Circuit Realization And Equations

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Circuit Realization And Equations as PDF for free.

More details

  • Words: 160
  • Pages: 2
Circuit realization (neglect gds Cgd)

Matlab Code and solution to find Zin(s) syms s Cgs1 Cgs2 Cgs3 Cgs4 gm1 gm2 gm3 gm4 I Y1=[s*Cgs4 0 -s*Cgs4; 0 s*Cgs3+s*Cgs2 0; -s*Cgs4 0 s*Cgs4+s*Cgs1] I1=[0 gm3 0; 0 -gm3 -gm1;gm4 -gm2 -gm4]; Y=Y1-I1 V=Y\[0; 0; I]; Zin=V(3)/I

Y1 = [ s*Cgs4, 0, -s*Cgs4] [ 0, s*Cgs3+s*Cgs2, 0] [ -s*Cgs4, 0, s*Cgs4+s*Cgs1]

Y= [ s*Cgs4, -gm3, -s*Cgs4] [ 0, s*Cgs3+s*Cgs2+gm3, gm1] [ -s*Cgs4-gm4, gm2, s*Cgs4+s*Cgs1+gm4]

Zin = s*Cgs4*(s*Cgs3+s*Cgs2+gm3)/ (gm3*gm4*gm1+gm3*s^2*Cgs4*Cgs1+s^3*Cgs3*Cgs4*Cgs1+gm3*s*Cgs4*gm1+ s^3*Cgs2*Cgs4*Cgs1-gm2*s*Cgs4*gm1) Then Zin could be approximated as (s*Cgs3+s*Cgs2)/ [s^2*(Cgs3+Cgs2)+s*Cgs1+gm1*(gm3-gm2)] If M4 was labeled as M2 and M2 as M4, Zin will be the same as given in the paper, and w0^2 and Q in terms of gm and Cgs will be the same as well. For M1: gm1=2*I/(VC-VT); VC-VT=sqrt(I/K1)  gm1=2*sqrt(I*K1) For M3: gm3=2*I/(VD-VB-VT); VD-VB-VT=sqrt(I/K3)  gm3=2*sqrt(I*K3) For M4: gm4=2*K4(VB-VT)=2*K4*(VD-2VT-sqrt(I/K3))

Additional Calculation for w0 and Q w0^2=gm1(gm3-gm4)Cgs1(Cgs3+Cgs4)=2IK1Cgs1(Cgs3+Cgs4)*2IK3+2K4IK32K4(VD-2VT)=4K1(K3+K4)K3Cgs1(Cgs3+Cgs4)*I*I-K4K3VD-2VTK3+K4=A*I*I-B where A and B is the same as specified in the paper

Q=w0*(Cgs3+Cgs4)/gm3=gm1gm3gm4(Cgs3+Cgs4)Cgs1gm3=Cgs3+Cgs4Cgs1*K3gm1*2*K3+K4*I-Bgm3 gm1gm32=K12*I*K3 Q=Cgs3+Cgs4Cgs1*K32(I-B)2*IK3+K4k3k1=D*1-BI where D=Cgs3+Cgs4Cgs1*K3K3+K4k3k1

Related Documents

Creative Realization
April 2020 8
Self Realization
April 2020 21
Equations
November 2019 31
Equations
October 2019 28
Equations
July 2020 19