Ciclos De Potencia De Gas.docx

  • Uploaded by: JhonnyMamani
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Ciclos De Potencia De Gas.docx as PDF for free.

More details

  • Words: 6,143
  • Pages: 23
Ciclos de Potencia de Gas CONSIDERACIONES BÁSICAS PARA EL ANÁLISIS DE LOS CICLOS DE POTENCIA La mayor parte de los dispositivos que producen potencia operan en ciclos, y el estudio de los ciclos de potencia es una parte interesante e importante de la termodinámica. Los ciclos que se llevan a cabo en los dispositivos reales son difíciles de analizar debido a la presencia de efectos complicados, como la fricción y la falta de tiempo suficiente para establecer las condiciones de equilibrio durante el ciclo. Para que sea factible el estudio analítico de un ciclo es necesario mantener estas complejidades en un nivel manejable y utilizar algunas idealizaciones. Cuando al ciclo real se le eliminan todas las irreversibilidades y complejidades internas, se consigue finalmente un ciclo que se parece en gran medida al real pero que está formado en su totalidad de procesos internamente reversibles. Tal ciclo es llamado un ciclo ideal. Un modelo idealizado simple permite a los ingenieros estudiar los efectos de los principales parámetros que gobiernan el ciclo, sin detenerse en los detalles. Los ciclos estudiados en este capítulo se encuentran un poco idealizados, pero mantienen las características generales de los reales a los cuales representan. Frecuentemente las conclusiones del análisis de ciclos ideales son aplicables a los reales, por ejemplo, la eficiencia térmica del ciclo de Otto, el ciclo ideal para los motores de automóvil de encendido por chispa, aumenta con la relación de compresión. Éste es también el caso para los motores de automóvil reales. Sin embargo, los valores numéricos obtenidos del análisis de un ciclo ideal no son necesariamente representativos de los ciclos reales y debe tenerse cuidado en su interpretación. El análisis simplificado presentado en este capítulo para diferentes ciclos de potencia de interés práctico también pueden servir como punto de partida para un estudio más profundo. Las máquinas térmicas se diseñan con el propósito de convertir energía térmica en trabajo y su desempeño se expresa en términos de la eficiencia térmica htér, que es la relación entre el trabajo neto producido por la máquina y la entrada de calor total:

Recuerde que las máquinas térmicas operadas en un ciclo totalmente reversible, como el ciclo de Carnot, tienen la eficiencia térmica más alta de todas las máquinas térmicas que operan entre los mismos niveles de temperatura. Es decir, nadie puede desarrollar un ciclo más eficiente que el ciclo de Carnot. Entonces la siguiente pregunta surge inevitablemente: si el ciclo de Carnot es el mejor ciclo posible, ¿por qué no emplearlo como el ciclo modelo en todas las máquinas térmicas, en vez de ocuparse de los ciclos denominados ideales? La respuesta a esta pregunta está relacionada con las máquinas reales. La mayor parte de los ciclos encontrados en la práctica difieren significativamente del de Carnot, de ahí que sea inadecuado como un modelo realista. Cada ciclo ideal estudiado en este capítulo se relaciona con un dispositivo que produce trabajo específico y es una versión idealizada del ciclo real. Los ciclos ideales son internamente reversibles, pero, a diferencia del ciclo de Carnot, no son de manera necesaria externamente reversibles. Esto es, pueden

incluir irreversibilidades externas al sistema como la transferencia de calor debida a una diferencia finita de temperatura. Entonces, la eficiencia térmica de un ciclo ideal, en general, es menor que la de un ciclo totalmente reversible que opera entre los mismos límites de temperatura. Sin embargo, incluso es considerablemente más alta que la eficiencia térmica de un ciclo real debido a las idealizaciones utilizadas. Las idealizaciones y simplificaciones empleadas comúnmente en el análisis de los ciclos de potencia, pueden resumirse del siguiente modo: 1. El ciclo no implica ninguna fricción. Por lo tanto, el fluido de trabajo no experimenta ninguna caída de presión cuando fluye en tuberías o dispositivos como los intercambiadores de calor. 2. Todos los procesos de expansión y compresión ocurren en la forma de cuasiequilibrio. 3. Las tuberías que conectan a los diferentes componentes de un sistema están muy bien aisladas y la transferencia de calor a través de ellas es insignificante. Ignorar los cambios en las energías cinética y potencial del fluido de trabajo es otra simplificación comúnmente empleada en el análisis de ciclos de potencia. Ésta es una suposición posible de relacionar porque en dispositivos que incluyen trabajo de eje, como turbinas, compresores y bombas, los términos de las energías cinética y potencial son usualmente muy pequeños respecto de los otros términos en la ecuación de la energía. Las velocidades de fluido encontradas en dispositivos como condensadores, calderas y cámaras de mezclado por lo general son bajas, y los flujos de fluido experimentan poco cambio en sus velocidades, lo que también vuelve insignificantes los cambios en la energía cinética. Los únicos dispositivos donde los cambios en la energía cinética son significativos son las toberas aceleradoras y los difusores, los cuales se diseñan para crear grandes cambios en la velocidad. En capítulos anteriores los diagramas de propiedades como los P-v y T-s han servido como auxiliares valiosos en el análisis de procesos termodinámicos. Tanto en los diagramas P-v como en los T-s, el área encerrada por las curvas del proceso de un ciclo representa el trabajo neto producido durante el ciclo, lo cual también es equivalente a la transferencia de calor neta en ese ciclo. El diagrama T-s es particularmente útil como ayuda visual en el análisis de ciclos de potencia ideales. Estos ciclos no implican cualquier irreversibilidad interna, por lo tanto, el único efecto que puede cambiar la entropía del fluido de trabajo durante un proceso es la transferencia de calor. En un diagrama T-s un proceso de adición de calor avanza en la dirección de entropía creciente, uno de rechazo de calor avanza en la dirección de entropía decreciente y uno isentrópico (internamente reversible, adiabático) avanza a entropía constante. El área bajo la curva del proceso sobre un diagrama T-s representa la transferencia de calor para ese proceso. El área bajo el proceso de adición de calor sobre un diagrama T-s es una medida geométrica del calor total, suministrado durante el ciclo qentrada, y el área bajo el proceso de rechazo de calor es una medida del calor total rechazado qsalida. La diferencia entre estos dos (el área encerrada por la curva cíclica) es la transferencia neta de calor, la cual también es el trabajo neto producido durante el ciclo. Por lo tanto, sobre un diagrama T-s, la relación entre el área encerrada por la curva cíclica y el área bajo la curva del proceso de adición de calor representan la eficiencia térmica del ciclo. Cualquier modificación que incremente la relación entre estas dos áreas mejorará también la eficiencia térmica del ciclo. Aunque el fluido de trabajo en un ciclo ideal de potencia opera en un circuito cerrado, el tipo de procesos individuales que componen el ciclo dependen de los dispositivos individuales utilizados para ejecutar el ciclo. En el ciclo Rankine,

el cuál es el ciclo ideal para las centrales termoeléctricas que operan con vapor, el fluido de trabajo circula por una serie de dispositivos de flujo estacionario, como la turbina y el condensador; mientras en el ciclo de Otto, que es el ciclo ideal del motor de automóvil de encendido por chispa, el fluido de trabajo se expande y comprime alternativamente en un dispositivo de cilindro-émbolo. En consecuencia, las ecuaciones correspondientes a los sistemas de flujo estacionario deben utilizarse en el análisis del ciclo Rankine, mientras que las ecuaciones relativas a sistemas cerrados deben emplearse en el análisis del ciclo de Otto.

EL CICLO DE CARNOT Y SU VALOR EN INGENIERÍA El ciclo de Carnot se compone de cuatro procesos totalmente reversibles: adición de calor isotérmica, expansión isentrópica, rechazo de calor isotérmico y compresión isentrópica. Los diagramas P-v y T-s de un ciclo de Carnot. El ciclo de Carnot puede ser ejecutado en un sistema cerrado (un dispositivo de cilindro-émbolo) o en un sistema de flujo estacionario (usando dos turbinas y dos compresores), y puede emplearse gas o vapor como el fluido de trabajo. El ciclo de Carnot es el ciclo más eficiente que puede ejecutarse entre una fuente de energía térmica a temperatura TH y un sumidero a temperatura TL, y su eficiencia térmica se expresa como

La transferencia de calor isotérmica reversible es muy difícil de lograr en la práctica porque requeriría intercambiadores de calor muy grandes y necesitaría mucho tiempo (un ciclo de potencia en una máquina común se completa en una fracción de un segundo). Por lo tanto, no es práctico construir una máquina que opere en un ciclo que se aproxima en gran medida al de Carnot. El verdadero valor del ciclo de Carnot reside en que es el estándar contra el cual pueden compararse ciclos reales o ideales. La eficiencia térmica de un ciclo de Carnot es una función de las temperaturas del sumidero y de la fuente, y la relación de la eficiencia térmica para este ciclo transmite un importante mensaje que es igualmente aplicable a ciclos ideales reales: la eficiencia térmica aumenta con un incremento en la temperatura promedio a la cual se suministra calor hacia el sistema o con una disminución en la temperatura promedio a la cual el calor se rechaza del sistema. Sin embargo, las temperaturas de la fuente y el sumidero que pueden emplearse en la práctica tienen límites. La temperatura más alta en el ciclo es limitada por la temperatura máxima que pueden soportar los componentes de la máquina térmica, como el émbolo o los álabes de la turbina. La temperatura más baja está limitada por la temperatura del medio de enfriamiento utilizado en el ciclo, como un lago, un río o el aire atmosférico.

SUPOSICIONES DE AIRE ESTÁNDAR En los ciclos de potencia de gas, el fluido de trabajo permanece como gas durante todo el ciclo. Los motores de encendido por chispa, los motores diesel y las turbinas de gas convencionales son ejemplos comunes de dispositivos

que operan en un ciclo de gas. En todas estas máquinas la energía se suministra al quemar un combustible dentro de las fronteras del sistema, es decir, son máquinas de combustión interna. Debido a este proceso de combustión la composición del fluido de trabajo cambia durante el curso del ciclo de aire y combustible a productos de la combustión. Sin embargo, si se considera que en el aire predomina el nitrógeno, el cual difícilmente participa en reacciones químicas en la cámara de combustión, todo el tiempo el fluido de trabajo se parece mucho al aire. Aunque las máquinas de combustión interna operan en un ciclo mecánico (el émbolo regresa a su posición de inicio cuando finaliza cada revolución), el fluido de trabajo no se somete a un ciclo termodinámico completo; es lanzado (como gases de escape) fuera de la máquina en algún momento del ciclo en lugar de regresarlo al estado inicial. Trabajar en un ciclo abierto es la característica de todas las máquinas de combustión interna. Los ciclos de potencia de gases reales son bastante complejos. Para reducir el análisis a un nivel manejable, se utilizan las siguientes aproximaciones, conocidas comúnmente como suposiciones de aire estándar: 1. El fluido de trabajo es aire que circula de modo continuo en un circuito cerrado y siempre se comporta como un gas ideal. 2. Todos los procesos que integran el ciclo son internamente reversibles. 3. El proceso de combustión es sustituido por un proceso de adición de calor desde una fuente externa. 4. El proceso de escape es sustituido por un proceso de rechazo de calor que regresa al fluido de trabajo a su estado inicial. Para simplificar aún más el análisis, con frecuencia se emplea la suposición de que el aire tiene calores específicos constantes cuyos valores se determinan a temperatura ambiente (25 °C o 77 °F). Cuando se utiliza esta suposición, las del aire estándar son llamadas suposiciones de aire estándar frío. Un ciclo para el cual las suposiciones de aire estándar son aplicables se conoce como un ciclo de aire estándar. Las suposiciones de aire estándar previamente establecidas permiten simplificar de modo considerable el análisis sin apartarse de manera significativa de los ciclos reales. Este modelo simplificado permite estudiar de manera cualitativa la influencia de los parámetros principales en el desempeño de las máquinas reales.

BREVE PANORAMA DE LAS MÁQUINAS RECIPROCANTES A pesar de su simplicidad, la máquina reciprocante (básicamente un dispositivo de cilindro-émbolo) es una de esas raras invenciones que ha probado ser muy versátil y abarcar un amplio rango de aplicaciones. Es la fuente de poder de la vasta mayoría de los automóviles, camiones, pequeños aviones, barcos y generadores de energía eléctrica, así como de muchos otros dispositivos. El émbolo reciprocante en el cilindro se alterna entre dos posiciones fijas llamadas punto muerto superior (PMS) —la posición del émbolo cuando se forma el menor volumen en el cilindro— y punto muerto inferior (PMI) —la posición del émbolo cuando se forma el volumen más grande en el cilindro—. La distancia entre el PMS y el PMI es la más larga que el émbolo puede recorrer en una dirección y recibe el nombre de carrera del motor. El diámetro del pistón se llama calibre. El aire o una mezcla de aire y combustible se introducen al cilindro por la válvula de admisión, y los productos de combustión se expelen del cilindro por la válvula de escape.

El volumen mínimo formado en el cilindro cuando el émbolo está en el PMS se denomina volumen de espacio libre. El volumen desplazado por el émbolo cuando se mueve entre el PMS y el PMI se llama volumen de desplazamiento. La relación entre el máximo volumen formado en el cilindro y el volumen mínimo (espacio libre) recibe el nombre de relación de compresión r del motor:

Observe que la relación de compresión es una relación de volumen y no debe confundirse con la relación de presión. Otro término empleado en las máquinas reciprocantes es la presión media efectiva (PME), una presión ficticia que, si actuara sobre el émbolo durante toda la carrera de potencia, produciría la misma cantidad de trabajo neto que el producido durante el ciclo real. Es decir:

La presión media efectiva puede ser usada como parámetro para comparar el desempeño de máquinas reciprocantes de igual tamaño. La máquina que tiene un valor mayor de PME entregará más trabajo neto por ciclo y por lo tanto se desempeñará mejor. Las máquinas reciprocantes se clasifican como máquinas de encendido (ignición) por chispa (ECH) o máquinas de encendido (ignición) por compresión (ECOM), según como se inicie el proceso de combustión en el cilindro. En las máquinas ECH, la combustión de la mezcla de aire y combustible se inicia con una chispa en la bujía, mientras que en las ECOM la mezcla de aire y combustible se autoenciende como resultado de comprimirla arriba de su temperatura de autoencendido. En las siguientes dos secciones se estudian los ciclos de Otto y Diesel, los cuales son los ciclos ideales para las máquinas reciprocantes ECH y ECOM, respectivamente.

CICLO OTTO. En el ciclo de Otto, el fluido de trabajo es una mezcla de aire y gasolina que experimenta una serie de transformaciones (seis etapas, aunque el trabajo realizado en dos de ellas se cancela) en el interior de un cilindro provisto de un pistón. El proceso consta de seis etapas: 01 - Admisión: la válvula de admisión se abre, permitiendo la entrada en el cilindro de la mezcla de aire y gasolina. Al finalizar esta primera etapa, la válvula de admisión se cierra. El pistón se desplaza hasta el denominado punto muerto inferior (PMI).

12 - Compresión adiabática: la mezcla de aire y gasolina se comprime sin intercambiar calor con el exterior. La transformación es por tanto isentrópica. La posición que alcanza el pistón se denomina punto muerto superior (PMS). El trabajo realizado por la mezcla en esta etapa es negativo, ya que ésta se comprime. 23 - Explosión: la bujía se activa, salta una chispa y la mezcla se enciende. Durante esta transformación la presión aumenta a volumen constante. 34 - Expansión adiabática: la mezcla se expande adiabáticamente. Durante este proceso, la energía química liberada durante la combustión se transforma en energía mecánica, ya que el trabajo durante esta transformación es positivo. 41 - Enfriamiento isócoro: durante esta etapa la presión disminuye y la mezcla se enfría liberándose calor al exterior. 10 - Escape: la válvula de escape se abre, expulsando al exterior los productos de la combustión. Al finalizar esta etapa el proceso vuelve a comenzar.

El trabajo total realizado durante el ciclo es positivo (ya que éste se recorre en sentido horario). Como se observa el la parte izquierda de la animación, el trabajo realizado por el sistema durante las etapas 01 y 10 es igual en valor absoluto pero de signo contrario, por lo que no contribuyen al trabajo total.

CICLO DIESEL. Un ciclo Diésel ideal es un modelo simplificado de lo que ocurre en un motor diésel. En un motor de esta clase, a diferencia de lo que ocurre en un motor de gasolina la combustión no se produce por la ignición de una chispa en el interior de la cámara. En su lugar, aprovechando las propiedades químicas del gasóleo, el aire es comprimido hasta una temperatura superior a la de autoignición del gasóleo y el combustible es inyectado a presión en este aire caliente, produciéndose la combustión de la mezcla.

Puesto que sólo se comprime aire, la relación de compresión (cociente entre el volumen en el punto más bajo y el más alto del pistón) puede ser mucho más alta que la de un motor de gasolina (que tiene un límite, por ser indeseable la autoignición de la mezcla). La relación de compresión de un motor diésel puede oscilar entre 12 y 24, mientras que el de gasolina puede rondar un valor de 8. Para modelar el comportamiento del motor diésel se considera un ciclo Diesel de seis pasos, dos de los cuales se anulan mutuamente: Admisión E→A El pistón baja con la válvula de admisión abierta, aumentando la cantidad de aire en la cámara. Esto se modela como una expansión a presión constante (ya que al estar la válvula abierta la presión es igual a la exterior). En el diagrama PV aparece como una recta horizontal. Compresión A→B El pistón sube comprimiendo el aire. Dada la velocidad del proceso se supone que el aire no tiene posibilidad de intercambiar calor con el ambiente, por lo que el proceso es adiabático. Se modela como la curva adiabática reversible A→B, aunque en realidad no lo es por la presencia de factores irreversibles como la fricción. Combustión B→C Un poco antes de que el pistón llegue a su punto más alto y continuando hasta un poco después de que empiece a bajar, el inyector introduce el combustible en la cámara. Al ser de mayor duración que la combustión en el ciclo Otto, este paso se modela como una adición de calor a presión constante. Éste es el único paso en el que el ciclo Diesel se diferencia del Otto. Expansión C→D La alta temperatura del gas empuja al pistón hacia abajo, realizando trabajo sobre él. De nuevo, por ser un proceso muy rápido se aproxima por una curva adiabática reversible. Escape D→A y A→E Se abre la válvula de escape y el gas sale al exterior, empujado por el pistón a una temperatura mayor que la inicial, siendo sustituido por la misma cantidad de mezcla fría en la siguiente admisión. El sistema es realmente abierto, pues intercambia masa con el exterior. No obstante, dado que la cantidad de aire que sale y la que entra es la misma podemos, para el balance energético, suponer que es el mismo aire, que se ha enfriado. Este enfriamiento ocurre en dos fases. Cuando el pistón está en su punto más bajo, el volumen permanece aproximadamente constante y tenemos la isócora D→A. Cuando el

pistón empuja el aire hacia el exterior, con la válvula abierta, empleamos la isobara A→E, cerrando el ciclo.

CICLO ESTIRLING Y ERICSON. Un ciclo de Stirling ideal se compone de cuatro procesos reversibles:

Compresión isoterma A→B

El gas se comprime desde un volumen inicial VA hasta uno final VB, inferior, manteniendo su temperatura constante en un valor T1 (a base de enfriar el gas de forma continuada). Calentamiento a volumen constante B→C

El gas se calienta desde la temperatura T1 a la temperatura T2 mantenientdo fijo su volumen.

Expansión isoterma C→D El gas se expande mientras se le suministra calor de forma que su temperatura permanece en su valor T2.

Enfriamiento isócoro D→A Se reduce la temperatura del gas de nuevo a su valor T1 en un proceso a volumen constante.

Los motores Ericsson se basan en el ciclo Ericsson. Son de combustión externa por lo que el gas motor se calienta desde el exterior. Para mejorar el rendimiento (térmico y total) el motor Ericsson dispone de un regenerador o recuperador de calor. Puede funcionar en ciclo abierto o cerrado. La expansión y la compresión se producen simultáneamente, en las caras opuestas del pistón.

Explicación del motor de la figura:

En la posición actual (el pistón en la posición más baja) el aire de la cámara inferior se calienta mediante calor aportado exteriormente (color rojo oscuro o rojo marrón). El aire de la cámara superior ha sido aspirado al bajar el pistón y está a presión atmosférica (color azul). El pistón comienza a subir por la presión del aire calentado. Se producen simultáneamente la expansión del aire caliente y la compresión del aire de la cámara superior (aspirado en la fase previa). El aire pasa a la izquierda obligado por la válvula antirretorno de la admisión. Una válvula antirretorno le permite el paso al depósito acumulador de aire frío.

En el punto muerto superior pasa al depósito frío la máxima cantidad de aire aspirado posible. La válvula de paso (dibujada abajo y a la izquierda) se abre y permite el paso del aire frío a través del recuperador hasta la cámara inferior que lo recibe. Un volante de inercia hace que el pistón doble-función (compresión-expansión) empiece a bajar, empujando el aire precalentado a través del recuperador y aspire aire atmosférico a la cámara superior. En el cuarto inferior, el aire precalentado se acaba de calentar mientras se comprime. En la fase final el pistón llega a la posición inferior y el proceso se repite.

CICLO BRAYTON. El ciclo Brayton describe el comportamiento ideal de un motor de turbina de gas, como los utilizados en las aeronaves. Las etapas del proceso son las siguientes:

Admisión El aire frío y a presión atmosférica entra por la boca de la turbina Compresor El aire es comprimido y dirigido hacia la cámara de combustión mediante un compresor (movido por la turbina). Puesto que esta fase es muy rápida, se modela mediante una compresión adiabática A→B. Cámara de combustión En la cámara, el aire es calentado por la combustión del queroseno. Puesto que la cámara está abierta el aire puede expandirse, por lo que el calentamiento se modela como un proceso isóbaro B→C. Turbina El aire caliente pasa por la turbina, a la cual mueve. En este paso el aire se expande y se enfría rápidamente, lo que se describe mediante una expansión adiabática C →D. Escape Por último, el aire enfriado (pero a una temperatura mayor que la inicial) sale al exterior. Técnicamente, este es un ciclo abierto ya que el aire que escapa no es el mismo que entra por la boca de la turbina, pero dado que sí entra en la misma cantidad y a la misma presión, se hace la aproximación de suponer una recirculación. En este modelo el aire de salida simplemente cede calor al ambiente y vuelve a entrar por la boca ya frío. En el diagrama PV esto corresponde a un enfriamiento a presión constante D→A.

Existen de hecho motores de turbina de gas en los que el fluido efectivamente recircula y solo el calor es cedido al ambiente. Para estos motores, el modelo del ciclo de Brayton ideal es más aproximado que para los de ciclo abierto.

CICLO BRAYTON CON REGENERACION

En los motores de las turbinas de gas, la temperatura de los gases de escape que salen de la turbina suelen ser bastante mayor que la temperatura del aire que abandona el compresor. Por consiguiente, el aire de alta presión que sale del compresor puede calentarse transfiriéndole calor de los gases de escape calientes en un intercambiador de calor a contraflujo, el cual se conoce también como un regenerador o recuperador. DIAGRAMA DE LA MÁQUINA DE TURBINA DE GAS CON REGENERADOR

La eficiencia térmica del ciclo Brayton aumenta debido a la regeneración, en virtud de que la porción de energía de los gases de escape que normalmente se libera en los alrededores ahora se usa para precalentar el aire que entra a la cámara de combustión. Esto, a su vez, disminuye los requerimientos de entrada de calor (y en consecuencia, de combustible) para la misma salida de trabajo neta. Observe, sin embargo que el empleo de un regenerador se recomienda solo cuando la temperatura de escape de la turbina es mas alta que la temperatura de salida del compresor. De otro modo, el calor fluirá en la dirección inversa (hacia los gases de escape), y reducirá eficiencia. Ésta relación se encuentra en las máquinas de turbina de gas que operan a relaciones de presión muy altas. Es evidente que un regenerador con una eficacia mas alta ahorrará una gran cantidad de combustible puesto, que precalentará el aire a una temperatura más elevada, antes de la combustión. Sin embargo, lograr una eficacia mayor requiere el empleo de un regenerador más grande, el cual implica un precio superior y provoca una caída de presión más grande. En consecuencia, el uso de un regenerador con eficacia muy alta no puede justificarse económicamente a menos que los ahorros de combustible superen los gastos adicionales involucrados. La mayoría de los regeneradores utilizados en la práctica tienen eficacias por debajo de 0.85. Por consiguiente la eficiencia térmica de un ciclo Brayton con regeneración depende de la relación entre la mínima y la máxima temperaturas, así como la relación de presión

CICLO BRAYTON CON INTERENFRIAMIENTO RECALENTAMIENTO Y REGENERACION El trabajo neto de un ciclo de turbina de gas es la diferencia entre la salida de trabajo de la turbina y la entrada de trabajo del compresor, y puede incrementarse si se reduce el trabajo del compresor o si aumenta el de la turbina o ambos. El trabajo requerido para comprimir un gas entre dos presiones especificadas puede disminuirse al efectuar el proceso de compresión en etapas y al enfriar el gas entre ellas, es decir, si se emplea con presión de etapas múltiples con interenfriamiento. Cuando aumenta el numero de etapas, el proceso de compresión se vuelve isotérmico a la temperatura de entrada del compresor y el trabajo de compresión disminuye. De igual modo, la salida de trabajo de un turbina que opera entra dos niveles de presión aumenta al expandir el gas en etapas y recalentarlo entre ellas, esto es, si se usa expansión de múltiples etapas con recalentamiento. Esto se lleva a cabo sin elevar la temperatura máxima en el ciclo. Cuando aumenta el número de etapas, el proceso de expansión se vuelve isotérmico. El argumento anterior se basa en un simple principio: el trabajo de compresión o expansión de flujo permanente es proporcional al volumen específico de fluido. Por consiguiente, el volumen especifico del fluido de trabajo debe ser los mas bajo posible durante un proceso de compresión y lo mas alto posible durante

un proceso de expansión. Esto es precisamente lo que logran el interenfriamiento y el recalentamiento. El fluido de trabajo sale del compresor a una temperatura menor y de la turbina a una temperatura más alta, cuando se usa en interenfriamiento y recalentamiento. Esto hace que la regeneración sea más atractiva ya que existe un mayor potencial para ella. Además los gases que salen del compresor pueden calentarse a una temperatura más alta antes de que entren a la cámara de combustión debido a la temperatura mas elevada del escape de la turbina. Un diagrama esquemático del arreglo físico de un ciclo de turbina de gas de dos etapas con interenfriamiento, recalentamiento y regeneración se muestra en la figura:

el gas entra a la primera etapa del compresor en el estado 1, se comprime de modo isentrópico hasta una presión intermedia P2 ; se enfría hasta una presión constante hasta el estado 3 (T3 = T1 ) y se comprime en la segunda etapa isentrópicamente hasta la presión final P4. En el estado 4 el gas entra al regenerador, donde se calienta hasta T5 a una presión constante. En un regenerador ideal, el gas saldrá del regenerador a la temperatura del escape de la turbina, es decir, T5 = T9. El proceso de adición de calor (o combustión) primario toma lugar entre los estados 5 y 6. El gas entra a la primera etapa de la turbina en el estado 6 y se expande isentrópicamente hasta el estado 7, donde entra al recalentador. Se recalienta a presión constante hasta el estado 8 (T8 = T6), donde entra a la segunda etapa de la turbina. El gas sale de la turbina en el estado 9 y entra al regenerador, donde se enfría hasta el estado 1 a presión constante. El ciclo se completa cuando el gas enfría hasta el estado inicial. La relación de trabajo de retroceso de un ciclo de turbina de gas mejora debido al interenfriamiento y el recalentamiento. Sin embargo, esto no significa que la eficiencia térmica también mejorará. El hecho es que el interenfriamiento y el recalentamiento siempre disminuirán la eficiencia térmica a menos que se acompañen de la regeneración.

Ya que el interenfriamiento disminuye la presión promedio a la cual se añade el calor, y el recalentamiento aumenta la temperatura promedio a la cual el calor se rechaza,. Por tanto, en centrales eléctricas de turbina de gas, el interenfriamiento y recalentamiento se utilizan siempre en conjunción con la regeneración.

CICLOS IDEALES DE PROPULSION POR REACCION TURBORREACTORES. - La turbina de gas ha encontrado su utilización más espectacular en el campo de la propulsión aeronáutica. Inicialmente utilizada en aparatos militares rápidos, pero con radio de acción reducido, se extiende en la actualidad a recorridos de largo alcance dentro del campo de la aviación.

En general, un propulsor de reacción es un aparato que produce un chorro de gas de gasto másico G que sale a la velocidad V 1 y produce un empuje, E = G V1 . El chorro de gas es el resultado de una combustión: - En un cohete, el combustible y el comburente están en el interior del aparato, lo que le hace independiente de la atmósfera - Por el contrario, el reactor toma el comburente del aire ambiente que penetra en la máquina debido: a) A la velocidad de desplazamiento (estatoreactor) b) Al efecto de un compresor accionado por una turbina que toma su energía de los gases de propulsión

(turborreactor), que se reduce a una turbina de gas que genera gases calientes; la turbina de potencia útil y el recuperador, se sustituyen por una tobera de expansión donde el chorro de propulsión adquiere la velocidad V 1.

Ciclo y esquemas de un turborreactor

ANALISIS DE CICLOS DE POTENCIA DE GAS CON BASE EN LA SEGUNDA LEY En los ciclos reales productores de trabajo con gas, el fluido consiste principalmente de aire, más los productos de la combustión como el dióxido de carbono y el vapor de agua. Como el gas es predominantemente aire, sobre todo en los ciclos de las turbinas de gas, es conveniente examinar los ciclos de trabajo con gas en relación a un ciclo con aire normal. Un ciclo con aire normal es un ciclo idealizado que se basa en las siguientes aproximaciones: a) El fluido de trabajo se identifica exclusivamente como aire durante todo el ciclo y el aire se comporta como un gas ideal. b) Cualquier proceso de combustión que ocurriese en la práctica, se sustituye por un proceso de suministro de calor proveniente de una fuente externa. c) Se usa un proceso de desecho o eliminación de calor hacia los alrededores para restaurar el aire a su estado inicial y completar el ciclo. Otra condición adicional que se puede imponer en el estudio, es considerar los calores específicos CP y CV constantes y medidos a la temperatura ambiente. Este punto de vista se usa con mucha frecuencia, pero sus resultados numéricos pueden ser considerablemente distintos de los que se obtendrían tomando en cuenta calores específicos variables. Esto se debe a la enorme variación de la temperatura en la mayoría

de los ciclos de trabajo con gases, lo cual altera considerablemente los valores de CP y CVdurante el ciclo. En la práctica sería deseable emplear información adicional acerca de los gases reales que se producen en la combustión de los hidrocarburos mezclados con el aire.

EL CICLO BRAYTON En un ciclo de una turbina de gas, se usa distinta maquinaria para los diversos procesos del ciclo. Inicialmente el aire se comprime adiabáticamente en un compresor rotatorio axial o centrífugo. Al final de este proceso, el aire entra a una cámara de combustión en la que el combustible se inyecta y se quema a presión constante. Los productos de la combustión se expanden después al pasar por una turbina, hasta que llegan a la presión de los alrededores. Un ciclo compuesto de estos tres pasos recibe el nombre de ciclo abierto, porque el ciclo no se completa en realidad. Figura.1.

Fig..1 Turbina de gas que opera en un ciclo abierto.

Los ciclos de las turbinas de gas reales son ciclos abiertos, porque continuamente se debe alimentar aire nuevo al compresor. Si se desea examinar un ciclo cerrado, los productos de la combustión que se han expandido al pasar por la turbina deben pasar

por un intercambiador de calor, en el que se desecha calor del gas hasta que se alcanza la temperatura inicial. El ciclo cerrado de la turbina de gas se muestra en la Figura.2.

Fig. 2 Turbina de gas que opera en un ciclo cerrado.

En el análisis de los ciclos de turbinas de gas, conviene comenzar usando un ciclo con aire normal. Un ciclo de turbinas de gas con aire normal y de compresión y expansión isoentrópicas se llama ciclo Brayton. En él se tiene que sustituir el proceso real de la combustión por un proceso de suministro de calor. El uso del aire como único medio de trabajo en todo el ciclo es un modelo bastante aproximado, porque es muy común que en la operación real con hidrocarburos combustibles corrientes se usen relaciones airecombustible relativamente grandes, por lo menos 50:1 aproximadamente en términos de la masa. En el ciclo Brayton se supone que los procesos de compresión y expansión son isoentrópicos y que los de suministro y extracción de calor ocurren a presión constante. La Figura 3. muestra Pv y Ts de este ciclo idealizado.

Fig. 3. Diagramas característicos Pv y Ts del ciclo Brayton con aire normal.

El ciclo Brayton está integrado por cuatro procesos internamente reversibles: 1-2 Compresión isoentrópica en un compresor. 2-3 Adición de calor a P=constante. 3-4 Expansión isoentrópica en una turbina. 4-1 Rechazo de calor a P=constante. Aplicando la primera ley para flujo estable a cada uno de los procesos se puede determinar tanto el calor como el trabajo transferido durante el ciclo. Los procesos de 1-2 y 3-4 son isoentrópicos y P2 = P3 y P4 = P5. Por tanto:

Para el proceso de calentamiento de 2 a 3

Para el proceso de enfriamiento de 4 a 1

En el compresor se tiene la expresión

Para la turbina, la primera ley queda expresada como

La eficiencia térmica del ciclo Brayton ideal se escribe como

EFICIENCIA ADIABÁTICA DE LOS DISPOSITIVOS DE TRABAJO

El rendimiento real de la maquinaria que produce trabajo o que lo recibe, que esencialmente sea adiabática, está descrito por una eficiencia adiabática. Se define la eficiencia adiabática de la turbina h T

Aplicando la notación de la Figura 4 en la que el subíndice r representa la condición a la salida real y el subíndice i representa el estado de salida isoentrópico,

Fig. 4 Proceso real e isoentrópico para una turbina.

se expresa la ecuación de la eficiencia como:

suponiendo calor específico constante:

Si se conoce la eficiencia de la turbina, se puede hallar el valor de la temperatura real a la salida de la turbina. Para el compresor, se define la eficiencia adiabática del compresor como:

En la Figura.5, se puede observar tanto el proceso real como el proceso isoentrópico de un compresor adiabático. Fig. 5. Proceso real e isoentrópico para un compresor.

Se expresa la ecuación de la eficiencia como:

suponiendo calor específico constante:

si se conoce el valor de la eficiencia del compresor, se puede hallar la temperatura de salida del compresor.

Related Documents


More Documents from "Sebastian"