Chuyenhungvuong.net 100 Inequality Problems

  • Uploaded by: Nguyen Ha Duc Thinh
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chuyenhungvuong.net 100 Inequality Problems as PDF for free.

More details

  • Words: 20,297
  • Pages: 45
Upload by wWw.chuyenhungvuong.net

100 INEQUALITY PROBLEMS ***** Cao Minh Quang 05/11/2006

Most of these problems were collected from the Mathematics and Youth Magazine in Vietnam. Translation from Vietnamese into English may have many errors. I am looking forward to hearing from your ideas. • Address: Cao Minh Quang, Mathematics teacher, Nguyen Binh Khiem specialized High School, Vinh Long town, Vinh Long, Vietnam. • Email: [email protected]

Upload by wWw.chuyenhungvuong.net

Upload by wWw.chuyenhungvuong.net 1. ( a, b > 0, a + b = 1) ,

a b 4 + 2 ≤ . a +1 b +1 5 2

First solution.

Applying the AM – GM Inequality we get

1 3 1 3 4a + 3 a 4a a2 + 1 = a2 + + ≥ 2 a2 . + = ⇒ 2 ≤ . 4 4 4 4 4 a + 1 4a + 3 Similarly, b 4b . ≤ b 2 + 1 4b + 3

Adding these two inequalities, a b 4b ⎞ ⎛ 4a + 2 ≤⎜ + ⎟= a + 1 b + 1 ⎝ 4a + 3 4b + 3 ⎠ 2

⎡ 1 ⎞⎤ ⎛ 1 ⎢ 2 − 3 ⎜ 4a + 3 + 4b + 3 ⎟ ⎥ . ⎝ ⎠⎦ ⎣

On the orther hand, ⎡⎛ 1 1 ⎞⎤ 1 ⎞ 4 2 ⎛ 1 ⎡⎣( 4a + 3) + ( 4b + 3) ⎤⎦ ⎢⎜ + + = . ⎟⎥ ≥ 4 ⇒ ⎜ ⎟≥ ⎝ 4a + 3 4b + 3 ⎠ 4 ( a + b ) + 6 5 ⎣⎝ 4a + 3 4b + 3 ⎠⎦

Thus, a b 2 4 + 2 ≤ 2 − 3. = . a +1 b +1 5 5 2

Second solution.

Applying the AM – GM Inequality we get 4

1 1 1 1 5 ⎛1⎞ a + 1 = a + + + + ≥ 5 5 a 2 ⎜ ⎟ = 5 4a 2 . 4 4 4 4 4 ⎝4⎠ 2

2

Similarly,

b2 + 1 ≥

55 2 4b . 4

Adding these two inequalities,

a b a b 4⎛ 1 1 + 2 ≤ + = ⎜⎜ 5 a 3 . . + a + 1 b + 1 5 5 4a 2 5 5 4b 2 5 ⎝ 2 2 4 4 2

5

1 1 b3. . 2 2

⎞ ⎟⎟ ≤ ⎠

1 1⎞ ⎛ 1 1 ⎞⎤ ⎡⎛ a + a + a + + ⎟ ⎜ b + b + b + + ⎟⎥ ⎢ ⎜ 4 2 2 + 2 2 = 4 ⎡ 3(a + b) + 2 ⎤ = 4 . ≤ ⎢⎜ ⎟ ⎜ ⎟⎥ ⎢ ⎥ 5 ⎢⎜ 5 5 5⎣ 5 ⎥ ⎦ 5 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎠ ⎝ ⎠ ⎦⎥ ⎣⎢⎝ Third solution.

Applying the AM – GM Inequality we get

a + b ≥ 2 ab ⇒ ab ≤

1 . 4

Therefore,

a b ab 2 + a 2 b + a + b ab + 1 + 2 = 2 2 = = 2 2 2 2 a + 1 b + 1 a b + a + b + 1 ( a + b ) − 2ab + a 2 b 2 + 1 1 +1 ab + 1 ab + 1 4 4 = 2 2 = ≤ = . 2 a b − 2ab + 2 ⎛ 1⎞ 3 31 − 3 . 1 + 31 5 ⎜ ab − ⎟ − ab + 2 4 16 4⎠ 2 16 ⎝ 2. ( a, b, c > 0, a + b + c = 1) ,

a b c 3 + + ≤ . a +1 b +1 c +1 4 First solution.

Applying the AM – GM Inequality we get a a 1⎛ a a ⎞ = ≤ ⎜ + ⎟, a + 1 (a + b) + (a + c) 4 ⎝ a + b a + c ⎠ b b = ≤ b + 1 ( b + a ) + ( b + c)

1⎛ b b ⎞ + ⎜ ⎟, 4⎝ b + a b+ c⎠

c c 1⎛ c c ⎞ = ≤ ⎜ + ⎟. c + 1 (c + b) + (c + a ) 4 ⎝ c + b c + a ⎠ Adding these three inequalities,

a b c 1⎛ a + b b + c a + c⎞ 3 + + ≤ ⎜ + + ⎟= . a +1 b +1 c +1 4 ⎝ a + b b + c a + c ⎠ 4 Second solution.

Applying the AM – GM Inequality we get 1 1 1 1 a 1 a +1 = a + + + ≥ 44 a 3 ⇒ ≤ 4 a3 33 , 3 3 3 a +1 4 3

Similarly, b 1 ≤ b +1 4

4

b 3 33 ,

c 1 ≤ c+1 4

4

c3 33 .

Adding these three inequalities, a b c 3⎛ 1 1 1⎞ + + ≤ ⎜⎜ 4 a.a.a. + 4 b.b.b. + 4 c.c.c. ⎟⎟ ≤ a +1 b +1 c +1 4 ⎝ 3 3 3⎠

1⎞ ⎛ 1⎞ ⎛ 1 ⎞⎤ ⎡⎛ a + a + a + ⎟ ⎜ b + b + b + ⎟ ⎜ c + c + c + ⎟⎥ ⎢ ⎜ 3 3 + 3 + 3 =3. ≤ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎥ 4 ⎢⎜ 4 4 4 ⎟ ⎜ ⎟ ⎜ ⎟⎥ 4 ⎠ ⎝ ⎠ ⎝ ⎠ ⎦⎥ ⎣⎢⎝ Third solution.

Applying the AM – GM Inequality we get 1 1 ⎞ ⎛ 1 + + ⎡⎣( a + 1) + ( b + 1) + ( c + 1) ⎤⎦ ⎜ ⎟≥9 ⎝ a +1 b +1 c +1⎠

1 1 ⎞ 9 9 ⎛ 1 ⇒⎜ + + = . ⎟≥ ⎝ a + 1 b + 1 c + 1 ⎠ ( a + 1) + ( b + 1) + ( c + 1) 4

Therefore, a b c 1 1 ⎞ 9 3 ⎛ 1 + + = 3−⎜ + + ⎟ ≤ 3− = . a +1 b +1 c +1 4 4 ⎝ a +1 b +1 c +1⎠

Forth solution

Applying the AM – GM Inequality we get

1 2 a 2 a 3a 1 1 a +1 = a + + ≥ 2 + ⇒ ≤ + − . 3 3 3 3 a +1 2 2 3

1 . a 2 2 + 3 3

Similarly, b 3b 1 1 ≤ + − . b +1 2 2 3

1 c 3c 1 1 1 , . ≤ + − . 2 2 3 b 2 c +1 c 2 + 2 2 + 3 3 3 3

Adding these three inequalities, ⎛ ⎞ ⎜ ⎟ ⎛ ⎞ a b c 3 a b c 3 1 1 1 1 ⎜ ⎟≤ + + ≤ ⎜⎜ + + + − + + ⎟ a +1 b +1 c +1 2 ⎝ 3 3 3 ⎟⎠ 2 3 ⎜ a 2 b 2 b 2⎟ + 2 + 2 + ⎟ ⎜2 3 3 3 3 3 3⎠ ⎝

1⎞ ⎛ 1⎞ ⎛ 1 ⎞⎤ ⎡⎛ a + ⎟ ⎜ b + ⎟ ⎜ c + ⎟⎥ ⎢ ⎜ 3 3 + 3 + 3 +3− ≤ ⎢⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎥ 2 ⎢⎜ 2 ⎟ ⎜ 2 ⎟ ⎜ 2 ⎟ ⎥ 2 ⎛ a + 2 ⎜ ⎢⎣ ⎝ ⎥ ⎠ ⎝ ⎠ ⎝ ⎠⎦ 3 ⎝

3. ( a, b, c ≥ 1) ,

1 1 1⎞ + + ⎟≥9 ⎝a b c⎠

( 2 + abc ) ⎛⎜ Solution.

We have,

9 b + 3

c⎞ 2 ⎟ + 3. 3⎠ 3

≤3−

9 3 = . 4 4

( a − 1)( b − 1) ≥ 0 ⇔ ab + 1 ≥ a + b , ( ab − 1)( c − 1) ≥ 0 ⇔ abc + 1 ≥ ab + c . Adding these two inequalities, we obtain abc + 2 ≥ a + b + c .

Thus,

1 1 1⎞ ⎛1 1 1⎞ + + ⎟ ≥ ( a + b + c) ⎜ + + ⎟ ≥ 9 . ⎝a b c⎠ ⎝a b c⎠

( 2 + abc ) ⎛⎜

(

)

4. x, y, z > 0, xy xy + yz yz + zx zx = 1 , x6 y6 z6 1 + + ≥ . 3 3 3 3 3 3 x +y y +z z +x 2

Solution.

We set a = x 3 , b = y3 , c = z 3 and observe that

ab + bc + ca = 1 .

The inequality is equivalent to

a2 b2 c2 1 + + ≥ . a+ b b+c c+a 2 Applying the Cauchy – Buniakowski Inequality we get

⎡ a2 b2 c2 ⎤ 2 ⎢ a + b + b + c + c + a ⎥ ⎡⎣( a + b) + ( b + c) + ( c + a) ⎤⎦ ≥ ( a + b + c) ⎣ ⎦ a2 b2 c2 1 1 ⇒ + + ≥ ( a + b + c) ≥ a+ b b+c c+a 2 2

(

)

ab + bc + ca =

1 . 2

5. ( x, y > 0, xy = 1) ,

x 2 + 3x + y 2 + 3y +

9 ≥ 11 . x + y2 + 1 2

Solution.

Applying the AM – GM Inequality we get

(x 6. ( m, n ∈

2

+ y 2 + 1) +

9 9 + 3x + 3y − 1 ≥ 4 4 ( x 2 + y 2 + 1) . 2 .3x.3y − 1 = 11 . 2 x + y +1 x + y2 + 1 2

\ {0} , m ≤ a, b, c ≤ n ) , a b c 3 ( n − m) . + + ≤ + b + c a + c a + b 2 2m ( n + m) 2

Solution.

Without loss of generality, we can assume that a ≥ b ≥ c , we set x = b + c, y = c + a, z = a + b . We observe that x ≤ y ≤ z , therefore,

y ⎞⎛ z⎞ ⎛ x ⎞⎛ y⎞ ⎛ ⎜1 − ⎟ ⎜1 − ⎟ + ⎜1 − ⎟ ⎜1 − ⎟ ≥ 0 x ⎠⎝ y⎠ ⎝ y ⎠⎝ z⎠ ⎝ ⇔

⎛x z⎞ y+z x+z x+y + + ≤ 2⎜ + ⎟ + 2 x y z ⎝y x⎠

(z − x) + 6 1 . b c ⎞ ⎛ a ⇔ 2⎜ + + () ⎟+3≤ 2 xy ⎝ b+c c+a a+ b ⎠ 2

On the other hand,

0≤

z−x a−c n−m z−x a−c a−c n−c n−m and 0 ≤ . = ≤ = ≤ ≤ ≤ x b+c 2m z a+ b a+c n+c n+m

Thus,

(z − x) xz

2

(n − m) 2 . ≤ ( ) 2m ( n + m ) 2

From (1) and (2), we have a b c 3 ( n − m) . + + ≤ + b + c a + c a + b 2 2m ( n + m) 2

7. ( 0 < x1 , x 2 , ..., x n ≤ 1, n ≥ 2 ) , x1 + x 2 + ... + x n 1 . ≤ n 1 + n (1 − x1 )(1 − x 2 ) ... (1 − x n )

Solution.

We set 1 − x i = ai , ( i = 1, 2, ..., n ) and observe that 0 ≤ ai < 1 , ( i = 1, 2, ..., n ) . The inequality is equivalent to

(1 − a1 ) + (1 − a2 ) + ... + (1 − an ) ≤ n

1 , 1 + na1a2 ...an

or ( a1 + a2 + ... + an )(1 + a1a2 ...an ) ≥ n 2 a1a2 ...an . Applying the AM – GM Inequality we get

a1 + a2 + ... + an ≥ n n a1a2 ...an and 1 + na1a2 ...an ≥ 1 + ( n − 1) a1a2 ...an ≥ n n ( a1a2 ...an )

n −1

.

Therefore,

( a1 + a2 + ... + an )(1 + a1a2 ...an ) ≥ n2 n ( a1a2 ...an )

n

= n2 ( a1 + a2 + ... + an )(1 + a1a2 ...an ) ≥ n2a1a2 ...an .

8. ( 0 < x < y ≤ z ≤ 1,3x + 2y + z ≤ 4 ) ,

3x 2 + 2y 2 + z 2 ≤ Solution.

10 . 3

We have 3x + 2y + z ≤ 4 , thus, 3x 2 + 2xy + xz ≤ 4x . On the other hand, 0 < x < y ≤ z ≤ 1 , therefore 2y ( y − x ) ≤ 2 ( y − x ) and z ( z − x ) ≤ z − x . Adding these two inequalities, we obtain

3x 2 + 2y 2 + z 2 ≤ x + 2y + z . Applying the Cauchy – Buniakowski Inequality we get

(3x

2

2 10 2 ⎛1 ⎞ + 2y2 + z2 ) ≤ ( x + 2y + z ) ≤ ⎜ + 2 + 1⎟ ( 3x2 + 2y2 + z2 ) ⇒ 3x2 + 2y2 + z2 ≤ . 3 ⎝3 ⎠

9. ( 0 ≤ x ≤ y ≤ z ≤ 1) ,

x 2 ( y − z ) + y 2 ( z − y ) + z 2 (1 − z ) ≤

108 . 529

Solution.

We set T = x 2 ( y − z ) + y 2 ( z − y ) + z 2 (1 − z ) . Applying the AM – GM Inequality and the Cauchy – Buniakowski Inequality we get 3

1 1 ⎛ y + y + 2z − 2y ⎞ 2 T ≤ 0 + ⎡⎣ y.y ( 2z − 2y ) ⎤⎦ + z 2 (1 − z ) ≤ ⎜ ⎟ + z (1 − z ) 2 2⎝ 3 ⎠ 2

⎛ 4 ⎞ ⎛ 23 ⎞ ⎛ 54 ⎞ ⎛ 23 ⎞ ⎛ 23 ⎞ ⎛ 23 ⎞ = z2 ⎜ z + 1 − z ⎟ = z2 ⎜ 1 − z ⎟ = ⎜ ⎟ ⎜ z ⎟ ⎜ z ⎟ ⎜ 1 − z ⎟ ⎝ 27 ⎠ ⎝ 27 ⎠ ⎝ 23 ⎠ ⎝ 54 ⎠ ⎝ 54 ⎠ ⎝ 27 ⎠ 23 23 ⎤ ⎡ 23 2 z + z +1− z ⎥ ⎛ 54 ⎞ ⎢ 54 54 27 = 108 . ≤⎜ ⎟ ⎢ ⎥ 3 ⎝ 23 ⎠ ⎢ ⎥ 529 ⎣ ⎦

(

)

10. a, b, c ∈ , a 2 + b 2 + c 2 ≤ 8 , ab + bc + 2bc ≥ −8 .

Solution. 2

2 b ⎛ ⎞ 3b ≥ 0. We have 8 + ( ab + bc + 2bc ) ≥ a + b + c + ab + bc + 2bc = ⎜ a + + c ⎟ + 2 4 ⎝ ⎠ 2

2

2

Therefore, ab + bc + ca ≥ −8 . 11. ( a, b > 0 ) ,

( a − b ) ( 3a + b )( a + 3b ) . a+ b ≥ ab + 2 8 ( a + b ) ( a2 + 6ab + b 2 ) 2

Solution.

If a = b , the inequality is true. If a ≠ b , the inequality is equivalent to

( a − b ) ( 3a + b )( a + 3b ) a+ b − ab ≥ 2 8 ( a + b ) ( a2 + 6ab + b 2 ) 2



(

a− b

)

2

⎡ ⎢1 − ⎢ ⎢⎣

(

a+ b

) ( 3a + b )( a + 3b ) ⎤⎥ ≥ 0 2

4 ( a + b ) ( a2 + 6ab + b 2 ) ⎥ ⎥⎦

(

)

⇔ 4 ( a + b ) ( a2 + 6ab + b2 ) − a + b + 2 ab ( 3a2 + 3b 2 + 10ab ) ≥ 0 . We set x = a + b, y = ab and observe that a2 + b2 = x 2 − 2y 2 . The inequality is equivalent to 4x ( x 2 + 4y 2 ) − ( x + 2y ) ( 3x 2 + 4y 2 ) ≥ 0 ⇔ ( x − 2y ) ≥ 0 ⇔ x ≥ 2y ⇔ a + b ≥ 2 ab . 3

12. ( x ∈

), sin x + sin 2x + sin 3x <

3 3 . 2

Solution.

We have,

sin x + sin 2x + sin 3x = sin 2x + 2 sin 2x cos x = sin 2x + 4 sin x cos2 x ≤ cos2 x cos2 x ≤ 1 + 4 sin x cos x ≤ 1 + 4 sin x cos x = 1 + 8 sin x. . 2 2 2

2

⎛ cos 2 x cos 2 x 2 sin x + + ⎜ 2 2 ≤ 1+ 8 ⎜ 3 ⎜⎜ ⎝

4

2

3

⎞ ⎟ 8 3 3 3 < . ⎟ = 1+ 9 2 ⎟⎟ ⎠

13. ( x1 , x 2 , ..., x n > 0, n ≥ 3) ,

x12 + x 2 x 3 x 2 + x3x 4 x 2 + x n x1 x 2 + x1x 2 + 2 + ... + n −1 + n ≥n. x1 ( x 2 + x 3 ) x 2 ( x 3 + x 4 ) x n −1 ( x n + x1 ) x n ( x1 + x 2 ) Solution.

We set,

A=

x12 + x 2 x 3 x2 + x3x 4 x 2 + x n x1 x 2 + x1x 2 + 2 + ... + n −1 + n . x1 ( x 2 + x 3 ) x 2 ( x 3 + x 4 ) x n −1 ( x n + x1 ) x n ( x1 + x 2 )

Applying the AM – GM Inequality we have

⎡ x12 + x 2 x 3 ⎤ ⎡ x 22 + x 3 x 4 ⎤ ⎡ x 2n −1 + x n x1 ⎤ ⎡ x 2n + x1x 2 ⎤ A+n = ⎢ + 1⎥ + ⎢ + 1⎥ + ... + ⎢ + 1⎥ + ⎢ + 1⎥ ⎣ x1 ( x 2 + x 3 ) ⎦ ⎣ x 2 ( x 3 + x 4 ) ⎦ ⎣ x n −1 ( x n + x1 ) ⎦ ⎣ x n ( x1 + x 2 ) ⎦ =

( x1 + x 2 )( x1 + x3 ) + ( x 2 + x3 )( x 2 + x 4 ) + ... + ( x n −1 + x n )( x n −1 + x1 ) + ( x n + x1 )( x n + x 2 ) x1 ( x 2 + x 3 ) x2 ( x3 + x 4 ) x n −1 ( x n + x1 ) x n ( x1 + x 2 )

≥ nn

( x1 + x3 )( x 2 + x 4 ) ... ( x n −1 + x1 )( x n + x 2 ) ≥ n n 2n

x1x 3 x 2 x 4 ... x n −1x1 x n x 2 = 2n . x1x 2 ...x n −1x n

x1x 2 ...x n −1x n

Therefore,

x12 + x 2 x 3 x 22 + x 3 x 4 x 2n −1 + x n x1 x 2n + x1x 2 + + ... + + ≥n. x1 ( x 2 + x 3 ) x 2 ( x 3 + x 4 ) x n −1 ( x n + x1 ) x n ( x1 + x 2 ) 14. (1 ≤ a, b, c ≤ 2 ) , 1 1 1⎞ + + ⎟ ≤ 10 . ⎝a b c⎠

( a + b + c) ⎜⎛ Solution.

Without loss of generality, we can assume that 1 ≤ a ≤ b ≤ c ≤ 2 , we obtain,

a b b c a c ⎛ a ⎞⎛ b ⎞ ⎛ b ⎞⎛ c ⎞ ⎜1 − ⎟ ⎜1 − ⎟ + ⎜1 − ⎟ ⎜1 − ⎟ ≥ 0 ⇔ + + + ≤ 2 + + . b c a b c a ⎝ b ⎠⎝ c ⎠ ⎝ a ⎠⎝ b ⎠ Therefore, 1 1 1⎞ ⎛a b b c⎞ a c ⎛a c⎞ + + ⎟ = 3 + ⎜ + + + ⎟ + + ≤ 5 + 2⎜ + ⎟ . ⎝a b c⎠ ⎝b c a b⎠ c a ⎝ c a⎠

( a + b + c) ⎛⎜ On the other hand,

2

1 a a ⎞⎛ 1 a ⎞ 5 a a c 5 ⎛ ⎛a⎞ ≤ ≤ 1 ⇒ ⎜ 2 − ⎟⎜ − ⎟ ≤ 0 ⇒ ⎜ ⎟ + 1 ≤ . ⇒ + ≤ . 2 c c ⎠⎝ 2 c ⎠ 2 c c a 2 ⎝ ⎝c⎠ Thus,

1 1 1⎞ + + ⎟ ≤ 10 . ⎝a b c⎠

( a + b + c) ⎜⎛ 15. ( a, b, c, d > 0 ) ,

a2 b 2 c2 d 2 a + b + c + d + + + ≥ 4 . b 2 c2 d 2 a2 abcd

Solution.

Applying the AM – GM Inequality we get

a2 b 2 c2 a6 8a 8 3. 2 + 2. 2 + 2 + 2 ≥ 8 2 2 2 = 4 , b c d bcd abcd b2 c2 d 2 b6 8b 8 3. 2 + 2. 2 + 2 + 2 ≥ 8 2 2 2 = 4 , c d a cda abcd c2 d 2 a2 c6 8c 8 3. 2 + 2. 2 + 2 + 2 ≥ 8 2 2 2 = 4 , d a b dab abcd d2 a2 b 2 d6 8d 8 3. 2 + 2. 2 + 2 + 2 ≥ 8 2 2 2 = 4 . a b c abc abcd

Adding these four inequalities, we obtain ⎛ a2 b 2 c2 d 2 ⎞ ⎛ a+ b+c+d ⎞ ⎛ a+ b+c+d ⎞ ⎛ a+ b+c+d ⎞ 6 ⎜ 2 + 2 + 2 + 2 ⎟ + 8 ≥ 8⎜ 4 = 6⎜ 4 ⎟ ⎟ + 2⎜ ⎟ c d a ⎠ abcd ⎠ abcd ⎠ ⎝ 4 abcd ⎠ ⎝ ⎝ ⎝b

4 4 abcd ⎛ a+ b+c+d ⎞ ⎛ a+ b+c+d ⎞ ≥ 6⎜ 4 + 2. = 6⎜ 4 ⎟ ⎟+8. 4 abcd ⎠ abcd abcd ⎠ ⎝ ⎝ Thus, a2 b 2 c2 d 2 a + b + c + d + + + ≥ 4 . b 2 c2 d 2 a2 abcd

16. ( 0 ≤ x ≤ 2 ) , 4x − x 3 + x + x 3 ≤ 3 4 3 .

Solution.

Applying the Cauchy – Buniakowski Inequality we get

(

)

4x − x 3 + x + x 3 =

=

17. ( x ∈

1⎡ 1 2 8x − 2x 3 + 2 x + x 3 ⎤ ≤ ⎦ 2 2⎣

1 6 4 2 . 2x ( 9 − x 242

( 2 + 4 ) ( 8x − 2x3 + x + x3 ) =

2 2 2 6 ⎛ 2x + ( 9 − x ) + ( 9 − x ) ⎞ ⎟ = 34 3 . = 4 4⎜ ⎜ ⎟ 3 2 2 ⎝ ⎠ 3

)

2 2

), 2 sin x + 15 − 10 2 cos x ≤ 6 .

Solution.

Applying the Cauchy – Buniakowski Inequality we get

2 sin x + 15 − 10 2 cosx ≤

(

18. x, y, z > 0, x 2 + y 2 + z 2 = 1, n ∈

+

(1 + 5) ( 2sin2 x + 3 − 2

)

2 cosx = 6 ⎡6 − ⎢⎣

(

)

2 2 cosx + 1 ⎤ ≤ 6 . ⎥⎦

),

2n + 1) 2n 2n + 1 ( x y z . + + ≥ 1 − x 2n 1 − y 2n 1 − z 2n 2n Solution.

We set f ( t ) = t (1 − t 2n ) , t ∈ ( 0,1) . It is easy to show that f ' ( t ) = 1 − ( 2n + 1) t 2n+1 , f ' ( t ) = 0 ⇔ t = 2n

1 2n ⎛ 1 ⎞ 2n ⇒ f ( t ) ≤ f ⎜ 2n ⎟ ⇒ t (1 − t ) ≤ 2n + 1 ( 2n + 1) 2n 2n + 1 ⎝ 2n + 1 ⎠

Since 0 < x, y,z < 1 , thus 2n + 1) 2n 2n + 1 2n + 1) 2n 2n + 1 2n + 1) 2n 2n + 1 ( ( ( 1 1 1 ≥ , ≥ , ≥ 2n 2n 2n x (1 − x 2n ) y (1 − y 2n ) z (1 − z 2n )

Adding these three inequalities, we obtain

⎛ x y z + + ⎜ 2n 2n 1− y 1 − z2n ⎝1− x

(x ≥

2

⎞ ⎞ ⎛ x2 y2 z2 ⎜ ⎟≥ = + + ⎟ 2n 2n 2n ⎠ ⎝⎜ x (1 − x ) y (1 − y ) z (1 − z ) ⎠⎟

+ y 2 + z 2 ) ( 2n + 1 ) 2 n 2n + 1 2n

2n + 1 ) 2 n 2n + 1 ( = . 2n

19. ( a, b > 0, a + b < 1) ,

a2 b2 1 9 + + +a+ b ≥ . 1− a 1− b a + b 2 Solution.

We have,

⎛ a2 ⎞ ⎛ a2 ⎞ ⎛ 1 b2 1 b2 1 1 1 ⎞ + + + a + b = + 1 + a + + 1+ b + − 2⎟ = ⎜ + + − 2⎟ ⎜ ⎟ ⎜ 1− b a + b ⎠ ⎝ 1− a 1− b a + b ⎠ ⎝ 1− a 1− b a + b ⎠ ⎝ 1− a Applying the Cauchy – Buniakowski Inequality we get

(1 + 1 + 1) 1 1 ⎞ 9 ⎛ 1 + + = . ⎜ ⎟≥ ⎝ 1 − a 1 − b a + b ⎠ 1(1 − a) + 1(1 − b) + 1. ( a + b ) 2 2

20. ( a, b, c > 0, abc = 1) ,

1 1 1 1 + 2 + 2 ≤ . 2 2 2 a + 2b + 3 b + 2c + 3 c + 2a + 3 2 2

Solution.

Applying the AM – GM Inequality we get

a2 + b2 ≥ 2ab and b 2 + 1 ≥ 2b . Therefore,

a2 + 2b2 + 3 ≥ 2 ( ab + b +1) ⇒

1 1 ≤ . 2 a + 2b + 3 2 ( ab + b +1) 2

Similarly,

1 1 1 1 ≤ and 2 . ≤ 2 2 b + 2c + 3 2 ( bc + c +1) c + 2a + 3 2 ( ac + a + 1) 2

Adding these three inequalities, we obtain

1 1 1 1⎛ 1 1 1 ⎞ + 2 + 2 ≤ ⎜ + + ⎟= 2 2 2 a + 2b + 3 b + 2c + 3 c + 2a + 3 2 ⎝ ab + b + 1 bc + c + 1 ca + a + 1 ⎠ 2

1⎛ 1 ab b ⎞ 1 ab + b + 1 1 = ⎜ + + = . ⎟= 2 ⎝ ab + b + 1 b + 1 + ab 1 + ab + b ⎠ 2 ab + b + 1 2

(

)

21. x, y > 0, x 2 + y 2 = 1 ,



(1 + x ) ⎜ 1 + ⎝

1⎞ ⎛ 1⎞ ⎟ + (1 + y ) ⎜ 1 + ⎟ ≥ 4 + 3 2 . y⎠ ⎝ x⎠

Solution.

We have, ⎛

(1 + x ) ⎜ 1 + ⎝

1⎞ 1 ⎞ ⎛ 1 ⎞ ⎛x y⎞ 1⎛1 1⎞ ⎛ 1⎞ ⎛ ⎟ + (1 + y ) ⎜ 1 + ⎟ = ⎜ x + ⎟ + ⎜ y + ⎟ + ⎜ + ⎟ + ⎜ + ⎟ + 2 . y⎠ 2x ⎠ ⎝ 2y ⎠ ⎝ y x ⎠ 2 ⎝ x y ⎠ ⎝ x⎠ ⎝

Applying the AM – GM Inequality we get x+

1⎛1 1⎞ 1 1 2 1 1 x y = ≥ = 2, + ≥2. ≥ 2, y + ≥ 2, ⎜ + ⎟≥ 2 2 2x 2y y x 2⎝x y⎠ x +y xy 4 x 2 y 2

Adding these four inequalities, we obtain ⎛

(1 + x ) ⎜ 1 + ⎝

1⎞ ⎛ 1⎞ ⎟ + (1 + y ) ⎜ 1 + ⎟ ≥ 4 + 3 2 . y⎠ ⎝ x⎠

22. ( 0 < a, b, c ≤ 1) , 1 1 ≥ + (1 − a)(1 − b )(1 − c) . a+ b+c 3

Solution.

Applying the AM – GM Inequality we get 1=

(1 − b ) + (1 − c ) + (1 + b + c ) ≥ 3 3

(1 − b )(1 − c )(1 + b + c ) ⇔ (1 − b )(1 − c )(1 + b + c ) ≤ 1 .

Therefore,

(1 − a )(1 − b )(1 − c ) ≤

(

1− a 1− a 1 1 1 1 ≤ ≤ − ⇒ ≥ + (1 − a)(1 − b)(1 − c) . 1+ b + c a + b + c a + b + c 3 a+ b+c 3

)

23. x ≥ y ≥ z > 0,32 − 3x 2 = z 2 = 16 − 4y 2 ,

xy + yz + zx ≤

32 3 + 16 . 5

Solution.

We have y 2 =

16 − z 2 2 32 − z 2 16 − z 2 4 ≥ z2 ⇒ z ≤ . ,x = , y≥z⇒ 4 4 3 5

On the other hand, 32 − z 2 48 − 3z 2 5z 2 − 16 x − 3y = − = ≤ 0 ⇒ x ≤ y 3 ⇒ xy ≤ 3y 2 . 3 4 12 2

2

1 3 ⎛ x2 3 2 2 ⎛ x ⎞ 2⎞ We have xz ≤ 3 ⎜ .z ⎟ ≤ y + z ) and yz ≤ ( y 2 + z 2 ) . ( ⎜ +z ⎟≤ 2 ⎝ 3 ⎠ 2 ⎝ 3 ⎠ 2 Adding these two inequalities, we obtain

3 2 2 1 2 2 ⎛ 3 1 ⎞ ⎛ 16 − z2 ⎞ ⎛ 3 + 1 ⎞ 2 ( xy + yz + zx ) ≤ 3y + ( y + z ) + ( y + z ) = ⎜⎜ 3 + + ⎟⎟ ⎜ ⎟z ⎟+⎜ 2 2 20 2 ⎠ ⎝ 4 ⎠ ⎜⎝ 2 ⎟⎠ ⎝ ⎛ 3+ 3 ⎞ 2 ⎛ 3 + 3 ⎞ 16 32 3 + 16 = 2 3 3 + 1 + ⎜⎜ . ⎟⎟ z ≤ 2 3 3 + 1 + ⎜⎜ ⎟⎟ . = 5 ⎝ 8 ⎠ ⎝ 8 ⎠ 5 2

(

π ⎛ 24. ⎜ 0 < x < , n ∈ 2 ⎝

+

)

(

)

⎞ ⎟, ⎠ sin n + 2 x cosn + 2 x + ≥ 1. cosn x sin n x

Solution.

We have,

( sin

2n

x − cos2n x )( sin 2 x − cos2 x ) ≥ 0

⇔ ( tg n x − cot g n x )( sin 2 x − cos2 x ) ≥ 0 ⇔ tg n x sin 2 x + cot g n x cos2 x ≥ cot g n x sin 2 x + tg n x cos2 x . Thus, sin n + 2 x cosn + 2 x 1 n 1 + ≥ ( tg x + cot g n x )( sin 2 x + cos2 x ) ≥ .2. tg n x.cot g n x = 1 . n n cos x sin x 2 2 1 ⎛ ⎞ 25. ⎜ 0 < a, b, c, 0 ≤ x, y, z ≤ , a + b + c = x + y + z = 1⎟ , 2 ⎝ ⎠

ax + by + cz ≥ 8abc . Solution.

Without loss of generality, we can assume that a ≤ b ≤ c . We have,

4ab ≤ ( a + b ) = (1 − c ) ⇒ 8abc ≤ 2c (1 − c ) ≤ 2

2

2

1− c . 2

1 1− c ⎛ 1 ⎞ ⎛1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ a+b 0 ≤ x, y,z ≤ ⇒ cz = c ⎜ − x ⎟ + c ⎜ − y ⎟ ≥ a ⎜ − x ⎟ + b ⎜ − y ⎟ = − ( ax + by) = − ( ax + by) . 2 2 2 ⎝2 ⎠ ⎝2 ⎠ ⎝2 ⎠ ⎝2 ⎠

Thus,

ax + by + cz ≥

(

1− c ≥ 8abc . 2

)

26. x, y ≥ 0, x 3 + y3 = 1 ,

x +2 y ≤ Solution.

We set α =

1 , β = 2 5 2α . 5 1+ 2 2

6

(1 + 2 2 ) 5

5

.

Applying the AM – GM Inequality we get

x 3 + 5α

x 3 + 5α ≥ 6 6 x 3α 5 ⇒ x ≤

6 6 α5

x 3 + 5β ≥ 6 6 y3β5 ⇒ 2 y ≤

y3 + 5β 3 6 β5

,

.

Adding these two inequalities, we obtain

(

)

x +2 y ≤

x 3 + y3 + 5 ( α + β ) 6 6 α5

=

6

(1 + 2 2 ) 5

5

.

⎛ ⎞ 3x 4y 2z 27. ⎜ x, y, z > 0, + + = 2⎟, x +1 y +1 z +1 ⎝ ⎠ x3y4z2 ≤

1 . 89

Solution.

Applying the AM – GM Inequality we get

1 x 2x 4y 2z = 1− = + + = x +1 x +1 x +1 y +1 z +1

x x y y y y z z x2 y4z2 + + + + + + + ≥ 88 . 2 4 2 x +1 x +1 y +1 y +1 y +1 y +1 z +1 z +1 ( x + 1) ( y + 1) ( z + 1)

= Similarly,

1 y3 x 3z 2 1 x3y4z ≥ 88 and ≥ 88 . 3 3 2 3 4 2 1+ y 1+ z ( y + 1) ( x + 1) ( z + 1) ( x + 1) ( y + 1) ( z + 1)

Thus, 3

4

2

x 24 y32 z16 x3 y 4z2 ⎛ 1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ 9 9 8 8 ≥ = 8 ⎟ ⎜ ⎜ ⎟ ⎜ ⎟ 24 32 16 3 4 2 ⎝ 1+ x ⎠ ⎝1+ y ⎠ ⎝ 1+ z ⎠ ( x + 1) ( y + 1) ( z + 1) ( x + 1) ( y + 1) ( z + 1) or x 3 y 4 z 2 ≤

1 . 89

28. ( a, b, c > 0 ) ,

(a

3

⎛ 1 1 1 ⎞ 3⎛ b+c c+a a+ b⎞ + b3 + c3 ) ⎜ 3 + 3 + 3 ⎟ ≥ ⎜ + + ⎟. b c ⎠ ⎝a b c ⎠ 2⎝ a

Solution.

We have,

2 ( a3 + b3 + c3 ) ≥ ab ( a + b ) + bc ( b + c ) + ca ( c + a ) and Therefore,

1 1 1 3 + 3+ 3≥ . 3 a b c abc

(a

3

29. ( x ∈

⎛ 1 1 1 ⎞ 3⎛ b+c c+a a+ b⎞ + b3 + c3 ) ⎜ 3 + 3 + 3 ⎟ ≥ ⎜ + + ⎟ b c ⎠ ⎝a b c ⎠ 2⎝ a

),

(16 cos

4

x + 3 ) + 768 ≥ 2048 cos x . 4

Solution.

Applying the AM – GM Inequality we get

(16cos

4

)

(

4

x + 3) = (16cos4 x + 1 + 1 + 1) + 768 ≥ 4 4 16cos4 x + 768 = 4

4

= 4096 cos4 x + 256 + 256 + 256 ≥ 4 4 4096 cos4 x.2563 = 2048 cos x ≥ 2048 cos x .

30. ( x ∈

), 4 1 (1 + x ) + 16x ≤ ≤ 17 . 2 4 8 1 x + ( ) 8

Solution.

If a, b are two real numbers, then

a +b 4

4

(a ≥

2

+ b2 ) 2

2

(a + b) ≥

4

8

.

Thus,

(1 + x ) + 16x 4 8

(1 + x )

2 4

4

4 ⎡(1 + x )2 ⎤ + ( −2x )4 1 + x2 ) ( 1 ⎣ ⎦ = ≥ = . 2 4 2 4 8 8 (1 + x ) (1 + x )

On the other hand, 4

(1 + x )

2 4

4 ⎡ (1 + x )2 ⎤ (1 + x )8 4 4 2 ≥⎢ and (1 + x2 ) = (1 + x2 − 2 x + 2 x ) = ⎡(1 − x ) + 2 x ⎤ ≥ 16x 4 . ⎥ ≥ ⎣ ⎦ 16 ⎢⎣ 2 ⎥⎦

Therefore,

(1 + x )

8

+ 16x 4

(1 + x ) 2

4

≤ 16 + 1 = 17

31. ( a, b, c > 0 ) ,

a 2 + b 2 b 2 + c2 c 2 + a 2 a2 + b 2 + c2 . + + ≤3 a+ b b+c c+a a+ b+c Solution.

a 2 + b 2 b 2 + c2 c2 + a 2 a2 + b 2 + c 2 + + ≤3 a+ b b+c c+a a+ b+c

⎡ a 2 + b 2 b 2 + c 2 c2 + a 2 ⎤ 2 2 2 ⇔ ( a + b + c) ⎢ + + ⎥ ≤ 3(a + b + c ) b+c c+a ⎦ ⎣ a+ b



c ( a2 + b 2 ) a+ b

⇔c − 2



+

b ( c2 + a2 ) c+a

c ( a2 + b 2 ) a+ b

+b − 2

+

a ( b 2 + c2 ) b+c

b ( c2 + a2 ) c+a

≤ a 2 + b 2 + c2

+a − 2

a ( b 2 + c2 ) b+c

≥0

ac ( c − a ) bc ( c − b ) ab ( b − a ) bc ( b − c ) ab ( a − b ) ac ( a − c ) + + + + + ≥0 a+ b a+ b c+a c+a b+c b+c

ac ( c − a ) bc ( c − b ) ab ( b − a ) ⇔ + + ≥ 0. ( a + b )( b + c ) ( a + b )( a + c ) ( a + c )( b + c ) 2

2

2

32. ( a, b, c > 0, n ∈ , n ≥ 2 ) , n

a b c n n +n +n > n −1 . b+c c+a a + b n −1

Solution.

Applying the AM – GM Inequality we get

n

a+ b ⎞ ⎛ n − 1) ( ⎜ ⎟ + 1 + 1 + ... + 1 n − 1 a + b + c c ⎠ ( a + b)( n − 1) ≤ ⎝ ( )( ) ⇒ n c ≥ n n n −1 c . n −1 = c n nc a + b n −1 a+ b+c

Similarly, n

b n n b ≥ and n −1 c + a n −1 a+ b+c

n

a n n a ≥ . n −1 b + c n −1 a+ b+c

Adding these three inequalities, we obtain n

a b c n n +n +n ≥ n −1 . b+c c+a a + b n −1

Equality holds if and only if ⎧( n −1)( a + b) = c 3 ⎪ ⎨( n −1)( c + a) = b ⇒ 2 ( n −1)( a + b + c) = a + b + c ⇒ n = (!) . 2 ⎪( n −1)( b + c) = a ⎩

Therefore, n

a b c n n n −1 . +n +n > b+c c+a a + b n −1

33. ( x, y, z ≥ 0, x + y + z = 1, n ∈ , n ≥ 2 ) ,

xn y + ynz + zn x ≤

nn

( n + 1)

n +1

.

Solution.

Without loss of generality, we can assume that x = max{x,y,z} . Since z ≤ x , thus znx ≤ zxn , znx ≤ z2xn−1 . On the other hand,

n >1⇒

n −1 1 n −1 z z≥ . ≥ ⇒ n 2 n 2

We have,

1 1 zx n z 2 x n −1 x n y + y n z + z n x ≤ x n y + x n −1yz + z n x + z n x ≤ x n y + x n −1yz + + = 2 2 2 2 z⎞ n −1 ⎞ ⎡x x x x + z ⎛ n − 1 ⎞⎤ ⎛ ⎛ z ⎟ ≤ n n ⎢ . ... . .⎜ y + z⎟ = x n −1 ( x + z ) ⎜ y + ⎟ ≤ x n −1 ( x + z ) ⎜ y + 2⎠ n ⎠ n ⎠ ⎥⎦ ⎝ ⎝ ⎣n n n n ⎝ x x+z n −1 ⎤ ⎡ n − 1) + z +y+ ( ⎢ n n n ⎥ ≤ nn ⎢ ⎥ n +1 ⎢ ⎥ ⎣ ⎦

n +1

(x + y + z) . n +1 ( n + 1)

n +1

=n

n

=

nn

( n + 1)

n +1

.

34. ( x, y, z > 0 ) ,

16xyz ( x + y + z ) ≤ 3 3 ( x + y) ( y + z ) ( z + x ) . 4

4

4

Solution.

Applying the AM – GM Inequality we get 1 3

1 3

1 3

( x + y )( y + z )( z + x ) = ( x + y + z ) xy + ( x + y + z ) xy + ( x + y + z ) xy + 1 1 1 + yz ( x + y + z ) + yz ( x + y + z ) + yz ( x + y + z ) + xz 2 + zx 2 ≥ 3 3 3

( xyz ) ( x + y + z ) 6

≥8

8

36

6

( xyz ) ( x + y + z ) 3

=8

4

3

27

.

Thus,

16xyz ( x + y + z ) ≤ 3 3 ( x + y ) ( y + z ) ( z + x ) . 4

4

4

⎛ ⎡π π⎤⎞ 35. ⎜ x, y, z ∈ ⎢ , ⎥ ⎟ , ⎣6 2⎦⎠ ⎝ 2

sinx − siny siny − sinz sinz − sinx ⎛ 1 ⎞ + + ≤ ⎜1− ⎟ . sinz sinx siny 2⎠ ⎝ Solution.

⎡1 ⎤ We set a = sin x, b = sin y, c = sin z and observe that a, b, c ∈ ⎢ ,1⎥ . ⎣2 ⎦

The inequality is equivalent to

( a − b )( b − c )( c − a ) ≤ ⎛ 1 − 1 ⎞ . a−b b−c c−a ⎛ 1 ⎞ + + ≤ ⎜1 − ⇔ ⎟ ⎜ ⎟ c a b abc 2⎠ 2⎠ ⎝ ⎝ 2

Without loss of generality, we can assume that

2

1 ≤ a ≤ b ≤ c ≤ 1. 2

a b 1 We set u = , v = and observe that ≤ u ≤ v ≤ 1 . c c 2

We will prove that

( v − u )(1 − u )(1 − v ) ≤ ⎛ 1 − uv

⎜ ⎝

2

1 ⎞ ⎟ . 2⎠

We have 1 ⎞⎛ 1 ⎞ ⎛ v − ⎟⎜1 − ⎟ (1 − v ) 2 ⎜ ( v − u)(1 − u )(1 − v ) ≤ ⎝ 2 ⎠⎝ 2 ⎠ 1 1 1 1 ⎛ 1 ⎞ = 1 + − v − ≤ 1 + − 2 v. = ⎜1 − ⎟ . 1 uv 2 2v 2 2v 2 ⎝ ⎠ v 2 36. ( x, y, z, t ∈ , ( x + y )( z + t ) + xy + 88 = 0 ) ,

x 2 + 9y 2 + 6z 2 + 24t 2 ≥ 352 . Solution.

Since ( x + y )( z + t ) + xy + 88 = 0 , thus 4 ( x + y )( z + t ) + 4xy + 352 = 0 . We have

x2 + 9y2 + 6z2 + 24t 2 + 4 ( x + y )( z + t ) + 4xy = x2 + 9y2 + 6z2 + 24t 2 + 4xz + 4xt + 4yz + 4yt + 4xy = = x 2 + 4x ( z + y + t ) + 4 ( z + y + t ) + 4y 2 − 4yz + z 2 + z 2 − 8zt + 16t 2 + y 2 − 4yt + 4t 2 = 2

2 2 2 2 = ⎡ x + 2 ( z + y + t ) ⎤ + ( 2y − z ) + ( z − 4t ) + ( y − 2t ) ≥ 0 . ⎣ ⎦

Therefore, x 2 + 9y 2 + 6z 2 + 24t 2 ≥ 352 . 37. ( x, y, z > 0, xyz = 1) , x2 y2 z2 + + ≥ 3. x + y + y3z y + z + z3 x z + x + x 3 y

Solution.

We set x2 y2 z2 A= + + . x + y + y3z y + z + z3 x z + x + x 3 y

We have

A=

x3 y3 z3 x3 y3 z3 + + = + + . x2 + yz + y3zx y2 + zy + z3xy z2 + xz + x3yz x2 + yx + y2 y2 + zy + z2 z2 + xz + x2

Applying the Cauchy – Buniakowski Inequality we get

A. ⎡⎣ x ( x 2 + xy + y 2 ) + y ( y 2 + yz + z 2 ) + z ( z 2 + xz + x 2 ) ⎤⎦ ≥ ( x 2 + y 2 + z 2 )

2

⇔ A ( x + y + z ) ( x2 + y2 + z2 ) ≥ ( x2 + y2 + z2 ) . 2

Thus,

A≥

x 2 + y 2 + z 2 x + y + z 3 3 xyz ≥ ≥ = 3. x+y+z 3 3

38. ( x, y, z > 0, xyz = 1) , x2y2 y2z2 z2 x2 + + ≤1. x2 y2 + x 7 + y7 y2z2 + y7 + z 7 z2 x2 + z 7 + x 7

Solution.

If x, y are positive real numbers, then x 7 + y 7 ≥ x 3 y3 ( x + y ) . Thus, x 2 y2 x 2 y2 1 1 z z . ≤ 2 2 3 3 = = = = 2 2 7 7 x y + x y ( x + y ) 1 + xy ( x + y ) xyz + xy ( x + y ) xyz ( x + y + z ) x + y + z x y +x +y

Similarly, y2z2 x z2 x2 y ≤ and 2 2 7 ≤ . 2 2 7 7 7 y z +y +z x+y+z z x +z +x x+y+z

Adding these three inequalities, we obtain x2 y2 y2z2 z2 x2 x+y+z + + ≤ = 1. 2 2 7 7 2 2 7 7 2 2 7 7 x y +x +y y z +y +z z x +z +x x+y+z

39. ( a, b, c > 0, a + b + c = 1) ,

a b abc 3 3 + + ≤ 1+ . a + bc b + ca c + ab 4 Solution.

We set

T= We have

a b abc + + . a + bc b + ca c + ab

ab a b abc 1 1 T= + + = + + c . a + bc b + ca c + ab 1 + bc 1 + ca 1 + ab a b c We set

bc A ca B = tan2 , = tan2 , 0 < A, B < π . Since a 2 b 2

ab ca bc ab ca bc . + . + . c b a c b a

1= a+ b+c = thus,

A B tan ab 2 2 = cot g ⎛ A + B ⎞ . = ⎜ ⎟ A B c ⎝ 2 ⎠ tan + tan 2 2 1 − tan

Therefore,

A+B π < and 2 2

ab C = tg , ( C = π − ( A + B) ∈ ( 0, π ) ) . c 2

We obtain

T=

1 1 + tan2

+

1

+

tan

C 2

A B C 1 + tan2 1 + tan2 2 2 2

= cos2

A B sin C 1 + cos2 + = 1 + ( cos A + cos B + sin C) . 2 2 2 2

On the other hand,

A+B A−B π cos A + cos B + sin C + sin = 2 cos .cos + 2 sin 3 2 2 A+B ≤ 2 cos + 2.cos 2

π π C− 3 .cos 3 2 2

C+

π π A + B+ C− 3 ≤ 4 cos 3 = 4 cos π = 2 3 . 2 4 6

C−

Thus,

1⎛ 3⎞ 3 3 T ≤ 1 + ⎜⎜ 2. 3 − . ⎟⎟ = 1 + 2⎝ 2 ⎠ 4 40. ( x, y, z > 0, x + y + z = 2007 ) ,

x 20 y 20 z 20 + 11 + 11 ≥ 3.669 9 . 11 y z x Solution.

Applying the AM – GM Inequality we get

x20 x20 x20 20 + 11y + 8.669 = 11 8 + y + y + ... + y + 669 + 669 + ... + 669 ≥ 20 11 .y11.6698 = 20x . 11 8 8 y 669 y 669 y .669 8 11

Similarly,

y 20 z 20 11z 8.669 20y + + ≥ and + 11x + 8.669 ≥ 20z . z11 .6698 x11 .6698 Adding these three inequalities, we obtain x 20 y 20 z 20 + 11 + 11 ≥ ⎡⎣ 9 ( x + y + z ) − 3.8.669 ⎤⎦ .6698 = 3.669 9 11 y z x

41. ( a, b, c > 0 ) ,

5b3 − a3 5c3 − b3 5a3 − c3 + + ≤ a+ b + c. ab + 3b 2 bc + 3c2 ca + 3a2 Solution.

Since a3 + b3 ≥ ab( a + b) , thus a3 − 5b3 ≥ ab( a + b) − 6b3 = b( a2 + ab − 6b2 ) = b( a + 3b)( a − 2b)

⇒ 5b3 − a3 ≤ ( ab + 3b2 ) ( 2b − a ) ⇒

5b3 − a3 ≤ 2b − a . ab + 3b 2

Similarly,

5c3 − b3 5a3 − c3 2c b ≤ − and ≤ 2a − c . bc + 3c2 ca + 3a2 Adding these three inequalities, we obtain

5b3 − a3 5c3 − b3 5a3 − c3 + + ≤ a+ b + c. ab + 3b 2 bc + 3c2 ca + 3a2

(

)

42. a, b > 0, x, y,z, t ∈ ,a ( x 2 + y 2 ) + b ( z 2 + t 2 ) = 1 ,

( x + z )( y + t ) ≤

a+ b . 2ab

Solution.

We have

a ( x2 + y2 ) + b ( z2 + t 2 ) = 1 ⇔

x2 z2 y2 t 2 1 + + + = . b a b a ab

Applying the Cauchy – Buniakowski Inequality we get

⎛ x2 z2 ⎞ ⎛ y2 t 2 ⎞ 2 2 ( b + a) ⎜ + ⎟ ≥ ( x + z) and ( b + a ) ⎜ + ⎟ ≥ ( y + t ) . ⎝ b a⎠ ⎝b a⎠ Adding these two inequalities, we obtain

⎛ x2 z2 y2 t2 ⎞ b + a + + + ⎟= ⎝ b a b a ⎠ ab

( x + z) + ( y + t ) ≤ ( b + a) ⎜ 2

2

⇒ ( x + z )( y + t )

(

(x + z) + (y + t) ≤ 2

2

2



a+ b 2ab

)

43. x, y, z > −1, x 3 + y3 + z3 ≥ x 2 + y 2 + z 2 ,

x 5 + y5 + z5 ≥ x2 + y2 + z2 . Solution.

Since x > −1 , thus

( x − 1) ( x + 2 ) ≥ 0 ⇔ x3 − 3x + 2 ≥ 0 ⇔ x 5 ≥ 3x 3 − 2x 2 . 2

Similarly,

y 5 ≥ 3y3 − 2y 2 and z 5 ≥ 3z3 − 2z 2 . Adding these three inequalities, we obtain

x5 + y5 + z5 ≥ 3( x3 + y3 + z3 ) − 2( x2 + y2 + z2 ) = ( x3 + y3 + z3 ) + 2 ⎡⎣( x3 + y3 + z3 ) − ( x2 + y2 + z2 )⎤⎦ ≥ x3 + y3 + z3 . 44. ( α, β, γ ∈ , sin α + sin β + sin γ ≥ 2 ) ,

cos α + cos β+ cos γ ≤ 5 . Solution.

Applying the Cauchy – Buniakowski Inequality we get

cos α + cos β+ cos γ ≤ 3. cos2 α + cos2 β+ cos2 γ = 3. 3 − ( sin2 α + sin2 β+ sin2 γ ) ≤ 3.

( sin α + sin β + sin γ ) 3− 3

2

≤ 3. 3 −

4 = 5. 3

45. ( a, b, c > 0,a + b + c = 6 ) ,

a2 +

1 1 1 3 17 + b2 + + c2 + ≥ . b+c c+a a+ b 2

Solution. First solution.

Applying the Cauchy – Buniakowski Inequality we get 2

⎛ ⎞ 2 1 16a 1 a a a 1 1 ⎜a a a 1 ⎟ 1⎛ 1 ⎞ 2 = + = + + ... + + ≥ + + ... + + = ⎜ 4a + a + ⎟ . b + c 16 b + c 16 16 16 b + c 17 ⎜⎜ 4 4 4 b + c ⎟⎟ 17 ⎝ b+c ⎠ 16 ⎝ ⎠ 16 2

2

2

⇒ a2 + Similarly,

2

1 1 ⎛ 1 ⎞ ≥ 4a + ⎜ ⎟. b+c 17 ⎝ b+c ⎠

⇒ b2 +

1 1 ⎛ 1 ⎞ 4b + ≥ ⎜ ⎟ and c+a 17 ⎝ c+a ⎠

c2 +

1 ≥ a+b

1 17

⎛ ⎜ 4c + ⎝

1 a+b

⎞ ⎟. ⎠

Adding these three inequalities, we obtain

a2 +

1 1 1 1 ⎡ 1 1 ⎞⎤ ⎛ 1 + b2 + + c2 + ≥ + + ⎢4( a + b + c) + ⎜ ⎟⎥ ≥ b+c c+a a + b 17 ⎣ ⎝ a + b b + c c + a ⎠⎦

⎛ 1 ⎜ 24 + ≥ 17 ⎜⎜ ⎝

⎛ ⎞ ⎜ 3 ⎟ ≥ 1 ⎜ 24 + 3 a+ b ( )( b + c)( c + a ) ⎟⎟⎠ 17 ⎜⎜ ⎝

⎞ ⎟ 3 ⎟ = 3 17 . ( a + b ) + ( b + c) + ( c + a ) ⎟⎟ 2 3 ⎠

Second solution.

Applying the Minkowski Inequality and the AM – GM Inequality we get

1 1 1 + b2 + + c2 + ≥ a + b+c c+a a+ b 2

⎛ ≥ 36 + ⎜ ⎜⎜ ⎝

⎛ ⎞ ⎜ 3 ⎟ ≥ 36 + ⎜ ⎟ ⎜ 3 a+ b ( )( b + c)( c + a ) ⎠⎟ ⎜ ⎝ 2

(

2

1 1 ⎞ ⎛ 1 + + ( a + b + c) + ⎜ ⎟ ≥ b+c c+a ⎠ ⎝ a+ b 2

2

⎞ ⎟ 3 ⎟ = 3 17 . 2 ( a + b ) + ( b + c ) + ( c + a) ⎟⎟ 3 ⎠

)

46. x, y, z ∈ , x 2 + 2y 2 + 2x 2 z 2 + y 2 z 2 + 3x 2 y 2 z 2 = 9 ,

xyz ≥ −1 . Solution.

Applying the AM – GM Inequality we get

9 = x 2 + y 2 + y 2 + x 2 z 2 + x 2 z 2 + x 2 z 2 + y 2 z 2 + x 2 y 2 z 2 + x 2 y 2 z 2 + x 2 y 2 z 2 ≥ 9 9 x12 y12 z12 . Thus, 1 ≥ xyz ⇒ xyz ≥ −1

47. ( x, y, z, t > 0, xyzt = 1) ,

1 1 1 1 4 + 3 + 3 + 3 ≥ . x ( yz + zt + ty ) y ( xz + zt + tx ) z ( xt + ty + yx ) t ( xy + yz + zx ) 3 3

Solution.

1 1 1 1 We set a = , b = , c = , d = and observe that abcd = 1 . The inequality can rewrite x y z t a2 b2 c2 d2 4 + + + ≥ . b+c+d c+d +a d +a+ b a+ b+ c 3 Applying the Cauchy – Buniakowski Inequality we get

( a + b + c + d ) = a + b + c + d ≥ 4 4 abcd = 4 . a2 b2 c2 d2 + + + ≥ b + c + d c + d + a d + a + b a + b + c 3(a + b + c + d ) 3 3 3 2

48. ( k, n ∈

+

,a1 , a2 , ..., ak > 0,a1 + a2 + ... + ak ≥ k ) , a1n + a2n + ... + ank ≤1. a1n +1 + a2n +1 + ... + ank +1

Solution.

If a is a positive real numbers then

(a

n

− 1) ( a − 1) ≥ 0 ⇔ an +1 − an ≥ a − 1 .

Therefore,

(a

n +1 1

+ a2n +1 + ... + ank +1 ) − ( a1n + a2n + ... + ank ) ≥ ( a1 + a2 + ... + a k ) − k ≥ 0 .

49. ( a, b, c > 0, abc + a + c = b ) ,

2 2 3 10 . − 2 + 2 ≤ a +1 b +1 c +1 3 2

Solution.

We have abc + a + c = b ⇔ ac +

a c + = 1. b b

Since a, b, c > 0 , thus there exist A, B, C ∈ ( 0, π ) such that A + B + C = π and a = tan

A 1 B C , = tan , c = tan . 2 b 2 2

Therefore,

2 2 3 C C A−B 1 A−B 1 10 − 2 + 2 = −3sin 2 + 2 sin cos + 3 ≤ cos2 +3≤ +3= . a +1 b +1 c +1 2 2 2 3 3 3 3 2

50. ( x, y ∈ , x 2 + y 2 − 2x − 2y ≤ 0 ) ,

2x + y ≤ 10 + 3 . Solution.

Applying the Cauchy – Buniakowski Inequality we get 2x + y − 3 = 2 ( x − 1) + ( y − 1) ≤ 5.

⎛ 51. ⎜ 0 ≤ x, y, z ≤ 1, x + y + z = ⎝

( x − 1) + ( y − 1) 2

3⎞ ⎟, 2⎠

x 2 + y2 + z2 ≤ Solution.

2

5 . 4

≤ 5. 2 = 10 or 2x + y ≤ 10 + 3 .

⎛ 1 ⎞ It is easy to show that ( x, y, z ) ≺ ⎜1, , 0 ⎟ and f ( t ) = t 2 is convex on [ 0, +∞ ] . ⎝ 2 ⎠ Applying the Karamata Inequality we get

5 ⎛1⎞ f ( x ) + f ( y ) + f ( z ) ≤ f ( 0 ) + f ⎜ ⎟ + f (1) or x 2 + y 2 + z 2 ≤ . 4 ⎝2⎠ 52. ( a, b, c > 0 ) ,

⎛ a+ b b+c c+a c a b ⎞ + + ≥ 2 ⎜⎜ + + ⎟. c a b b+c a + c ⎠⎟ ⎝ a+b Solution.

If x, y are two positive real numbers, then

x + y ≤ 2 ( x + y),

1 1 4 + ≥ . x y x+y

Thus,

a+ b b+c c+a 1 ⎛ a b⎞ 1 ⎛ b c⎞ 1 ⎛ c c⎞ + + ≥ + + + ⎜⎜ ⎟⎟ + ⎜⎜ ⎟⎟ + ⎜⎜ ⎟ c a b 2⎝ c c⎠ 2⎝ a a⎠ 2⎝ b b ⎟⎠ = ≥

a⎛ 1 1 ⎞ b⎛ 1 1 ⎞ c⎛ 1 1 ⎞ 2 2a 2 2b 2 2c + + + + + ⎜ ⎟+ ⎜ ⎟+ ⎜ ⎟≥ 2⎝ b c⎠ 2⎝ a c⎠ 2⎝ a b⎠ b+ c a+ c a+ b 2 2a 2 ( b + c)

+

2 2b 2 ( a + c)

⎛ a b c ⎞ = 2 ⎜⎜ + + ⎟⎟ . b + c a + c a + b 2 (a + b) ⎝ ⎠ 2 2c

+

53. ( a, b, c > 0, ab + bc + ca = 1) ,

a + b + c + abc ≥

10 3 . 9

Solution.

We have

(a + b + c)

2

≥ 3 ( ab + bc + ca ) = 3 ⇒ a + b + c ≥ 3 .

Applying the AM – GM Inequality we get 3

⎡ a + b + c ⎞⎤ ⎛ 3⎞ 1 ≤ − (1 − a )(1 − b )(1 − c ) ≤ ⎢1 − ⎛⎜ ⎜ ⎟ ⎟⎥ ⎜ 3 3 ⎟⎠ ⎠⎦ ⎝ ⎣ ⎝ ⎛ 3⎞ ⇔ 1 + ab + bc + ca − a − b − c − abc ≤ ⎜⎜ 1 − ⎟ 3 ⎟⎠ ⎝ ⇔ a + b + c + abc ≥ 54. ( 0 ≤ a1 , a 2 , ..., a n ≤ 1, n ≥ 2 ) ,

10 3 . 9

3

3

a1 a2 an + + ... + ≤ n −1 . a2 a3 ...an + 1 a1a3 ...an + 1 a1a2 ...an −1 + 1 Solution.

Since 0 ≤ ai ≤ 1 thus a1a2 ...ai −1ai +1 ...an + 1 ≥ a1a2 ...an + 1 . Therefore, n a1 a2 an ai a + a 2 +... + an . + + ... + ≤∑ = 1 a2 a3 ...an + 1 a1a3 ...an + 1 a1a2 ...an −1 + 1 i =1 a1a2 ...an + 1 a1a2 ...an + 1

It is easy show that: If 0 ≤ a, b ≤ 1 then 0 ≤ (1− a)(1− b) or a + b ≤ 1+ ab . Thus,

a1 + a2

≤ 1 + a1a2

a3 + a1a2

≤ 1 + a1a2 a3

........................................... an + a1a2 ...an −1 ≤ 1 + a1a2 ...an Adding these n inequalities, we obtain a1 + a2 + ... + an ≤ ( n − 1) + a1a2 ...an ≤ ( n − 1)(1 + a1a2 ...an ) .

Therefore,

a1 a2 an + + ... + ≤ n −1 . a2 a3 ...an + 1 a1a3 ...an + 1 a1a2 ...an −1 + 1 55. ( a, b, c > 0, a + b + c = 3) , 3 ( a 2 + b 2 + c 2 ) + 4abc ≥ 13 .

Solution.

Since a, b, c > 0 and a + b + c = 3 thus,

abc ≥ ( a + b − c)( b + c − a)( c + a − b) ⇒ abc ≥ ( 3 − 2a )( 3 − 2b )( 3 − 2c ) ⇒ abc ≥ 27 − 18 ( a + b + c ) + 12 ( ab + bc + ca ) − 8abc ⇒ abc ≥ −27 + 12 ( ab + bc + ca ) − 8abc ⇒ 3abc ≥ 4 ( ab + bc + ca ) − 9 .

We have 3 ( a2 + b 2 + c2 ) + 4abc ≥ 3 ( a2 + b 2 + c2 ) − 12 + = 3 ( a + b + c ) − ( ab + bc + ca ) − 12 + 2

16 ( ab + bc + ca ) = 3

16 ( ab + bc + ca ) = 3

= 27 − 12 −

2 2 2 ( ab + bc + ca ) ≥ 15 − ( a + b + c ) = 15 − 2 = 13 . 3 9

56. ( a, b, c > 0,a2 b2 + b2 c2 + c2 a2 ≥ a2 b2 c2 ) ,

a2 b 2 b 2 c2 c2 a2 3 . + + ≥ 3 2 2 3 2 2 3 2 2 c (a + b ) a ( b + c ) b (c + a ) 2 Solution.

We set a =

1 1 1 , b = , c = and observe that x, y,z > 0, x 2 + y 2 + z 2 ≥ 1 . x y z

The inequality can rewrite

x3 y3 z3 3 + + ≥ . 2 2 2 2 2 2 y +z z +x x +y 2 Applying the Cauchy – Buniakowski Inequality we get

(x

2

+ y2 + z

)

2 2

⎛ x x ⎞ y y z z =⎜ . x y2 + z2 + . y x2 + z2 + . z y2 + x2 ⎟ ⎜ y2 + z2 ⎟ x2 + z2 y2 + x2 ⎝ ⎠

2

⎛ x3 y3 z3 ⎞ ⎡x y2 + z2 ) + y ( z2 + x2 ) + z ( x 2 + y2 )⎤ . ≤⎜ 2 2 + 2 + 2 2 2 ⎟⎣ ( ⎦ + + + y z z x x y ⎝ ⎠

On the other hand, 2

⎡x ( y2 + z2 ) + y( z2 + x2 ) + z ( x2 + y2 ) ⎤ = ⎡x y2 + z2 . y2 + z2 + y x2 + z2 . x2 + z2 + z x2 + y2 . x2 + y2 ⎤ ≤ ⎣ ⎦ ⎣ ⎦ 2

≤ ⎡⎣ x 2 ( y 2 + z 2 ) + y 2 ( z 2 + x 2 ) + z 2 ( x 2 + y 2 ) ⎤⎦ ( y 2 + z 2 + z 2 + x 2 + x 2 + y 2 ) = = 4 ( x 2 y 2 + y 2 z 2 + z 2 x 2 )( x 2 + y 2 + z 2 ) ≤

3 4 2 x + y2 + z2 ) . ( 3

Thus,

(x

2

2 ⎛ x3 y3 z3 + y2 + z2 ) ≤ ⎜ 2 + + 2 z2 + x2 x2 + y2 ⎝y +z



⎞ 4 2 2 2 3 ⎟. (x + y + z ) ⎠ 3

x3 y3 z3 3 3 + + ≥ . . x 2 + y2 + z 2 ≥ 2 2 2 2 2 2 y +z z +x x +y 2 2

57. ( a, b, c > 0, a + b + c = 6 ) , 1 ⎞⎛ 1 ⎞⎛ 1 ⎞ 729 ⎛ . ⎜1 + 3 ⎟⎜ 1 + 3 ⎟⎜1 + 3 ⎟ ≥ ⎝ a ⎠⎝ b ⎠⎝ c ⎠ 512

Solution.

Applying the AM – GM Inequality we get 1 ⎞⎛ 1 ⎞⎛ 1⎞ 1 1 ⎞ 1 ⎛ ⎛ 1 1 1⎞ ⎛ 1 ⎜1 + 3 ⎟ ⎜1 + 3 ⎟ ⎜1 + 3 ⎟ = 1 + ⎜ 3 + 3 + 3 ⎟ + ⎜ 3 3 + 3 3 + 3 3 ⎟ + 3 3 3 ≥ b ⎠⎝ c ⎠ b c ⎠ ⎝a b bc ca ⎠ abc ⎝ a ⎠⎝ ⎝a

⎛ ⎜ 3 3 3 1 1 ⎞ ⎜ 1 ⎛ ≥ 1+ + 2 2 2 + 3 3 3 = ⎜1 + ≥ ⎟ ⎜1 + 3 abc a b c abc abc ⎠ ⎝ ⎛a+ b+c⎞ ⎜ ⎜ ⎟ 3 ⎝ ⎠ ⎝

3

⎞ ⎟ ⎟ = 729 . ⎟ 512 ⎟ ⎠

58. ( a, b, c ≥ 0,a + b + c = 1) ,

a2 + 1 b 2 + 1 c2 + 1 7 + + ≤ . b 2 + 1 c2 + 1 a2 + 1 2 Solution.

b 2 + 1 c2 + 1 1 2 . + 2 ≤ ( b + c) + 1 + 2 2 c +1 a +1 a +1

We assume that a = max {a, b, c} . We will prove

b 2 + 1 c2 + 1 1 2 + 2 ≤ ( b + c) + 1 + 2 2 c +1 a +1 a +1

( b + c) c2 + ( b + c) + c2 − b2 c2 ⇔ 2 ≤ a +1 c2 + 1 2

2

b + c ) c2 + 2bc + 2c2 ( c2 . ⇔ 2 ≤ a +1 c2 + 1 2

Thus,

a2 + 1 b 2 + 1 c2 + 1 1 2 + 2 + 2 ≤ a2 + ( b + c ) + 2 +2. 2 b +1 c +1 a +1 a +1 We have to prove that

a2 + ( b + c ) +

1 3 ≤ . ( a + 1) 2

a2 + ( b + c ) +

1 3 ≤ ( a + 1) 2

2

2

We have 2

⇔ ⎛ 59. ⎜ a, b, c > 0, k ≥ ⎝

2

(1 − a ) (1 − 3a − 4a2 ) 2 (1 + a

2

)

1⎞ ⎛ ≤ 0 ⎜ since 1 ≥ a ≥ ⎟ . 3⎠ ⎝

2⎞ ⎟, 3⎠ k

k

k

3 ⎛ a ⎞ ⎛ b ⎞ ⎛ c ⎞ ⎜ ⎟ +⎜ ⎟ +⎜ ⎟ ≥ k. 2 ⎝ b+c⎠ ⎝ c+a⎠ ⎝ a+ b⎠ Solution.

Applying the AM – GM Inequality we get

2a + ( b + c ) + ( b + c ) 2 ≥ ( a + b + c) = 3 3

2

3

( 2a )( b + c )

3 a ⎛ a ⎞3 ⇒⎜ . ⎟ ≥3 . 4 a+ b+c ⎝ b+c⎠

2

Similarly, 2

2

3 b 3 c ⎛ b ⎞3 ⎛ c ⎞3 ≥ and . . ⎜ ⎟ ⎜ ⎟ ≥3 . 3 4 a+ b+c 4 a+ b+c ⎝ c+a⎠ ⎝ c+a⎠

Adding these three inequalities, we obtain k

k

k

3 ⎛ 2⎞ ⎛ a ⎞ ⎛ b ⎞ ⎛ c ⎞ ⎜ ⎟ +⎜ ⎟ +⎜ ⎟ ≥ k ⎜k = ⎟. 2 ⎝ 3⎠ ⎝ b+c⎠ ⎝ c+a⎠ ⎝ a+ b⎠ If k >

2 3 , then we set m = k, m > 1 . 3 2 m

Applying the well – known Inequality:

xm + ym + zm ⎛ x + y + z ⎞ ≥⎜ ⎟ , we set 3 3 ⎝ ⎠ 2

2

2

⎛ a ⎞3 ⎛ b ⎞3 ⎛ c ⎞3 x=⎜ ⎟ , y=⎜ ⎟ , z=⎜ ⎟ . ⎝ b+c⎠ ⎝ c+a⎠ ⎝ a+ b⎠

We obtain k

k

k

3 ⎛ a ⎞ ⎛ b ⎞ ⎛ c ⎞ ⎜ ⎟ +⎜ ⎟ +⎜ ⎟ ≥ k. 2 ⎝ b+c⎠ ⎝ c+a⎠ ⎝ a+ b⎠ 60. ( x, y > 0, x + y = 1) ,

1 1 + ≥ 4+2 3. 3 x + y xy 3

Solution.

Since x + y = 1 , thus 1 = ( x + y ) = x 3 + y 3 + 3xy ( x + y ) = x 3 + y3 + 3xy . 3

Applying the AM – GM Inequality we get

1 1 x3 + y3 + 3xy x3 + y3 + 3xy 3xy x3 + y3 3xy x3 + y3 + = + = 4 + + ≥ 4 + 2 = 4+2 3 . x3 + y3 xy x3 + y3 xy x3 + y3 xy x3 + y3 xy 61. ( a, b, c,d ∈ ,a2 + b2 = c + d = 4 ) , ac + bd + cd ≤ 4 + 4 2 .

Solution.

Applying the AM – GM Inequality we get 1⎛ c2 ⎞ 1⎛ d2 ⎞ 2 ac ≤ ⎜ 2a2 + , bd 2b ≤ + ⎟ ⎜ ⎟. 2⎝ 2⎝ 2⎠ 2⎠

Therefore,

( c + d ) + cd ⎛ 1 − 1 ⎞ ≤ 1 2 1 ac + bd + cd ≤ a + b2 ) + c2 + d 2 ) + cd = 2 2 + ( ( ⎜ ⎟ 2 2 2 2 2 2⎠ ⎝ 2

(

≤ 2 2+4 2

)

(c + d ) + 4

2

1 ⎞ ⎛ ⎜1 − ⎟= 4+4 2 . 2⎠ ⎝

62. ( x, y, z > 0, x = max {x, y, z} ) ,

x y z + 1+ + 3 1+ ≥ 1+ 2 + 3 2 . y x x Solution.

Applying the AM – GM Inequality we get

⎛x y z⎞ x y 3 y ⎜⎜ + 1 + + 3 1 + ⎟⎟ ≥ + 2 4 + 2 6 = x x⎠ y z z ⎝y =

1 ⎛x y z⎞ ⎛ 1 ⎞x ⎛3 6 ⎞6 z . +⎜ 2 − ⎜⎜ + 4 4 + 6 6 ⎟⎟ + ⎜ 1 − ⎟ ⎟ z x ⎠ ⎝ 2 2⎠y ⎝ 2 2⎝y 2 2⎠ x

On the other hand,

1 ⎛x y z ⎞ 11 x y z 11 11 = , ⎜⎜ + 4 4 + 6 6 ⎟⎟ ≥ z x⎠ 2 2 yzx 2 2 2 2⎝y x z 1 6 ≥ 1 ≥ and − >0> 32− . y x 2 2 2 2 Adding these three inequalities, we obtain

x y z 11 ⎛ 1 ⎞ ⎛3 6 ⎞ + 1+ + 3 1+ ≥ + ⎜1 − +⎜ 2 − = 1+ 2 + 3 2 . ⎟ ⎟ y x x 2 2 ⎝ 2 2⎠ ⎝ 2 2⎠ 63. ( a > 0, x, y,z ∈ , xy + yz + zx = 1) ,

a ( x2 + y2 ) + z2 ≥

−1 + 1 + 8a . 2

Solution.

Let α ∈ ( 0,a ) . Applying the AM – GM Inequality we get αx 2 +

z2 α z2 α ≥2 xz, αy 2 + ≥ 2 yz, 2 2 2 2

α 2 α x + y2 ) ≥ 2 xy . ( 2 2

Adding these three inequalities, we obtain

⎛ α⎞ 2 α 2 2 . ⎜⎜ α + ⎟⎟ ( x + y ) + z ≥ 2 2⎠ 2 ⎝ We will find α ∈ ( 0,a ) such that α +

α =a⇔ 2

α −1 + 1 + 8a = , we get 2 4

a ( x2 + y2 ) + z2 ≥

−1 + 1 + 8a . 2

64. ( a, b, c > 1) ,

alogb c + b logc a + cloga b ≥ 3 3 abc . Solution.

Since a, b, c > 1, thus log b c > 0, log c b > 0 . Applying the AM – GM Inequality we get 2 log b c.logc b

alogb c + blogc a = alogb c + blogc b.logb a = alogb c + alogc b ≥ 2 alogb calogc b = 2 alogb c+ logc b ≥ 2 a

= 2a .

Similarly,

blogc a + cloga b ≥ 2b and cloga b + alogb c ≥ 2c . Adding these three inequalities, we obtain

a log b c + b log c a + c log a b ≥ a + b + c ≥ 3 3 abc . 65. ( x, y ≥ 0, x 2 + y 2 = 1) ,

xy + max {x, y} ≤

3 3 . 4

Solution.

Without loss of generality, we can assume that x = max {x, y} . Applying the AM – GM Inequality we get

( xy + max{x,y})

2

4

1 1 ⎛ 3 − 3y +1+ y +1+ y +1+ y ⎞ 27 3 = ⎡⎣x ( y +1) ⎤⎦ = (1− y ) (1+ y) = ( 3 − 3y)(1+ y) ≤ ⎜ ⎟ = . 3 3⎝ 4 ⎠ 16 2

2

2

Therefore,

xy + max {x, y} ≤

3 3 . 4

66. ( a, b, c > 0, a + b + c = 1) ,

a6 b3 c6 1 + + ≥ . 3 3 3 3 3 3 b + c c + a a + b 18 Solution.

Applying the Cauchy – Buniakowski Inequality we get 3 a3 + b3 + c3 ) ( a6 b3 c6 a3 + b3 + c3 1 ⎛ a + b + c ⎞ 1 + + ≥ = ≥ .3. ⎜ ⎟ = . 3 3 3 3 3 3 3 3 3 b + c c + a a + b 2 (a + b + c ) 2 2 ⎝ 3 ⎠ 18 2

67. ( x, y,z > 0, x + y + z = 1) ,

xy yz zx 3 + + ≤ . z + xy x + yz y + zx 2 Solution.

Applying the AM – GM Inequality we get

xy xy = = z + xy z( x + y + z) + xy

xy 1⎛ x y ⎞ ≤ ⎜ + . ( x + z)( y + z) 2 ⎝ x + z y + z ⎟⎠

Similarly,

yz 1⎛ y z ⎞ ≤ ⎜ + ⎟ and x + yz 2 ⎝ x + y x + z ⎠

zx 1⎛ z x ⎞ ≤ ⎜ + ⎟. y + zx 2 ⎝ y + z x + y ⎠

Adding these three inequalities, we obtain

xy yz zx 1⎛x+y y+z z+x⎞ 3 + + ≤ ⎜ + + ⎟= . z + xy x + yz y + zx 2 ⎝ x + y y + z z + x ⎠ 2 68. ( a, b, c > 0, a + b + c = 1) ,

ab a2 + b2 + 2c2

+

bc b2 + c2 + 2a2

+

ca c2 + a2 + 2b2



1 . 2

Solution.

Applying the Cauchy – Buniakowski Inequality we get

( a + b + c + c) ⇒

ab a + b + 2c 2

2

2



2

≤ 4 ( a2 + b 2 + 2c2 )

2ab 2ab ⎛ 1 1 ⎞ 1 ⎛ ab ab ⎞ ≤ + + . ⎜ ⎟= ⎜ ( a + c ) + ( a + c ) 4 ⎝ c + a c + b ⎠ 2 ⎝ c + a c + b ⎟⎠

Similarly, bc

1 ⎛ bc bc ⎞ ≤ ⎜ + ⎟ and b 2 + c2 + 2a2 2 ⎝ a + b a + c ⎠

ca

1 ⎛ ca ca ⎞ ≤ ⎜ + ⎟. c2 + a2 + 2b 2 2 ⎝ b + a b + c ⎠

Adding these three inequalities, we obtain

ab a + b + 2c 2

≤ 69.

2

2

+

bc b + c + 2a 2

2

2

+

ca c + a2 + 2b 2 2



1 ⎡⎛ ac + bc ⎞ ⎛ ab + ac ⎞ ⎛ ab + bc ⎞ ⎤ 1 1 ⎜ ⎟+⎜ ⎟+⎜ ⎟⎥ = ( a + b + c) = . ⎢ 2 ⎣⎝ a + b ⎠ ⎝ b + c ⎠ ⎝ c + a ⎠ ⎦ 2 2

( a, b > 0, a + b = 1) , a b + ≥ 2. b a

Solution.

Applying the Cauchy – Buniakowski Inequality we get

2 ab ≤ a + b = ( a + b ) = 2

(

a. 4 a3 + 4 b. 4 b3

4

) ≤( 2

)(

)

a+ b a a+b b ≤

(

)

(

)

≤ 2 (a + b) a a + b b = 2 a a + b b . Thus,

a b + ≥ 2. b a 70. ( x, y > 0, x 2 + y 2 = 1) ,

x+y+

1 1 + ≥3 2 . x y

Solution.

Applying the AM – GM Inequality we get x2 + y2 1 1 = ⇒ ≥2. xy ≤ 2 2 xy

Thus,

x+y+

1 1 1 1 1 1 1 1 + =x+ + +y+ + ≥ 66 4 ≥ 6 6 3 = 3. 2 x y 2x 2x 2y 2y 2 xy 2

71. ( x ≥ 0 ) ,

2 2 + x ≤ x + 9. x +1 Solution.

Applying the Cauchy – Buniakowski Inequality we get 2 2 x + 1 + x x + 1 = 1.2 2 x + 1 + x. x + 1 ≤



(

12 +

( x ) ) ((2 2 ) + ( 2

2

x +1

) )= 2

x + 1. x + 9 .

Thus,

2 2 + x ≤ x + 9. x +1 72. ( a > b ≥ 0 ) ,

2a +

32

( a − b )( 2b + 3)

2

≥ 5.

Solution.

Applying the AM – GM Inequality we get 2a +

32

( a − b )( 2b + 3)

2

32 ⎛ 2b + 3 ⎞ ⎛ 2b + 3 ⎞ = 2(a − b) + ⎜ −3≥ ⎟+⎜ ⎟+ 2 ⎝ 2 ⎠ ⎝ 2 ⎠ ( a − b )( 2b + 3)

2. ( a − b ) . ( 2b + 3) .32 2

≥ 44

4. ( a − b ) . ( 2b + 3)

2

− 3 = 4 4 16 − 3 = 5 .

73. ( a, b > 0, a + b ≥ 4 ) ,

6 10 2a + 3b + + ≥ 18 . a b Solution.

Applying the AM – GM Inequality we get 6 10 4⎞ ⎛1 1⎞ 4 4 ⎛ = 18 2a + 3b + + = 2 ( a + b ) + ⎜ b + ⎟ + 6 ⎜ + ⎟ ≥ 2.4 + 2 b. + 6. a b b⎠ ⎝a b⎠ b a+b ⎝ 74. ( a, b, c ≥ 0, a + b + c = 3) , 5

2a + b + 5 2b + c + 5 2c + a ≤ 3 5 3 .

Solution.

Applying the AM – GM Inequality we get 5

2a + b =

1 5

34

5

( 2a + b ) .3.3.3.3 ≤

1 5

34

.

( 2a + b ) + 3 + 3 + 3 + 3 5

.

Similarly, 5

2b + c ≤

1 5

34

.

( 2b + c ) + 3 + 3 + 3 + 3 5

and

5

2c + a ≤

1 5

34

.

( 2c + a ) + 3 + 3 + 3 + 3 5

.

Adding these three inequalities, we obtain 5

2a + b + 5 2b + c + 5 2c + a ≤

3 ( a + b + c ) + 3.4.3 1 45 = . = 35 3 . 5 4 5 4 5 3 3 5 1

.

75. ( x, y, z > 0 ) ,

( x + y + z)

6

≥ 432xy2z3 .

Solution.

Applying the AM – GM Inequality we get 6 ⎛ 6x + 3y + 3y + 2z + 2z + 2z ⎞ ⎡ 6 ( x + y + z ) ⎤ 432.xy z = 6x.3y.3y.2z.2z.2z ≤ ⎜ ⎥ = ( x + y + z) . ⎟ =⎢ 6 6 ⎝ ⎠ ⎣ ⎦ 6

2 3

76. ( 0 ≤ a ≤ 1) , 13. a 2 − a 4 + 9. a 2 + a 4 ≤ 16 .

Solution.

Applying the Cauchy – Buniakowski Inequality we get

6

(

1− a

and

2

)

4a ≤

(

9a .4 1 + a 2

(

2

)

)

4 1 − a2 + a2

2

2



(

=

9a 2 + 4 1 + a 2 4

4 − 3a 2 52 − 39a 2 ⇒ 13 a 2 − a 4 ≤ 2 4

) = 13a

2

2

+4

⇒ 9 a2 + a4 ≤

39a 2 + 12 . 4

Adding these two inequalities, we obtain 13. a 2 − a 4 + 9. a 2 + a 4 ≤

52 − 39a 2 39a 2 + 12 + = 16 . 4 4

77. ( a, b, c, d > 0 ) ,

3a ⎞ ⎛ 3b ⎞ ⎛ 3c ⎞ ⎛ 3d ⎞ 28561 ⎛ . ⎜ 2 + ⎟⎜ 2 + ⎟⎜ 2 + ⎟⎜ 2 + ⎟ ≥ 5b ⎠ ⎝ 5c ⎠ ⎝ 5d ⎠ ⎝ 5a ⎠ 625 ⎝ Solution.

Applying the AM – GM Inequality we get 2+

3a 1 1 1 a a a a3 = + + ... + + + + ≥ 13.13 13 3 . 5b 5 5 5 5b 5b 5b 5 .b 10

Similarly, 2+

3b b3 3c c3 3d d3 ≥ 13.13 13 3 , 2 + ≥ 13.13 13 3 , 2 + ≥ 13.13 13 3 . 5c 5a 5a 5 .c 5 .a 5 .a

Thus,

3a ⎞ ⎛ 3b ⎞ ⎛ 3c ⎞ ⎛ 3d ⎞ a 3 .b3 .c3 .d 3 134 28561 ⎛ 4 . 2 2 2 2 13 . + + + + ≥ = = 13 ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ 4 13 4 3 3 3 3 5b ⎠ ⎝ 5c ⎠ ⎝ 5d ⎠ ⎝ 5a ⎠ 5 625 ⎝ 5 .a .b .c .d

( )

78. ( a, b, c, d > 0, a + b + c + d ≤ 1) ,

⎛ 1 1 ⎞⎛ 1 1 ⎞⎛ 1 1 ⎞⎛ 1 1 ⎞ 4 ⎜1 + + ⎟ ⎜1 + + ⎟ ⎜1 + + ⎟ ⎜ 1 + + ⎟ ≥ 9 . ⎝ a b ⎠⎝ b c ⎠⎝ c d ⎠⎝ d a ⎠ Solution.

Applying the AM – GM Inequality we get 1 1 1 1 1 1 1 1 1 ⎛ 1 1⎞ . + + + + + + + ≥ 99 ⎜1 + + ⎟ = 1 + 4 4a 4a 4a 4a 4b 4b 4b 4b ⎝ a b⎠ ( 4a.4b )

Similarly, 1 1 1 ⎛ 1 1⎞ ⎛ 1 1⎞ ⎛ 1 1⎞ , ⎜1 + + ⎟ ≥ 9 9 , ⎜1 + + ⎟ ≥ 9 9 . ⎜1 + + ⎟ ≥ 9 9 4 4 4 ⎝ b c⎠ ( 4b.4c ) ⎝ c d ⎠ ( 4c.4d ) ⎝ d a ⎠ ( 4d.4a )

Thus,

1 1 ⎛ 1 1 ⎞⎛ 1 1 ⎞⎛ 1 1 ⎞⎛ 1 1 ⎞ 4 ≥ 94. ≥ 94 . ⎜1 + + ⎟⎜1 + + ⎟⎜1 + + ⎟⎜1 + + ⎟ ≥ 9 9 8 4 ⎝ a b ⎠⎝ b c ⎠⎝ c d ⎠⎝ d a ⎠ ( 4a.4b.4c.4d ) 9 ⎛ 4( a + b + c + d) ⎞ .⎜ ⎟ 4 ⎝ ⎠ 79. ( a, b, c, d > 0, a + b + c + d ≤ 1) ,

⎛ 2 1 ⎞⎛ 2 1 ⎞⎛ 2 1 ⎞⎛ 2 1 ⎞ 4 ⎜1 + + ⎟⎜1 + + ⎟⎜1 + + ⎟⎜ 1 + + ⎟ ≥ 13 . a b b c c d d a ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ Solution.

Applying the AM – GM Inequality we get 1 1 1 1 1 1 1 1 ⎛ 2 1⎞ + + ... + + + + + ≥ 1313 . ⎜1 + + ⎟ = 1 + 8 4 4a 4a 4a 4b 4b 4b 4b ⎝ a b⎠ ( 4a ) ( 4b ) 8

Similarly, 1 1 1 ⎛ 2 1⎞ ⎛ 2 1⎞ ⎛ 2 1⎞ , ⎜1 + + ⎟ ≥ 1313 , ⎜1 + + ⎟ ≥ 1313 . ⎜1 + + ⎟ ≥ 1313 8 4 8 4 8 4 ⎝ b c⎠ ( 4b ) ( 4c ) ⎝ c d ⎠ ( 4c ) ( 4d ) ⎝ d a ⎠ ( 4d ) ( 4a )

⎛ 2 1 ⎞⎛ 2 1 ⎞⎛ 2 1 ⎞⎛ 2 1 ⎞ ⎜1 + + ⎟⎜1 + + ⎟⎜1 + + ⎟⎜ 1 + + ⎟ ≥ ⎝ a b ⎠⎝ b c ⎠⎝ c d ⎠⎝ d a ⎠ ≥ 134 13

1

( 4a.4b.4c.4d )

12

≥ 134. 13

1 ⎛ 4 (a + b + c + d) ⎞ .⎜ ⎟ 4 ⎝ ⎠

48

≥ 134 .

80. ( a, b, c, d > 0, abcd ≥ 16 ) ,

1 ⎞⎛ 1 ⎞⎛ 1 ⎞⎛ 1 ⎞ 625 ⎛ . ⎜ a + ⎟⎜ b + ⎟⎜ c + ⎟⎜ d + ⎟ ≥ b ⎠⎝ c ⎠⎝ d ⎠⎝ a ⎠ 16 ⎝ Solution.

Applying the AM – GM Inequality we get a+

1 1 1 1 1 a . =a+ + + + ≥ 55 4 b 4b 4b 4b 4b ( 4b )

Similarly, b+

1 b 1 c 1 d , c + ≥ 55 , d + ≥ 55 . ≥ 55 4 4 4 c a a ( 4c ) ( 4a ) ( 4a )

Thus, 3 1 ⎞⎛ 1 ⎞⎛ 1 ⎞⎛ 1⎞ 54 625 ⎛ 4 5 ( abcd ) 4 5 ( abcd ) 4 5 16 =5 . ≥5 . = = ⎜ a + ⎟⎜ b + ⎟⎜ c + ⎟⎜ d + ⎟ ≥ S ≥ 5 b ⎠⎝ c ⎠⎝ d ⎠⎝ a⎠ 416 a.b.c.d 168 168 24 16 ⎝ 4

81. ( a, b, c, d > 0, abcd ≥ 16 ) ,

3

2 1 ⎞⎛ 2 1 ⎞⎛ 2 1 ⎞⎛ 2 1 ⎞ 2401 ⎛ . ⎜ a + + ⎟⎜ b + + ⎟⎜ c + + ⎟⎜ d + + ⎟ ≥ b c ⎠⎝ c d ⎠⎝ d a ⎠⎝ a b ⎠ 16 ⎝ Solution.

Applying the AM – GM Inequality we get 2 1⎞ a a a a 1 1 1 a4 ⎛ 7 a 7 . + + = + + + + + + ≥ ⎜ ⎟ b c⎠ 4 4 4 4 b b c b 2 c1 ⎝

Similarly, 2 1⎞ b4 ⎛ 2 1⎞ c4 ⎛ 2 1⎞ d4 ⎛ 7 7 7 b + + ≥ 7 c + + ≥ 7 d + + ≥ 7 , , . ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ c d⎠ d a⎠ a b⎠ c 2 d1 ⎝ d 2 a1 ⎝ a 2 b1 ⎝

Thus,

( abcd ) ≥ 74 = 2401 . 2 1 ⎞⎛ 2 1 ⎞⎛ 2 1 ⎞⎛ 2 1⎞ ⎛ 4 7 + + + + + + + + ≥ a b c d 7 ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ 3 b c ⎠⎝ c d ⎠⎝ d a ⎠⎝ a b⎠ 24 16 ⎝ 416 ( abcd ) 4

82. ( a, b > 0, a + b ≤ 1) ,

1 1 1 + 2 + 2 ≥ 20 . 3 a + b a b ab 3

Solution.

Applying the AM – GM Inequality we get 1 1 1 1 1 ⎛1 1⎞ 1 1 4 + 2 + 2 = + ⎜ + ⎟≥ 2 + . ≥ 3 2 2 2 a +b a b ab ( a + b ) a − ab + b ab ⎝ a b ⎠ a − ab + b ab a + b

(

3





(

)

(

)

1 4 1 1 1 1 1 + = 2 + + + + ≥ 2 2 ab ab ab ab ab a − ab + b a − ab + b

)

2

(1 + 1 + 1 + 1)

(

2

a − ab + b + ab + ab + ab 2

2

)

+

1

⎛a+b⎞ ⎜ ⎟ ⎝ 2 ⎠

2

≥ 16 + 4 = 20 .

83. ( a, b, c > 0, a + b + c ≤ 1) ,

1 1 1 1 1 1 81 + 2 2+ 2 + + + ≥ . 2 2 a +b b +c c +a ab bc ca 2 2

Solution.

Applying the AM – GM Inequality and the Cauchy – Buniakowski Inequality we get 1 1 1 1 1 1 9 9 + 2 2+ 2 + + + ≥ + = 2 2 2 2 2 a +b b +c c +a ab bc ca 2 a + b + c ab + bc + ca 2

(

)

9⎛ 1 2 1 1 1 ⎞ 9⎛ ⎞ = ⎜ 2 + + + ⎟= ⎜ 2 ⎟≥ 2 2 2 2 2 ⎝ a + b + c ab + bc + ca ⎠ 2 ⎝ a + b + c ab + bc + ca ab + bc + ca ⎠

(1 + 1 + 1) 9 9 9 81 ≥ . 2 = . ≥ . 2 2 2 2 a + b + c + 2 ( ab + bc + ca ) 2 ( a + b + c ) 2 2

84. ( a, b, c > 0, a + b + c = 3) , 5

( 2a + b )( a + c ) a + 5 ( 2b + c )( b + a ) b + 5 ( 2c + a )( c + b ) c ≤ 3 5 6 .

Solution.

Applying the AM – GM Inequality we get

5

3 2

( 2a + b ) . ( a + c ) .3a.3.3 ≤

( 2a + b ) + ⎜⎛

3 3 ⎞ a + c ⎟ + 3a + 3 + 3 2 ⎠ ⎝2 . 5

Similarly,

5

5

3 2

( 2b + c ) . ( b + a ) .3b.3.3 ≤ 3 2

( 2c + a ) . ( c + b ) .3c.3.3 ≤

( 2b + c ) + ⎜⎛

3 3 ⎞ b + a ⎟ + 3b + 3 + 3 2 ⎠ ⎝2 , 5

( 2c + a ) + ⎜⎛

3 3 ⎞ c + b ⎟ + 3c + 3 + 3 2 ⎠ ⎝2 . 5

Adding these two inequalities, we obtain 5

( 2a + b )( a + c ) a + 5 ( 2b + c )( b + a ) b + 5 ( 2c + a )( c + b ) c ≤ 5

(

(

)

(

)

9 ( a + b + c ) + 18 = 35 6 . 3 3 5 .3 2 1

.

)

85. a, b, c > 0, a 2 + a + 2 ( b + 1) c 2 + 3c = 64 , 2

a 3 b 4 c5 ≤ 1 . Solution.

Applying the AM – GM Inequality we get

⎛ a2 + a + 2 ⎞ ⎛b b b b 1 1 1 1⎞ a b c = 4 . a .a.1.1 ⎜ . . . . . . . ⎟ c 2 .c.c.c ≤ 48. ⎜ ⎟ 4 ⎝4 4 4 4 4 4 4 4⎠ ⎝ ⎠ 3 4 5

8

(

2

)

(

)

= ⎛ 86. ⎜ a, b, c > 0, a + b + c ≤ ⎝

(

)

1 1 ⎞⎛ 1 1 ⎞⎛ 1 1 ⎞ ⎛ ⎜ 3 + + ⎟⎜ 3 + + ⎟⎜ 3 + + ⎟ ≥ 343 . a b ⎠⎝ b c ⎠⎝ c a⎠ ⎝

Applying the AM – GM Inequality we get

⎛ b +1 ⎞ .⎜ ⎟ ⎝ 8 ⎠

(

1 2 . a 2 + a + 2 ( b + 2 ) c2 + 3c 8 8

3⎞ ⎟, 2⎠

Solution.

4

8

)

4

⎛ c 2 + 3c ⎞ .⎜ ⎟ = ⎝ 4 ⎠

2

=

1 .644 = 1 . 8 8

1 1⎞ 1 1 1 1 1 ⎛ + + + + 1 + 1 ≥ 7. 7 4 2 2 . ⎜3 + + ⎟ = 1+ a b⎠ 2a 2a 2b 2b 2 .a .b ⎝ Similarly, 1 1⎞ 1 1 1⎞ 1 ⎛ ⎛ ⎜ 3 + + ⎟ ≥ 7. 7 4 2 2 and ⎜ 3 + + ⎟ ≥ 7. 7 4 2 2 . b c⎠ c a⎠ 2 .b .c 2 .c .a ⎝ ⎝ Thus, 1 ⎛ 1 1 ⎞⎛ 1 1 ⎞⎛ 1 1 ⎞ 3 ≥ 73. ⎜ 3 + + ⎟⎜ 3 + + ⎟⎜ 3 + + ⎟ ≥ 7 . 7 12 4 a b b c c a 7 ⎝ ⎠⎝ ⎠⎝ ⎠ 2 . ( abc )

1 12

⎛a+b+c⎞ 212. ⎜ ⎟ 3 ⎠ ⎝

1

≥ 73.

12

7

⎛3⎞ ⎜ ⎟ 212. ⎜ 2 ⎟ ⎜2⎟ ⎝ ⎠

3⎞ ⎛ 87. ⎜ a, b, c, m, n, p > 0, a + b + c ≤ 1, m + n + p ≤ ⎟ , 2⎠ ⎝

⎛ 2 1 ⎞⎛ 2 1 ⎞ ⎛ 2 1 ⎞ 3 ⎜1 + + ⎟⎜1 + + ⎟ ⎜ 1 + + ⎟ ≥ 9 . ⎝ a m ⎠⎝ b n ⎠ ⎝ c p ⎠ Solution.

Applying the AM – GM Inequality we get 1 1 1 1 1 1 ⎛ 2 1⎞ + + ... + + + ≥ 99 . ⎜1 + + ⎟ = 1 + 6 2 3a 3a 3a 2m 2m ⎝ a m⎠ 3a 2m ( ) ( ) 6

Similarly, ⎛ 2 1⎞ 1 1 ⎛ 2 1⎞ and ⎜1 + + ⎟ ≥ 9 9 . ⎜1 + + ⎟ ≥ 9 9 6 2 6 2 c p⎠ ⎝ b n⎠ ⎝ ( 3b ) ( 2n ) ( 3c ) ( 2p )

Thus, 1 ⎛ 2 1 ⎞⎛ 2 1 ⎞ ⎛ 2 1 ⎞ 3 ⎜1 + + ⎟⎜ 1 + + ⎟ ⎜1 + + ⎟ ≥ 9 9 6 2 ⎝ a m ⎠⎝ b n ⎠ ⎝ c p ⎠ ( 3a.3b.3c ) . ( 2m.2n.2p )

1

≥ 93. 9

88. ( x, y, z ∈

⎛ 3(a + b + c + d ) .⎜ ⎜ 3 ⎝

3

⎞ ⎟ ⎟ ⎠

6

⎛ 2(m + n + p) .⎜ ⎜ 3 ⎝

),

(

)(

)(

)

27 x 2 + 3 y 2 + 3 z 2 + 3 ≥ 4 ( 3xy + 3yz + 3zx ) . 2

Solution.

We have

(

)(

)(

)

27 x 2 + 3 y 2 + 3 z 2 + 3 ≥ 4 ( 3xy + 3yz + 3zx )

2

3

⎞ ⎟ ⎟ ⎠

2

≥ 93 .

= 73 .

(

) (

)

⇔ 27 ⎣⎡ x 2 y 2 z 2 + 3 x 2 y 2 + y 2 z 2 + z 2 x 2 + 9 x 2 + y 2 + z 2 + 27 ⎦⎤ ≥ ≥ 4 ⎡9 ( xy + yz + zx ) + 6xyz ( xy + yz + zx ) + x 2 y 2 z 2 ⎤ . ⎣ ⎦ 2

We set a = x + y + z, b = xy + yz + zx, c = xyz . The inequality is equivalent to

(

)

(

)

243 a 2 − 2b + 81 b 2 − 2ca + 23c2 + 27 2 ≥ 36b 2 + 24bc

⇔ 243a 2 + 45b 2 + 23c 2 − 24bc − 162ca − 486b + 27 2 ≥ 0

(

)

(

)

⇔ 11( 3a − c ) + 12 ( b − c ) + ( b − 27 ) + 144 a 2 − 3b + 32 b 2 − 3ca ≥ 0 . 2

2

2

Since a 2 − 3b =

1⎡ 2 2 2 ( x − y ) + ( y − z ) + ( z − x ) ⎤⎦ ≥ 0 ⎣ 2

and b 2 − 3ca =

1⎡ 2 2 2 xy − yz ) + ( yz − zx ) + ( zx − xy ) ⎤ ≥ 0 ( ⎦ 2⎣

thus, the last inequality is true. 89. ( a, b, c > 0 ) ,

a 3 + b 3 + c3 a 2 + b 2 b 2 + c 2 c 2 + a 2 9 + 2 + + ≥ . 2abc c + ab a 2 + bc b 2 + ac 2 Solution.

We have a 3 + b 3 + c3 a 2 + b 2 b 2 + c 2 c 2 + a 2 + 2 + + = 2abc c + ab a 2 + bc b 2 + ac

=

a2 b2 c2 a 2 + b2 b2 + c2 c2 + a 2 + + + + + = 2bc 2ac 2ab c2 + ab a 2 + bc b 2 + ac

⎛ a 2 + bc b 2 + c 2 ⎞ ⎛ b 2 + ac c 2 + a 2 ⎞ ⎛ c 2 + ab a 2 + b 2 ⎞ 3 =⎜ + 2 + 2 + 2 ⎟+⎜ ⎟+⎜ ⎟− ≥ + + + 2bc a bc 2ac b ac 2ab c ab ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 2 ⎛ a 2 + bc 2bc ⎞ ⎛ b 2 + ac 2ca ⎞ ⎛ c 2 + ab 2ab ⎞ 3 ≥⎜ + 2 + 2 + 2 ⎟+⎜ ⎟+⎜ ⎟− ≥ a + bc ⎠ ⎝ 2ac b + ac ⎠ ⎝ 2ab c + ab ⎠ 2 ⎝ 2bc

≥ 2+2+2−

3 9 = 2 2

90. ( a, b > 0, ab = 1) ,

a3 b3 + ≥1. 1+ b 1+ a Solution.

Applying the AM – GM Inequality we get

(

)

2 2 4 4 a3 b3 a 3 + b3 + a 4 + b 4 ( a + b ) a − ab + b + a + b + = = ≥ 1+ b 1+ a 1 + a + b + ab a+b+2



( a + b )( 2ab − ab ) + 2a 2 b 2 a+b+2

=

ab ( a + b + 2ab ) = 1. a+b+2

91. ( x, y, z ≥ 0, x + y + z = 2 ) ,

(

)

(

)

2 x 3 + y3 + z 3 ≤ 2 + x 4 + y 4 + z 4 . Solution.

We have

(

) (

)

2 x 3 + y3 + z 3 − x 4 + y 4 + z 4 = x 2 ( 2 − x ) + y3 ( 2 − y ) + z 3 ( 2 − z ) =

(

)

(

)

(

)

= x 3 ( y + z ) + y3 ( z + x ) + z 3 ( x + y ) = xy x 2 + y 2 + yz y 2 + z 2 + zx z 2 + x 2 ≤

(

)

≤ ( xy + yz + zx ) x 2 + y 2 + z 2 =

(

)

1 2 ( xy + yz + zx ) x 2 + y 2 + z 2 ≤ 2

(

2 2 2 1 ⎡ 2 ( xy + yz + zx ) + x + y + z ≤ ⎢ 2⎢ 2 ⎣

) ⎤⎥ ⎥⎦

2

=

1 4 x + y + z) = 2 . 3 ( 2

92. ( a, b, c, α > 0 ) , α

α

α

⎛ 2 1 ⎞ ⎛ 2 1 ⎞ ⎛ 2 1⎞ α ⎜ a + ⎟ + ⎜ b + ⎟ + ⎜ c + ⎟ ≥ 3.2 . ab ⎠ ⎝ bc ⎠ ⎝ ca ⎠ ⎝ Solution.

Applying the AM – GM Inequality we get α

α

α

α α α ⎛ 2 1 ⎞ ⎛ 2 1 ⎞ ⎛ 2 1 ⎞ ⎛ a⎞ ⎛ b⎞ ⎛ c⎞ ⎟ +⎜2 ⎟ +⎜2 ⎟ ≥ ⎜ a + ⎟ + ⎜ b + ⎟ + ⎜ c + ⎟ ≥ ⎜⎜ 2 ab ⎠ ⎝ bc ⎠ ⎝ ca ⎠ ⎝ b ⎟⎠ ⎜⎝ c ⎟⎠ ⎜⎝ a ⎟⎠ ⎝

α

α

α

α

⎛ a⎞ ⎛ b⎞ ⎛ c⎞ ⎛ 3 a b c⎞ . . ⎟⎟ = 3.2α . ≥ 3 3 ⎜⎜ 2 ⎟⎟ ⎜⎜ 2 ⎟⎟ ⎜⎜ 2 ⎟⎟ = 3 3 ⎜⎜ 2 b c a b c a⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ 93. ( a, b, c > 0, abc = 1) ,

( a + b )( b + c )( c + a ) ≥ 2 (1 + a + b + c ) . Solution.

We have

( a + b )( b + c )( c + a ) ≥ 2 (1 + a + b + c ) ⇔ a 2 b + ab 2 + a 2 c + ac2 + bc2 + b 2 c + 2abc ≥ 2 + 2 ( a + b + c )

(

) (

) (

)

⇔ a 2 b + a 2c + 1 + b 2a + b2c + 1 + c2a + c2 b + 1 ≥ 3 + 2 ( a + b + c ) .

Applying the AM – GM Inequality we get

( a b + a c + 1) ≥ 3 2

3

a 4 bc = 3a ,

( b c + b a + 1) ≥ 3

3

b 4 ca = 3b ,

( c a + c b + 1) ≥ 3

3

c4 ab = 3c .

2

2

2

2

2

Adding these three inequalities, we obtain

( a b + a c +1) + ( b a + b c + 1) + ( c a + c b + 1) ≥ 3( a + b + c) ≥ 3 2

2

2

2

2

2

3

abc + 2 ( a + b + c ) = 3 + 2 ( a + b + c ) .

94. ( x, y, z > 0 ) ,

⎛1 1 1⎞ x z y + + ⎟+ + + ≥ x + y+ z + 6. ⎝x y z⎠ z y x

( xyz + 1) ⎜ Solution.

Applying the AM – GM Inequality we get ⎛ 1 1 1⎞ x z y ⎛ z⎞ ⎛ y⎞ ⎛ x⎞ 1 1 1 + + ⎟ + + + = ⎜ yz + ⎟ + ⎜ xy + ⎟ + ⎜ xz + ⎟ + + + ≥ y⎠ ⎝ x⎠ ⎝ z⎠ x y z ⎝x y z⎠ z y x ⎝

( xyz + 1) ⎜

≥ 2x + 2y + 2z +

1 1 1 1⎞ ⎛ 1⎞ ⎛ 1⎞ ⎛ + + = x + y+ z+⎜x + ⎟+⎜y+ ⎟+⎜z+ ⎟ ≥ x + y+ z+ 6. x y z x⎠ ⎝ y⎠ ⎝ z⎠ ⎝

95. ( 0 ≤ a, b, c, d ≤ 1) ,

a b c d + + + ≤3. bcd + 1 cda + 1 dab + 1 abc + 1 Solution.

Since 0 ≤ a, b, c, d ≤ 1 thus

(1 − a )(1 − b ) + (1 − c )(1 − d ) + (1 − ab )(1 − cd ) ≥ 0 ⇒ 3 − ( a + b + c + d ) + abcd ≥ 0 ⇒ a + b + c + d ≤ 3 + abcd .

Therefore, a b c d a + b + c + d 3 + abcd 2abcd + + + ≤ ≤ = 3− ≤ 3. bcd + 1 cda + 1 dab + 1 abc + 1 abcd + 1 1 + abcd 1 + abcd 96. ( a, b, c > 0, ab + bc + ca = 1) ,

a8

(a

2

+b

+

) (b

2 2

b8 2

+c

+

) (c

2 2

Solution.

Applying the Cauchy – Buniakowski Inequality we get

c8 2

+a

)

2 2



1 . 12

2

a8

(a

2

+ b2

b8

+

) (b 2

(

2

+ c2

c8

+

) (c 2

)

2 2 2 ⎡ 2 1 ⎢ a +b +c ≥ . 3 ⎢ 2 a 2 + b2 + c2 ⎣

(

2

)

+ a2 2

) (

2

⎛ a4 b4 c4 ⎞ + + ⎜ 2 ⎟ a + b 2 b 2 + c2 c2 + a 2 ⎠ ≥⎝ ≥ 3

⎤ a 2 + b2 + c2 ⎥ = ⎥ 12 ⎦

) ≥ ( ab + bc + ca ) 2

12

2

=

1 . 12

97. ( a, b, c < 0, a + b + c ≤ 3) , a 3 b 3 c3 ⎛ 1 1 1 ⎞ + 2 + 2 + 27 ⎜ + + ⎟ ≥ 84 . 2 b c a ⎝ ab bc ca ⎠

Solution.

Applying the AM – GM Inequality we get 3 ≥ a + b + c ≥ 3 3 abc ⇒ abc ≤ 1 . Thus, 3 a 3 b 3 c3 b3 c3 1 1 1 ⎛ 1 1 1⎞ a ⎛ 1 1 1⎞ 27 + + + + + = + + 2 + + + + 26 ⎜ + + ⎟ ≥ ⎜ ⎟ 2 2 2 2 2 b c a c a ab bc ca ⎝ ab bc ca ⎠ b ⎝ ab bc ca ⎠

a 3 b 3 c3 1 1 1 1 1 1 1 1 ≥ 6. 2 . 2 . 2 . . . + 26.3. 3 . . = 6 6 + 26.3 3 ≥ 6 + 26.3 = 84 . 2 b c a ab bc ca ab bc ca abc ( abc ) 6

1 1 1⎞ ⎛ ⎛ 1 1 1⎞ 98. ⎜ a, b, c > 0, 6 ⎜ 2 + 2 + 2 ⎟ ≤ 1 + + + ⎟ , b c ⎠ a b c⎠ ⎝a ⎝ 1 1 1 1 + + ≤ . 10a + b + c a + 10b + c a + b + 10c 12 Solution.

We have 2

2

2

⎛1 1⎞ ⎛ 1 1⎞ ⎛1 1⎞ ⎛ 1 1 1⎞ ⎛1 1 1⎞ ⎜ − ⎟ + ⎜ − ⎟ + ⎜ − ⎟ ≥ 0 ⇒ 6⎜ 2 + 2 + 2 ⎟ ≥ 4⎜ + + ⎟ − 2 . b c ⎠ ⎝ a 3⎠ ⎝ b 3⎠ ⎝ c 3⎠ ⎝a ⎝a b c⎠ 1 1 1 ⎛ 1 1 1⎞ Since 6 ⎜ 2 + 2 + 2 ⎟ ≤ 1 + + + , thus b c ⎠ a b c ⎝a 1 1 1 1 1 1 ⎛1 1 1⎞ 1+ + + ≥ 4⎜ + + ⎟ − 2 ⇒ + + ≤ 1⇒ a + b + c ≥ 9 . a b c a b c ⎝a b c⎠ If x, y are two positive real numbers then

1 1⎛1 1⎞ ≤ ⎜ + ⎟. x+y 4⎝ x y⎠

Therefore, 1 1 1⎛ 1 1 ⎞ = ≤ ⎜ + ⎟= 10a + b + c 6a + ( 4a + b + c ) 4 ⎝ 6a 4a + b + c ⎠

⎞ 1⎡ 1 1⎛ 1 1⎛ 1 1 1 1 1 ⎞⎤ = ⎜⎜ + + . ⎟⎟ ≤ ⎢ + ⎜ + ⎟⎥ = 4 ⎝ 6a 3a + ( a + b + c ) ⎠ 4 ⎣ 6a 4 ⎝ 3a a + b + c ⎠ ⎦ 16a 16 ( a + b + c ) Similarly, 1 1 1 1 1 1 and . ≤ + ≤ + a + 10b + c 16b 16 ( a + b + c ) a + b + 10c 16c 16 ( a + b + c )

Adding these three inequalities, we obtain 1 1 1 1 ⎛1 1 1⎞ 3 1 3 1 + + ≤ ⎜ + + ⎟+ ≤ + = . 10a + b + c a + 10b + c a + b + 10c 16 ⎝ a b c ⎠ 16 ( a + b + c ) 16 16.9 12 99. ( a, b, c, d, e, f ∈ , ab + bc + cd + de + ef = 1) ,

a 2 + b 2 + c2 + d 2 + e2 + f 2 ≥

1 π 2 cos 7

.

Solution.

Let αi > 0,i = 1, 2,...,5 . Applying the AM – GM Inequality we get α1a 2 +

1 2 b ≥ 2ab , α1

α2b2 +

1 2 c ≥ 2bc , α2

α 3c 2 +

1 2 d ≥ 2cd , α3

α 4d 2 +

1 2 e ≥ 2de , α4

α5e2 +

1 2 f ≥ 2ef . α5

Adding these five inequalities, we obtain

⎛1 ⎞ ⎛1 ⎞ ⎛ 1 ⎞ ⎛ 1 ⎞ 1 α1a 2 + ⎜ + α2 ⎟ b2 + ⎜ + α3 ⎟ c2 + ⎜ + α4 ⎟ d2 + ⎜ + α5 ⎟ e2 + f 2 ≥ 2 ( ab + bc + cd + de + ef ) = 2 . α5 ⎝ α1 ⎠ ⎝ α2 ⎠ ⎝ α4 ⎠ ⎝ α3 ⎠ We set αi =

sin ( i + 1) sin

iπ 7

π 7 ,i = 1, 2,...,5 .

It is easy to show that α1 = Therefore,

1 1 1 1 1 π + α2 = + α3 = + α4 = + α5 = = 2 cos . 7 α1 α2 α3 α4 α5

a 2 + b 2 + c2 + d 2 + e2 + f 2 ≥

1 2 cos

π 7

.

100. ( a, b, c > 0, a + b + c = 1) , a b c 27 . + 3 + 3 2 ≤ 2 2 a + a + 1 b + b + 1 c + c + 1 31 3

Solution.

Applying the AM – GM Inequality we get 1 1 ⎞ ⎛ 2 1 ⎞ 22 1 1 1 22 22 ⎛ a3 + a2 +1 = ⎜ a3 + + ≥ 3 3 a3. . + 2 a 2. + =a+ . ⎟+ ⎜a + ⎟+ 27 27 ⎠ ⎝ 9 ⎠ 27 27 27 9 27 27 ⎝ Therefore,

a ≤ a + a2 + 1 3

a 22 = 1− . 22 27a + 22 a+ 27

Similarly, c 22 b 22 . and 3 2 ≤ 1− ≤ 1− 2 c + c +1 27c + 22 b + b +1 27b + 22 3

Adding these three inequalities, we obtain

a b c 1 1 1 ⎛ ⎞ + 3 + 3 2 ≤ 3 − 22 ⎜ + + ⎟. 2 2 a + a +1 b + b +1 c + c +1 ⎝ 27a + 22 27b + 22 27c + 22 ⎠ 3

On the other hand, using the AM – GM Inequality we get 1 1 1 ⎛ ⎞ ⎡⎣( 27a + 22 ) + ( 27b + 22 ) + ( 27c + 22 ) ⎤⎦ ⎜ + + ⎟≥9 ⎝ 27a + 22 27b + 22 27c + 22 ⎠

1 1 ⎞ 9 3 ⎛ 1 ⇒⎜ + + = . ⎟≥ ⎝ 27a + 22 27b + 22 27c + 22 ⎠ 27 ( a + b + c) + 66 31 Therefore,

a b c 3 27 + 3 + 3 2 ≤ 3 − 22. = . 2 2 a + a +1 b + b +1 c + c +1 31 31 3

*****

Related Documents

Blatant Inequality
April 2020 33
Problems
October 2019 49
Problems
November 2019 46

More Documents from ""