Cim Misunderstandings.pdf

  • Uploaded by: Igor Sangulin
  • 0
  • 0
  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Cim Misunderstandings.pdf as PDF for free.

More details

  • Words: 3,681
  • Pages: 42
Addressing Misunderstandings of the CIM Alan McMorran B.Eng Ph.D

OG Open Grid Systems

Misunderstanding 1: CIM is only for Transmission 2

OG Open Grid Systems

Origins of the CIM Started as project by the Electric Power Research Institute (EPRI) as Control Centre API (CCAPI) This became IEC 61970-301 which is now developed by Working Group 13 The standard defines the components in a power system for use in a common Energy Management System (EMS) Application Programming Interface (API) as a series of packages and classes The CIM is now more than just IEC 61970-301, the CIM is really three IEC standards 3

O

Open Grid Systems

CIM for Distribution IEC 61968-11 is developed by IEC TC57 WG14 as an extension to IEC 61970-301 for covering the data requirements of distribution systems IEC 61968-11 covers a far wider data footprint than IEC 61970-301 As well as extending the functional Wires model to cover distribution network requirements it extends the CIM to cover data exchange requirements for: Metering, Customer Billing, Asset Management, Work Management, Geographical Data .... 4

O

Open Grid Systems

Interface Reference Model Distribution Management Business Functions NO

AM

OP

Business Functions External to Distribution Management MC

EMS

RET

SC

Network Operations

Records & Asset Management

Operational Planning & Optimisation

Maintenance & Construction

Energy Management & Energy Trading

Retail

Supply Chain & Logistics

Interface

Interface

Interface

Interface

Interface

Interface

Interface

Interface

Interface

IEC 61968/61970 Compliant Middleware Services

Interface

NE

Network Extension Planning

Interface

CS

Customer Support

Interface

MR

Meter Reading & Control

Electric Distribution Network Planning, Construction, Maintenance and Operations

Interface

ACT

Customer Account Management

Interface

FIN

Financial

PRM

Premises

HR

Human Resources

Generation and Transmission Management, Enterprise Resource Planning, Supply Chain and General Corporate Services

5

O

Open Grid Systems

CIM for Markets CIM for Market Extensions (CME) extend the CIM packages to define the data exchanges for deregulated markets These extensions cover the data required for Market operations including: Bidding Clearing Settlement It models the data used in communication between market participants, not a market itself 6

O

Open Grid Systems

Common Model While the CIM now spans multiple domains common elements are shared and relationships span packages SCADA

Dynamics Diagram Layout (Graphics)

Planning

Functional Electrical Model

Markets

Asset Management

Distribution Electrical Extensions

Work Management

Meter Reading

Geographical Data

Customer Support

7

O

Open Grid Systems

Misunderstanding 2: CIM is too Complex 8

OG Open Grid Systems

Is the CIM Complex? The CIM covers a large number of systems It models data from multiple domains but must be consistent A Substation is the same entity with the same identifier in a DMS, Asset Management or Meter Data Management System To use the CIM you do not need to implement, use or even look at all 700+ classes and their attributes/ associations

9

O

Open Grid Systems

A Complex Model Work category EndDeviceAsset createdDateTime amrSystem kind application mRID category name corporateCode priority critical requestDateTime demandResponse revisionNumber description subject titledisconnect dstEnabled initialCondition BusbarSection initialLossOfLife name installationDate loadControl TopologicalNode lotNumber name mRID metrology VoltageLevel name outageReport Line purchasePrice name readRequest relayCapable ACLineSegment serialNumber b0ch timeZoneOffset bch utcNumber g0ch gch ConformingLoad length customerCount localName description mRID mRID name name phases pathName r pfixed r0 pfixedPct x phases x0 qfixed qfixedPct

SvVoltage v SvTapStep angle

continuousPosition

GeneratingUnit Location allocSpinResP category autoCntrlMarginP corporateCode baseP direction controlDeadband geoInfoReference controlPulseHigh isPolygon controlPulseLow mRID description name dispReserveFlag efficiency BaseVoltage energyMinP nominalVoltage genControlMode initialP longPFTerminal lowControlLimit name lowerRampRate mRID Asset maxEconomicP application maxOperatingP category minEconomicP corporateCode minOperatingP critical minimumOffTime description name initialCondition nominalP initialLossOfLife normaIlyInService installationDate normalPF localName ratedGrossMaxP lotNumber ratedGrossMinP mRID ratedNetMaxP manufacturedDat shortPF e startupCost name startupTime purchasePrice serialNumber utcNumber

SvTapStep continuousPosition

SvVoltage v Location category angle corporateCode direction GeneratingUnit geoInfoReference allocSpinResP isPolygon autoCntrlMarginP mRID baseP name controlDeadband controlPulseHigh BaseVoltage controlPulseLow nominalVoltage description dispReserveFlag efficiency Terminal energyMinP name genControlMode initialP Asset longPF application lowControlLimit category lowerRampRate corporateCode mRID critical maxEconomicP description maxOperatingP initialCondition minEconomicP initialLossOfLife minOperatingP installationDate minimumOffTime localName name lotNumber nominalP mRID normaIlyInService manufacturedDat normalPF e ratedGrossMaxP name ratedGrossMinP purchasePrice ratedNetMaxP serialNumber shortPF utcNumber startupCost startupTime

EndDeviceAsset amrSystem SvPowerFlow application p category q corporateCode critical PositionPoint demandResponse xPosition description yPosition disconnect zPosition dstEnabled initialCondition MeterReading initialLossOfLife name installationDate loadControl Transformer lotNumber mRID Winding b metrology b0 name connectionType outageReport description purchasePrice emergencyS readRequest relayCapable g serialNumber g0 timeZoneOffset grounded utcNumber insulationU localName mRID ConformingLoad name customerCount normaIlyInService description pathName mRID phases name r pathName r0 pfixed ratedS pfixedPct ratedU phases rground qfixed shortTermS qfixedPct windingType x x0 xground

10

SvPowerFlow p q

Work category PositionPoint createdDateTime xPosition kind yPosition mRID zPosition name priority MeterReading requestDateTime name revisionNumber subject Transformer title Winding b BusbarSection b0name connectionType TopologicalNode description name emergencyS g g0 VoltageLevel grounded insulationU Line localName name mRID name normaIlyInService ACLineSegment pathName b0ch phases bch r g0ch r0gch ratedS length ratedU localName rground mRID shortTermS name windingType phases xr x0r0 xground x x0

Topological Island name Topological Island Synchronous name Machine baseQ Synchronous condenserP Machine coolantCondition baseQ coolantType condenserP damping coolantCondition inertia coolantType localName damping mRID inertia maxQ localName maxU mRID minQ maxQ minU maxU operatingMode minQ pathName minU phases operatingMode r pathName r0 phases ratedS r referencePriority r0 type ratedS x referencePriority x0type x ConnectivityNode x0

SvCompensator ConnectivityNode Sections continuousSections

O

SvCompensator Sections continuousSections

Open Grid Systems

Work Management Work category EndDeviceAsset createdDateTime amrSystem kind application mRID category name corporateCode priority critical requestDateTime demandResponse revisionNumber description subject titledisconnect dstEnabled initialCondition BusbarSection initialLossOfLife name installationDate loadControl TopologicalNode lotNumber name mRID metrology VoltageLevel name outageReport Line purchasePrice name readRequest relayCapable ACLineSegment serialNumber b0ch timeZoneOffset bch utcNumber g0ch gch ConformingLoad length customerCount localName description mRID mRID name name phases pathName r pfixed r0 pfixedPct x phases x0 qfixed qfixedPct

SvVoltage v SvTapStep angle

continuousPosition

GeneratingUnit Location allocSpinResP category autoCntrlMarginP corporateCode baseP direction controlDeadband geoInfoReference controlPulseHigh isPolygon controlPulseLow mRID description name dispReserveFlag efficiency BaseVoltage energyMinP nominalVoltage genControlMode initialP longPFTerminal lowControlLimit name lowerRampRate mRID Asset maxEconomicP application maxOperatingP category minEconomicP corporateCode minOperatingP critical minimumOffTime description name initialCondition nominalP initialLossOfLife normaIlyInService installationDate normalPF localName ratedGrossMaxP lotNumber ratedGrossMinP mRID ratedNetMaxP manufacturedDat shortPF e startupCost name startupTime purchasePrice serialNumber utcNumber

SvTapStep continuousPosition

SvVoltage v Location category angle corporateCode direction GeneratingUnit geoInfoReference allocSpinResP isPolygon autoCntrlMarginP mRID baseP name controlDeadband controlPulseHigh BaseVoltage controlPulseLow nominalVoltage description dispReserveFlag efficiency Terminal energyMinP name genControlMode initialP Asset longPF application lowControlLimit category lowerRampRate corporateCode mRID critical maxEconomicP description maxOperatingP initialCondition minEconomicP initialLossOfLife minOperatingP installationDate minimumOffTime localName name lotNumber nominalP mRID normaIlyInService manufacturedDat normalPF e ratedGrossMaxP name ratedGrossMinP purchasePrice ratedNetMaxP serialNumber shortPF utcNumber startupCost startupTime

EndDeviceAsset amrSystem SvPowerFlow application p category q corporateCode critical PositionPoint demandResponse xPosition description yPosition disconnect zPosition dstEnabled initialCondition MeterReading initialLossOfLife name installationDate loadControl Transformer lotNumber mRID Winding b metrology b0 name connectionType outageReport description purchasePrice emergencyS readRequest relayCapable g serialNumber g0 timeZoneOffset grounded utcNumber insulationU localName mRID ConformingLoad name customerCount normaIlyInService description pathName mRID phases name r pathName r0 pfixed ratedS pfixedPct ratedU phases rground qfixed shortTermS qfixedPct windingType x x0 xground

11

SvPowerFlow p q

Work category PositionPoint createdDateTime xPosition kind yPosition mRID zPosition name priority MeterReading requestDateTime name revisionNumber subject Transformer title Winding b BusbarSection b0name connectionType TopologicalNode description name emergencyS g g0 VoltageLevel grounded insulationU Line localName name mRID name normaIlyInService ACLineSegment pathName b0ch phases bch r g0ch r0gch ratedS length ratedU localName rground mRID shortTermS name windingType phases xr x0r0 xground x x0

Topological Island name Topological Island Synchronous name Machine baseQ Synchronous condenserP Machine coolantCondition baseQ coolantType condenserP damping coolantCondition inertia coolantType localName damping mRID inertia maxQ localName maxU mRID minQ maxQ minU maxU operatingMode minQ pathName minU phases operatingMode r pathName r0 phases ratedS r referencePriority r0 type ratedS x referencePriority x0type x ConnectivityNode x0

SvCompensator ConnectivityNode Sections continuousSections

O

SvCompensator Sections continuousSections

Open Grid Systems

Meter Data Work category EndDeviceAsset createdDateTime amrSystem kind application mRID category name corporateCode priority critical requestDateTime demandResponse revisionNumber description subject titledisconnect dstEnabled initialCondition BusbarSection initialLossOfLife name installationDate loadControl TopologicalNode lotNumber name mRID metrology VoltageLevel name outageReport Line purchasePrice name readRequest relayCapable ACLineSegment serialNumber b0ch timeZoneOffset bch utcNumber g0ch gch ConformingLoad length customerCount localName description mRID mRID name name phases pathName r pfixed r0 pfixedPct x phases x0 qfixed qfixedPct

SvVoltage v SvTapStep angle

continuousPosition

GeneratingUnit Location allocSpinResP category autoCntrlMarginP corporateCode baseP direction controlDeadband geoInfoReference controlPulseHigh isPolygon controlPulseLow mRID description name dispReserveFlag efficiency BaseVoltage energyMinP nominalVoltage genControlMode initialP longPFTerminal lowControlLimit name lowerRampRate mRID Asset maxEconomicP application maxOperatingP category minEconomicP corporateCode minOperatingP critical minimumOffTime description name initialCondition nominalP initialLossOfLife normaIlyInService installationDate normalPF localName ratedGrossMaxP lotNumber ratedGrossMinP mRID ratedNetMaxP manufacturedDat shortPF e startupCost name startupTime purchasePrice serialNumber utcNumber

SvTapStep continuousPosition

SvVoltage v Location category angle corporateCode direction GeneratingUnit geoInfoReference allocSpinResP isPolygon autoCntrlMarginP mRID baseP name controlDeadband controlPulseHigh BaseVoltage controlPulseLow nominalVoltage description dispReserveFlag efficiency Terminal energyMinP name genControlMode initialP Asset longPF application lowControlLimit category lowerRampRate corporateCode mRID critical maxEconomicP description maxOperatingP initialCondition minEconomicP initialLossOfLife minOperatingP installationDate minimumOffTime localName name lotNumber nominalP mRID normaIlyInService manufacturedDat normalPF e ratedGrossMaxP name ratedGrossMinP purchasePrice ratedNetMaxP serialNumber shortPF utcNumber startupCost startupTime

EndDeviceAsset amrSystem SvPowerFlow application p category q corporateCode critical PositionPoint demandResponse xPosition description yPosition disconnect zPosition dstEnabled initialCondition MeterReading initialLossOfLife name installationDate loadControl Transformer lotNumber mRID Winding b metrology b0 name connectionType outageReport description purchasePrice emergencyS readRequest relayCapable g serialNumber g0 timeZoneOffset grounded utcNumber insulationU localName mRID ConformingLoad name customerCount normaIlyInService description pathName mRID phases name r pathName r0 pfixed ratedS pfixedPct ratedU phases rground qfixed shortTermS qfixedPct windingType x x0 xground

12

SvPowerFlow p q

Work category PositionPoint createdDateTime xPosition kind yPosition mRID zPosition name priority MeterReading requestDateTime name revisionNumber subject Transformer title Winding b BusbarSection b0name connectionType TopologicalNode description name emergencyS g g0 VoltageLevel grounded insulationU Line localName name mRID name normaIlyInService ACLineSegment pathName b0ch phases bch r g0ch r0gch ratedS length ratedU localName rground mRID shortTermS name windingType phases xr x0r0 xground x x0

Topological Island name Topological Island Synchronous name Machine baseQ Synchronous condenserP Machine coolantCondition baseQ coolantType condenserP damping coolantCondition inertia coolantType localName damping mRID inertia maxQ localName maxU mRID minQ maxQ minU maxU operatingMode minQ pathName minU phases operatingMode r pathName r0 phases ratedS r referencePriority r0 type ratedS x referencePriority x0type x ConnectivityNode x0

SvCompensator ConnectivityNode Sections continuousSections

O

SvCompensator Sections continuousSections

Open Grid Systems

Electrical Network Work category EndDeviceAsset createdDateTime amrSystem kind application mRID category name corporateCode priority critical requestDateTime demandResponse revisionNumber description subject titledisconnect dstEnabled initialCondition BusbarSection initialLossOfLife name installationDate loadControl TopologicalNode lotNumber name mRID metrology VoltageLevel name outageReport Line purchasePrice name readRequest relayCapable ACLineSegment serialNumber b0ch timeZoneOffset bch utcNumber g0ch gch ConformingLoad length customerCount localName description mRID mRID name name phases pathName r pfixed r0 pfixedPct x phases x0 qfixed qfixedPct

SvVoltage v SvTapStep angle

continuousPosition

GeneratingUnit Location allocSpinResP category autoCntrlMarginP corporateCode baseP direction controlDeadband geoInfoReference controlPulseHigh isPolygon controlPulseLow mRID description name dispReserveFlag efficiency BaseVoltage energyMinP nominalVoltage genControlMode initialP longPFTerminal lowControlLimit name lowerRampRate mRID Asset maxEconomicP application maxOperatingP category minEconomicP corporateCode minOperatingP critical minimumOffTime description name initialCondition nominalP initialLossOfLife normaIlyInService installationDate normalPF localName ratedGrossMaxP lotNumber ratedGrossMinP mRID ratedNetMaxP manufacturedDat shortPF e startupCost name startupTime purchasePrice serialNumber utcNumber

SvTapStep continuousPosition

SvVoltage v Location category angle corporateCode direction GeneratingUnit geoInfoReference allocSpinResP isPolygon autoCntrlMarginP mRID baseP name controlDeadband controlPulseHigh BaseVoltage controlPulseLow nominalVoltage description dispReserveFlag efficiency Terminal energyMinP name genControlMode initialP Asset longPF application lowControlLimit category lowerRampRate corporateCode mRID critical maxEconomicP description maxOperatingP initialCondition minEconomicP initialLossOfLife minOperatingP installationDate minimumOffTime localName name lotNumber nominalP mRID normaIlyInService manufacturedDat normalPF e ratedGrossMaxP name ratedGrossMinP purchasePrice ratedNetMaxP serialNumber shortPF utcNumber startupCost startupTime

EndDeviceAsset amrSystem SvPowerFlow application p category q corporateCode critical PositionPoint demandResponse xPosition description yPosition disconnect zPosition dstEnabled initialCondition MeterReading initialLossOfLife name installationDate loadControl Transformer lotNumber mRID Winding b metrology b0 name connectionType outageReport description purchasePrice emergencyS readRequest relayCapable g serialNumber g0 timeZoneOffset grounded utcNumber insulationU localName mRID ConformingLoad name customerCount normaIlyInService description pathName mRID phases name r pathName r0 pfixed ratedS pfixedPct ratedU phases rground qfixed shortTermS qfixedPct windingType x x0 xground

13

SvPowerFlow p q

Work category PositionPoint createdDateTime xPosition kind yPosition mRID zPosition name priority MeterReading requestDateTime name revisionNumber subject Transformer title Winding b BusbarSection b0name connectionType TopologicalNode description name emergencyS g g0 VoltageLevel grounded insulationU Line localName name mRID name normaIlyInService ACLineSegment pathName b0ch phases bch r g0ch r0gch ratedS length ratedU localName rground mRID shortTermS name windingType phases xr x0r0 xground x x0

Topological Island name Topological Island Synchronous name Machine baseQ Synchronous condenserP Machine coolantCondition baseQ coolantType condenserP damping coolantCondition inertia coolantType localName damping mRID inertia maxQ localName maxU mRID minQ maxQ minU maxU operatingMode minQ pathName minU phases operatingMode r pathName r0 phases ratedS r referencePriority r0 type ratedS x referencePriority x0type x ConnectivityNode x0

SvCompensator ConnectivityNode Sections continuousSections

O

SvCompensator Sections continuousSections

Open Grid Systems

Restricted by Profiles BusbarSection name VoltageLevel Line name GeneratingUnit allocSpinResP autoCntrlMarginP baseP controlDeadband controlPulseHigh controlPulseLow description dispReserveFlag efficiency energyMinP genControlMode initialP longPF lowControlLimit lowerRampRate mRID maxEconomicP maxOperatingP minEconomicP minOperatingP minimumOffTime name nominalP normaIlyInService normalPF ratedGrossMaxP ratedGrossMinP ratedNetMaxP shortPF startupCost startupTime

BaseVoltage nominalVoltage Transformer Winding b b0 connectionType description emergencyS g g0 grounded insulationU localName mRID name normaIlyInService pathName phases r r0 ratedS ratedU rground shortTermS windingType x x0 xground

Terminal name ConnectivityNode

SvVoltage v angle

TopologicalNode name

Synchronous Machine baseQ condenserP coolantCondition coolantType damping inertia localName mRID maxQ maxU minQ minU operatingMode pathName phases r r0 ratedS referencePriority type x x0

SvPowerFlow p q SvTapStep continuousPosition

SvCompensator Sections continuousSections

ACLineSegment b0ch bch g0ch gch length localName mRID name phases r r0 x x0

14

O

Open Grid Systems

Restricted by Profiles BusbarSection name VoltageLevel Line name GeneratingUnit baseP initialP maxOperatingP minOperatingP name nominalP

BaseVoltage nominalVoltage Transformer Winding b g name phases r ratedS ratedU x

Terminal name ConnectivityNode

SvVoltage v angle

TopologicalNode name

Synchronous Machine baseQ maxQ maxU minQ minU r ratedS referencePriority type x

SvPowerFlow p q SvTapStep continuousPosition

SvCompensator Sections continuousSections

ACLineSegment bch gch length name phases r x

14

O

Open Grid Systems

Restricted by Profiles BusbarSection name VoltageLevel Line name GeneratingUnit baseP initialP maxOperatingP minOperatingP name nominalP

BaseVoltage nominalVoltage Transformer Winding b g name phases r ratedS ratedU x

Terminal name ConnectivityNode

SvVoltage v angle

TopologicalNode name

Synchronous Machine baseQ maxQ maxU minQ minU r ratedS referencePriority type x

Topology

SvPowerFlow p q SvTapStep continuousPosition

SvCompensator Sections continuousSections

ACLineSegment bch gch length name phases r x

State

The CIM should be viewed in context

Equipment

Profiles use 20-30 classes with a subset of attributes not 700+ classes 14

O

Open Grid Systems

Misunderstanding 3: CIM is a Database 15

OG Open Grid Systems

It’s only a model... The CIM is an information model It can be implemented in any number of ways, but it is defined as an implementation-agnostic model You can derive a database schema from the CIM How you derive that schema can be dependent on a number of factors The structure of the schema and thus the structure of the database will vary from system to system

16

O

Open Grid Systems

CIM Database When someone implements a CIM Database what they really mean is: The schema has been derived from the CIM and can hold data defined by the CIM in a structured way The database itself is not compliant with an IEC standard (because there is no IEC standard that defines what a CIM database is!) They can import and export data in a CIM structure from the database These interfaces however can be compliant with IEC standards 17

O

Open Grid Systems

Applying the CIM You can derive a number of useful structures from the CIM: Database schemas Object classes for a variety of languages (Java, C++, C#, Python etc.) Interface definitions and their data structures (e.g. Google Protocol Bu!ers) File formats (including proprietary text and binary formats or XML)

18

O

Open Grid Systems

Misunderstanding 4: CIM is an XML format 19

OG Open Grid Systems

CIM Data The CIM defines the structure of data, not a format We can get CIM data from any number of sources File

File Import/ Export

Database

Database Interface

Application

Data Stream

Network Interface

Application

Application

20

O

Open Grid Systems

CIM RDF XML The IEC standardises the mapping of CIM into RDF XML in IEC 61970-452 CIM RDF XML (commonly known as CIM XML) is one way of serialising CIM data and is used primarily for large network model exchanges VoltageLevel name VLA highVoltageLimit 35.0 lowVoltageLimit 31.0

21

O

Open Grid Systems

CIM RDF XML The IEC standardises the mapping of CIM into RDF XML in IEC 61970-452 CIM RDF XML (commonly known as CIM XML) is one way of serialising CIM data and is used primarily for large network model exchanges VoltageLevel name VLA highVoltageLimit 35.0 lowVoltageLimit 31.0

VLA 35.0 31.0 21

O

Open Grid Systems

XML Schema The same data can be serialised as hierarchical XML Schema Definition (XSD) message The same data, defined by the same information model, but serialised in a di!erent format The IEC is standardising Naming and Design Rules (NDR) that define how XSDs are derived from the CIM CIM XML Schema messages are designed for Enterprise Service Bus environments and systems integration

22

O

Open Grid Systems

_xyz987654321 VLA 35.0 31.0 33.0 _abcdef0123456789 Load A Pump motor ABCN 0.03 0.015 39 _pqrs34567890 Load A Terminal

23

CIM XML CIM RDF XML and XML Schema are serialisation formats for CIM data While CIM XML is CIM, the CIM is not CIM XML In the future other CIM serialisation formats may be standardised As we have seen, the CIM is more than just CIM XML!

24

O

Open Grid Systems

Misunderstanding 5: My Software is CIM Compliant 25

OG Open Grid Systems

What is Compliance? There are few terms that will cause more confusion than claiming software is CIM Compliant Multiple vendors may claim their software is CIM compliant but they cannot talk to each other For something to be compliant with a standard it must be tested against it and demonstrate it can interoperate with products from other companies As we have seen the CIM is an information model, so how can you test interoperability with a model?

26

O

Open Grid Systems

Profile Compliance A number of standards are derived from the overall CIM model to form contextual profiles These profiles use subsets of the CIM model along with a standard serialisation format (CIM RDF XML or XSD messages) Vendors then demonstrate that they can import and/or export data defined by that profile A product can be compliant with a CIM-derived interface standard, not the CIM itself

27

O

Open Grid Systems

CIM Profiles Recent Interoperability tests have tested: IEC61970-452 & IEC61970-456 for Static Operational network model exchange using CIM RDF XML (IEC61970-552) IEC61968-13 for distribution network model exchange using CIM RDF XML IEC61968-9 interfaces for meter reading and control using XML Schema messages ENTSO-E CIM RDF XML for transmission model exchange in Europe 28

O

Open Grid Systems

CIM Compliance Ask your vendor which profiles they have tested in an EPRI or UCA Interoperability test next time they claim to be CIM compliant...

29

O

Open Grid Systems

Misunderstanding 6: It’s not a standard if you extend it 30

OG Open Grid Systems

Why Extend? While the CIM is large and extensive information model, during projects there is often a need to extend the model There can be a number of reasons to extend the standard: Accommodating legacy data Introducing new application areas Refining the level of detail of existing classes Extending existing classes to cover related but currently un-modelled components 31

O

Open Grid Systems

Legacy Data Example Supposing we are mapping the data in a legacy EMS to CIM The equipment entries and attributes are mapping to the CIM class structure

Equipment

ConductingEquipment

Every piece of equipment, however, has an attribute fromABCSystem, that marks whether the entry came from a previous system migration project This data must be retained for compatibility reasons, but there is no obvious mapping to a CIM class 32

RegulatingCondEq

SynchronousMachine

O

Open Grid Systems

Legacy Data Example PowerSystemResource

The separation of extensions from standards makes it easier to maintain compatibility with standardsbased interfaces

ExtEquipment fromABCSystem

Equipment

ConductingEquipment

The exporter can be told to ignore any attributes that are inherited from an Extended class when exporting

RegulatingCondEq

SynchronousMachine

33

O

Open Grid Systems

Extending the Standard Another scenario requiring extensions is when a new application area must be modelled The IEC 69170-301 classes model the electrical network Take a scenario where a company wants to include some modelling of the gas network along with their electrical model They wish the models to be integrated so they can more closely integrate their gas and electrical status monitoring equipment 34

O

Open Grid Systems

Geographical Region IdentifiedObject mRID aliasName localName pathName name description

SubGeographical Region

Substation Equipment Container

ExtSubstation

PowerSystemResource

VoltageLevel

ExtGasPressureLevel Pressure

ExtGasPipe Diamater PressureRating

Equipment

ConductingEquipment

ExtEquipment fromABCSystem

ExtOriginalSource company system

ExtGasTransferEquipment

GeneratingUnit

RegulatingCondEq

ExtGasometer Capacity ExtGasSupplyPoint FlowRate ThermalGeneratingUnit SynchronousMachine ExtGasFiredGenerating Unit

ExtNaturalGas CalorificValue

FossilFuel

35

O

Open Grid Systems

Internal vs Global Extensions When the CIM is extended the resulting extensions can be considered either Internal or Global Internal extensions cover extensions to model data that would not be considered suitable for inclusion in future revisions of the standard Global extensions are extensions that would be considered relevant to the majority of utilities and thus suitable for inclusion in the standard In this case the changes would be considered by an IEC working group and if approved, included in a future release 36

O

Open Grid Systems

Geographical Region IdentifiedObject mRID aliasName localName pathName name description

SubGeographical Region

Substation Equipment Container

ExtSubstation

Global Extensions

VoltageLevel

ExtGasPressureLevel Pressure

ExtGasPipe Diamater PressureRating

PowerSystemResource

Equipment

ConductingEquipment

ExtEquipment fromABCSystem

ExtOriginalSource company system

ExtGasTransferEquipment

Internal Extensions GeneratingUnit

RegulatingCondEq

ExtGasometer Capacity ExtGasSupplyPoint FlowRate ThermalGeneratingUnit SynchronousMachine ExtGasFiredGenerating Unit

ExtNaturalGas CalorificValue

FossilFuel

37

O

Open Grid Systems

Geographical Region IdentifiedObject mRID aliasName localName pathName name description

SubGeographical Region

We now have only a couple of classes as internal extensions, the rest are part of the standard

Substation Equipment Container VoltageLevel

GasPressureLevel Pressure

GasPipe Diamater PressureRating

PowerSystemResource

Equipment

ConductingEquipment

ExtEquipment fromABCSystem

ExtOriginalSource company system

GasTransferEquipment

Internal Extensions GeneratingUnit

RegulatingCondEq

Gasometer Capacity GasSupplyPoint FlowRate ThermalGeneratingUnit SynchronousMachine GasFiredGenerating Unit

NaturalGas CalorificValue

FossilFuel

38

O

Open Grid Systems

Questions?

[email protected]

Related Documents

Cim Misunderstandings.pdf
November 2019 24
Cim Corr
August 2019 29
Cim Assignment
June 2020 8
2a- Introd Cim
November 2019 15

More Documents from "Marleni Aliaga Taipe"