.069m

3.069m

56.78kN/m 41.43kN/m

Y-Y axis Figure 14 Loading on Column B2 and C2

25

Step 1. Determine whether the column is a short or long column. Although column is has a square cross section; however the beam connected to the column from Z-Z axis (6.069m) is longer than the beam from Y-Y axis (3.069m). Thus, the more critical case will be from Z-Z axis. Therefore the checking is done for Z-Z axis of the column.

𝑙 = 3.0 – 0.6 = 2.4m πΌπ‘π‘œπ‘™π‘’π‘šπ‘›

π‘β„Ž3 = 12

=

πΌπ‘π‘’π‘Žπ‘š

300 Γ—3003

π‘β„Ž3 = 12 =

12 πŸ”

= πŸ”πŸ•πŸ“ Γ— 𝟏𝟎 π’Žπ’Ž

πŸ’

300 Γ—6003 12

=πŸ“πŸ’πŸŽπŸŽ Γ— πŸπŸŽπŸ” π’Žπ’ŽπŸ’

(𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

π‘˜1 = βˆ‘

2(𝐼/𝑙)π‘π‘’π‘Žπ‘š

πŸ”πŸ•πŸ“Γ—πŸπŸŽπŸ” /2400

=

2Γ—

2(5400Γ—106 π‘šπ‘š4 ) 6069

= 0.079

𝑙0

π‘˜

π‘˜

1 2 = 0.5 𝑙 √(1 + 0.45+π‘˜ ) (1 + 0.45+π‘˜ ) 1

= 0.5 (2400)√(1 +

0.079 0.45+0.079

𝑖 = √𝐼/𝐴

2

) (2)

= √675 Γ— 106 /(300 Γ— 300) = 86.60mm

= 1819.37mm Assume that (1 +

πœ†= =

𝑙0

π‘˜2 0.45+π‘˜2

) = 2 as

the column is connected to footing.

𝑖 1819.37 86.60

= 21

26

𝑁𝐸𝐷,𝑍 = =

𝑀1 𝐿

+

𝑀2 𝐿

2 2 77.91 Γ— 6.069

2 = 408.93kN

𝑁𝐸𝐷,π‘Œ = 56.85 Γ— 6.069 + 2

=

𝑀1 𝐿

+

𝑀2 𝐿

2 2 56.78 Γ— 3.069

2 = 150.70kN

+

41.43 Γ— 3.069 2

𝑁𝐸𝐷 = 𝑁𝐸𝐷,𝑍 + 𝑁𝐸𝐷,π‘Œ = 408.93 + 150.70 = 559.63kN

πœ†π‘šπ‘–π‘› = 26.2 / βˆšπ‘πΈπ· /𝐴𝑐 𝑓𝑐𝑑 30

= 26.2 / √559.63 Γ— 103 /300 Γ— 300 Γ— (0.85 Γ— 1.5) = 43.32 > 𝝀 = 21 ∴ The column is a short column.

27

Step 2. Find the loadings on the column.

𝑁𝐸𝐷 = 559.63kN (found from step 1)

Step 3. Find the moment (𝑴𝒛 𝒂𝒏𝒅 π‘΄π’š ) acting on the column

6.069m

6.069m

77.91kN/m 56.85kN/m

FEM = w𝐿2 /12

Z-Z axis

3.069m

3.069m

56.78kN/m 41.43kN/m

FEM = w𝐿2 /12

FEM = w𝐿2 /12

Y-Y axis Figure 15 FEM on Column B2 and C2

28

For moment 𝑴𝒛 Member stiffness: π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› = (𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘› = 675 Γ— 106 /2400 = 281250

π‘˜π‘π‘’π‘Žπ‘š = 0.5(𝐼/𝑙)π‘π‘’π‘Žπ‘š = 0.5(5400 Γ— 106 π‘šπ‘š4 )/6069 = 444,883.84

Distribution Factor for the column =

π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› βˆ‘π‘˜

=

281250 281250+ 2 Γ— 444,883.84

= 0.24 πΉπΈπ‘€π‘βˆ’π‘ = =

w1 𝐿2 w2 𝐿2 12

-

𝑀𝑧 = πΉπΈπ‘€π‘βˆ’π‘ Γ— Distribution Factor +

12

(77.91)(6.069)2

12 = 64.64kN

βˆ’

(56.85)(6.069) 12

2

= 64.64 Γ— 0.24 +

𝑁𝐸𝐷,𝑧 𝑙0

400 408.93 Γ—1819.37 Γ— 10βˆ’3 400

=17.37kNm

For moment 𝑴𝒀 Member stiffness: π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› = (𝐼/𝑙)π‘π‘œπ‘™π‘’π‘šπ‘›

π‘˜π‘π‘’π‘Žπ‘š = (𝐼/𝑙)π‘π‘’π‘Žπ‘š = 0.5(5400 Γ— 106 π‘šπ‘š4 )/3069 = 879,765.40

6

= 675 Γ— 10 /2400 = 281250

Distribution Factor for the column =

π‘˜π‘π‘œπ‘™π‘’π‘šπ‘› βˆ‘π‘˜

=

281250 281250+ 2 Γ— 879,765.40

= 0.138 w 𝐿2 w2 𝐿2

1 𝑁𝐸𝐷,𝑦 𝑙0 πΉπΈπ‘€π‘Œβˆ’π‘Œ = 12 π‘€π‘Œ = πΉπΈπ‘€π‘Œβˆ’π‘Œ Γ— Distribution Factor + 12 400 (56.78)(3.069)2 (41.43)(3.069)2 150.70 Γ—1819.37 Γ— 10βˆ’3 = βˆ’ = 12.05 Γ— 0.138 + 12 12 400 = 2.35kNm = 12.05kNm

29

Step 3. Check for biaxial bending

𝑒𝑧 = =

𝑀𝑧

𝑒𝑦 =

𝑁𝐸𝐷,𝑧 17.37

=

408.93

= 0.042m

β„Ž

/

𝑒𝑦 𝑏

= 𝑒𝑧

42 300

β„Ž

/

150.7

= 16mm

/

16

𝑒𝑦

300

𝑏

/

𝑒𝑦 𝑏

𝑒𝑧 β„Ž

=

16 300

/

42 300

= 0.38 > 0.2

= 2.625 > 0.2 ∴ Since

𝑁𝐸𝐷,𝑦 2.35

= 0.016m

= 42mm 𝑒𝑧

𝑀𝑦

> 0.2 and

𝑒𝑦 𝑏

/

𝑒𝑧 β„Ž

> 0.2, thus there is biaxial bending.

Step 4. Compute 𝑴𝑬𝑫 Y

d’

300mm Z

Z

h’

Mz

𝑑2

b’ 300mm

My Y

Figure 3 Section of column with biaxial bending (re-illustrated for easy reference) d’ = 𝑑2 = Cover + βˆ…/2 = 55 + 16/2 = 63mm

h’ = h – d’ = 300 -63 = 237mm

b’ = b -𝑑2

= 300 – 63 = 237mm

30

𝑀𝑧

=

β„Žβ€² 𝑀𝑦 𝑏′

As

=

𝑀𝑧 β„Žβ€²

17.37 Γ—106 237 2.35 Γ—106 237

β‰₯

𝑀𝑦

= 73.29 Γ— πŸπŸŽπŸ‘ N

= 9.92

Γ— πŸπŸŽπŸ‘ N

thus:

𝑏′

𝑀𝐸𝐷 = 𝑀′ 𝑧 = 𝑀𝑧 + 𝛽

β„Žβ€² 𝑏

Γ— 𝑀𝑦

237

= 17.37 + 0.79 237 Γ— 2.35 = 19.23kNm

𝛽=1βˆ’

𝑁𝐸𝐷 π‘β„Žπ‘“π‘π‘˜

=1βˆ’

559.63Γ—103 (300)(300)30

= 0.79 Step 5. Compute As, required. 559.63Γ—103

𝑁𝐸𝐷

= (300)(300)30

π‘β„Žπ‘“π‘π‘˜

= 0.21 19.23Γ—106

𝑀𝐸𝐷 π‘β„Ž2 π‘“π‘π‘˜

= (300)(3002 )30 = 0.02

Check: 𝑑 β€² /β„Ž = 63/300 = 0.21 ∴ Use 𝑑′ /𝒉 = 0.25 chart for 4 steel bar

From Column Design Chart 𝐴𝑠 π‘“π‘¦π‘˜ π‘β„Žπ‘“π‘π‘˜

=0

𝐴𝑠,π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ = minimum area of reinforcement allowed = 0.002(300)(300) = 180π’Žπ’ŽπŸ 𝐴𝑠,π‘šπ‘Žπ‘₯ = maximum area of reinforcement allowed = 0.08(300)(300) = 7200π‘šπ‘š2

31

Number of steel bars to be provided: For rectangular column, a minimum of four bars is required (one in each corner).Bar diameter should not be less than 12mm ∴ As 𝐴𝑠,π‘Ÿπ‘’π‘žπ‘’π‘–π‘Ÿπ‘’π‘‘ is so small, 4 bars of steel bar (H16) is adequate. 𝐴𝑠,π‘π‘Ÿπ‘œπ‘£π‘–π‘‘π‘’π‘‘ = 4 Γ— πœ‹ 162 /4 = 804.25π’Žπ’ŽπŸ Maximum shear link spacing = min {20 Γ— size of compression bar; least lateral dimension of the column; 400mm} = min {20 Γ— 16 = 320mm; 300mm; 400mm} = 300mm ∴ Provide Shear link (H10) with spacing 300mm c/c.

4.0 CONCLUSION In this report, 4 columns were designed: 1. Column A1, A3, D1, D3 2. Column B1, B3, C1, C3 3. Column A2 and D2 4. Column B2 and C2 The design of these columns is done using charts from Eurocode 2.

32

More Documents from "Cyrus Hong"

Column.pdf
November 2019 21
Footing.pdf
November 2019 25
Rc Waler.pdf
November 2019 31
200a Excela 10ene19 Xml
August 2019 31
Daily Tribune Template.docx
December 2019 24