Class
Register Number
Name
CHIJ SECONDARY (TOA PAYOH) PRELIMINARY EXAMINATION 2009 SECONDARY FOUR (SPECIAL / EXPRESS)
MATHEMATICS PAPER 1
4016/1 2 September 2009 2 hours
Candidates answer on the Question Paper. Additional materials: Geometrical instruments
READ THESE INSTRUCTIONS FIRST Write your name, register number and class on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, and glue or correction fluid. Answer all questions. If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks. You are expected to use an electronic calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .
The number of marks is given in brackets [ ] at the end of each question or part question. The total number of marks for this paper is 80.
2
This document consists of 16 printed pages including the cover page. [Turn over
Mathematical Formulae Compound interest r Total amount = P 1 + 100
n
Mensuration Curved surface area of a cone = π rl Surface area of a sphere = 4π r 2 Volume of a cone =
1 2 πr h 3
Volume of a sphere = Area of triangle ABC =
4 3 πr 3
1 ab sin C 2
Arc length = rθ , where θ is in radians 1 2 Sector area = r θ , where θ is in radians 2 Trigonometry a b c = = sin A sin B sin C a 2 = b 2 + c 2 − 2bc cos A
. Statistics Mean =
Standard deviation =
∑ fx ∑f ∑ fx ∑f
2
∑ fx − ∑ f
2
chijsectp.4S/E.prelim.emath1.2009
3
Answer all the questions showing all your working clearly. 1
Evaluat 4.23 + 0.6 21 .3 × 0.39
(a)
, lea vin g you r ans wer cor rect to 3 dec ima l pla ces. (b)
1 , leaving your answer in standard form. 2.5 ×10 + 8.3 ×10 5 6
Answer [1] (b)…………………… ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
[1]
4
___ ___ ___ ___ ___ ___ ___ ___ __ 2
−3
8 ÷ 125
0
(a)
y Simplify 3
(b)
Given that 2(16 3 x +2 ) = 8 4−5 x , find x.
Answer (a)……………………
[1]
(b)……………………
[2]
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ chijsectp.4S/E.prelim.emath1.2009
5
3
Tw o nu mb ers h and k, wri tten as pro duc ts of thei r pri me fact ors, are h = 22 × 72
and
k = 2 × 33 × 7 .
Find th
(a) (b)
What is the smallest positive integer n for which 30n is a multiple of k?
Answer [1] (b)…………………… ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
[1]
6
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 4
In one o the hou cans at damage percent
[3] ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
7
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __A nsw er ….. … … … … … … … … 5
One hu have a cm 3 of (a) (b)
write 0 Calculate the volume of one drop, in m 3 , giving your answer in standard form.
Answer [1] (b)…………………… ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
[2]
8
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ $12 6 is divi ded bet wee n Jam es and Ton y in the rati o x : 5. Wri te do wn an exp ress ion, in ter ms of x, chijsectp.4S/E.prelim.emath1.2009
9
for Jam es’ shar e.
[2] ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __A nsw er … … … … … … … chijsectp.4S/E.prelim.emath1.2009
10
… … 7
The dia sector o opened covered terms o
120° 6 cm
10 cm
(a) (b)
the area the perimeter, of the paper portion.
Answer (a)……………………
[2]
(b)……………………
[2]
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
11
___ ___ ___ ___ _ 8
(a)
The line 5 x = y +14 passes through the point (3 p,7 p ) . Find the value of p.
(b)
Find the equation of the line passing through the points (−1, 3) and (7, −2) , leaving your answer in the form ax + by = c , where a ,b and c are integers. The distance between the points A ( 1, 2k ) and B ( 1 − k , 1) is 10 k +4 .
(c)
Find the possible values of k.
Answer [1] (b)……………………
[2]
(c) …………………...
[3]
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
12
___ ___ ___ ___ ___ __ 9
In the d is the d is the tangent to the circle at E. DE produced meets CB produced at F. (a) (b)
Prove t Given that CD = 13cm and DE = 5 cm, find FD.
C
D B E A
F
Answer (a) chijsectp.4S/E.prelim.emath1.2009
13
…………………………………………………… ……………………………… …………………………………………………… …………………………………………. …………………………………………………… …………………………………… [2] (b)…………………… [2] ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 10
Given a
1,
2 5 13 34 , , , , …………. 3 8 21 55
Write down the next term in the sequence. (b)
x
One of the terms in the sequence is y . Find in terms of x and y, the term which comes chijsectp.4S/E.prelim.emath1.2009
14
x
immediately after y .
Answer [1] (b)…………………… ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 11
Che rise rec ord ed ove ra peri od of two mo nths chijsectp.4S/E.prelim.emath1.2009
[1]
15
the nu mb er of mat he mat ics que stio ns don e by 30 stud ents in her clas s. 36
51
41
57
22
61
54
55
32
40
39
61
52
49
28
43
52
54
25
32
49
60
57
48
59
60
45
43
20
52
(a)
Draw an ordered stem and leaf diagram for the data. [2]
(b)
State the mode.
(c)
State the median.
Answer (b)…………………… (c)…………………… ___ ___ chijsectp.4S/E.prelim.emath1.2009
[1] [1]
16
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ Given
12 (a)
ex pre ss y in ter ms of x, 2x + y
(b)
find the numerical value of x −3 y
Answer (a)……………………
[1]
(b)……………………
[1]
chijsectp.4S/E.prelim.emath1.2009
17
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 13
Cone A (a)
Ca lcu lat e the vol um e of the sec on d Co ne B wh ich has a chijsectp.4S/E.prelim.emath1.2009
18
rad ius thr ice tha t of Co ne A an d hal f the hei ght of Co ne A. (b)
Cone C is similar to Cone A. Given that Cone C has a volume of 432 cm 3 , find the ratio of the base area of Cone C to the base area of Cone A.
Answer [2] (b)………………….. ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
[2]
19
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _
If y is i
14
and x = the equ
(a) (b)
the positive value of x when y = 25.
Answer (a)……………………
[1]
(b)……………………
[1]
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
20
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 15
In the fig ure , AB CD is a squ are. E is a poi nt on AB pro duc ed suc h that BE = BF Prove that triangles ABF and CBE are congruent.
chijsectp.4S/E.prelim.emath1.2009
21
Answer ……………………………………………………………………………………………
…………………………………………………………………………………………………… …………………………………………………………………………………………………… …………………………………………………………………………………………………[2] ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
22
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 16
The rat n-sides (a) (b)
Find th Hence, calculate the sum of interior angles of this polygon.
Answer (a)……………………
[2]
(b)……………………
[1]
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
23
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _
In the d 17
cm. It i and ∠ ADB = 90°, find (a)
the valu
the exa
the area
B 1 cm (b) (c)
Answer [1] (b)……………………
[1]
(c) …………………...
[1]
___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
24
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _ 18
Sol ve the foll owi ng sim ulta neo us equ atio ns:
(a) 1 x −y + 3 = 0 , 2
7 y − 11 = 6 x.
chijsectp.4S/E.prelim.emath1.2009
25
Answer x = …………………
(b)
Given that 4 +
y =……………………
[2]
Answer (i)…………………….
[1]
x 1 < 3 x −2 , 3 6
(i) solve the inequality, (ii) write down the smallest integer value of x.
(ii) x =……………… ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
[1]
26
___ ___ ___ ___ ___ ___ ___ _ 19
The dia manufa its new drink. It is made up of two identical hemispheres and a right cylinder. The radii of the hemispheres are 10.5 cm each and the cylinder has a radius of 3.5 cm and a height of 15 cm. ( π =
22 ) 7
15 cm
10.5 cm
Find (a) (b)
the volume of the container, the total surface area of the container.
chijsectp.4S/E.prelim.emath1.2009
27
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _ 20
Answer (a)……………………
[2]
(b)………..…………...
[3]
Speed in m/s
10 v 0
5
10
15
Time in seconds
(a)
The dia over a p retarded at this s uniform distanc
Find th
(b)
Distance in m Speed in of m/s Find the speed the particle after 15 seconds.
(c)
Complete the corresponding distance-time graph. 10 v chijsectp.4S/E.prelim.emath1.2009
0
5
10
15
Time in seconds
28
Ti me in sec on ds 0 5 10 15
[2] Ans wer (a) … … chijsectp.4S/E.prelim.emath1.2009
29
… … … … … … (b)………..…………...
[1] [2]
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ _ 21
X
B
C
E 4a
A
4b
ABCD is a parallelogram. E is a point on BD such that BE =
1 BD . 4
chijsectp.4S/E.prelim.emath1.2009
D
30
(a)
(b)
Given t terms o (i)
BD
(ii)
BE
(iii)
AE
Find the ratio of (i)
area of ∆BEX : area of ∆DEA ,
(ii)
area of ∆AEB : area of parallelogram
ABCD .
Answer (a) (i)............................. [1] [1]
(iii)………………….
(ii) … … … … … … …. [1]
(b)(i)………………….
[1]
(ii) …………………
[2]
___ ___ ___ ___ ___ ___ ___ ___ chijsectp.4S/E.prelim.emath1.2009
31
___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ __ 22 (a) Sketch the graph of y = (3 − x) (1 + x), showing the x and y intercept. Answer (a)
y
x Y
[2] 5 2
1 4
(b) Sketch the graph of y = ( x − ) 2 − 4 ,showing x and y intercepts.
Answer (b)
chijsectp.4S/E.prelim.emath1.2009
X
32
[2]
___________________________________________________________________________________ 23 In trian
∠ABC
(a)
Constru [2]
(b)
(c)
In triangle ABC, construct (i) the bisector of angle BAC,
[1]
(ii) the perpendicular bisector of the line AC,
[1]
the bisector of angle BAC meets the perpendicular bisector of AC at point P. Measure and write down the length of AP. Answer (a) and (b)
chijsectp.4S/E.prelim.emath1.2009
33
B
10 cm
C [1]Answer(c).................................
… … … … … … … … … … … … … …..
En d of chijsectp.4S/E.prelim.emath1.2009
34
Pa per 1 … … … … … … … … … … … … … …. CH IJ E MA TH PR ELI M PA PE R1 200 9 64 2 1(a) ( x +1) 1(b)1 3 10 −7 4a
×
2(a)
2(b)
14b
x=
3 5
15
27 y3
x
1.512
BF=BE (given)
∠ABF = ∠CBE
BC= AB (square)
=
1 9
16a
∴∆ABF = ∆CBE n =15
3a
4.2
16b
3b
63
17a
4
4.08% −7 3.6 × 10 g 4 ×10 −15 m 3
17b
34.0
17c
1.50 cm 2
18a
x = 4,
5a 5b 6 7a
12 x x +5
28 π
18bi 18bii
2340 degrees −
3 4
y=5 17 x >1 19 x= 2
chijsectp.4S/E.prelim.emath1.2009
S A S
35 7b 8a
12 + 9 1
1 3
3 4
π
8b
5x +8y
8c
1 K= − 5
9a
∠ CED
= 29
= 90
( ∠ in a semicircle) = ∠FDC ( common angle)
19a 19b
5430 cm 3 2330 cm 2
20a
V=4
20b
14 m/s
21ai ii iii
4(b-a) b-a 3a +b
21bi ii 22
1:9 1:8 Sketch of graph
23
AP =6.1 to 6.25
∠CDE ∠CEO = ∠FCD
9b 10a 10b 11a 11b 12a 12b 13a 13b
∴∆CDE is similar to ∆ FDC 33.8 cm 89 144
x +y x +2 y
52 49 y=
3 x 16
5 4608 9:16
chijsectp.4S/E.prelim.emath1.2009