CHAPTER 9
Compressible Flow 9.1
c p = 0.24
Btu
778
o
lbm- R
ft-lb lbm ft-lb 32.2 = 6012 Btu slug slug-o R
cv = c p − R = 6012 − 1716 = 4296 = 0.171
9.2
c p = cv + R.
ft - lb ft - lb 1 Btu 1 slug = 4296 o slug - R slug - o R 778 ft - lb 32.2 lbm
Btu lbm- o R c p = kcv .
∴cp =
1 + R or c p 1 − = R. k k
cp
∴ c p = Rk / ( k − 1). 9.3
If ∆s = 0, Eq. 9.1.9 can be written as cp
p T or ln 2 = ln 2 T1 p1 It follows that, using c p = cv + R and c p / cv = k , T p c p ln 2 = R ln 2 T1 p1
T2 p2 = T1 p1 Using Eq. 9.1.7,
R /c p
p = 2 p1 1−
1−
R
1 k
.
1
p T2 p 2 ρ 1 p 2 k ρ = = or 1 = 2 T1 ρ 2 p 1 p 1 ρ2 p1 Finally, this can be written as
− 1/ k
.
k
p2 ρ2 = . p1 ρ1
9.4
Substitute Eq. 4.5.18 into Eq. 4.5.17 and neglect potential energy change: & −W & S V22 − V12 p 2 p 1 Q = + − +~ u2 − ~ u1 . & m 2 ρ 2 ρ1
200
Enthalpy is defined in Thermodynamics as h = ~ u + pv = u~ + p / ρ. Therefore, & −W & S V22 − V12 Q = + h2 − h 1 . & m 2 Assume the fluid is an ideal gas with constant specific heat so that ∆h = c p ∆T. Then & −W & Q V 2 − V12 S = 2 + c p (T2 − T1 ). & m 2 Next, let c p = cv + R and k = c p / cv so that c p / R = k ( k − 1). Then, with the ideal gas
law T = p / Rρ , the first law takes the form & −W & p Q V22 − V12 k p2 S = + − 1 . & m 2 k − 1 ρ2 ρ 1 9.5
Differentiate pρ − k = c using d( xy) = ydx + xdy: ρ − k dp − pkρ − k − 1 dρ = 0.
Rewrite: dp p =k . dρ ρ 9.6
The speed of sound is given by c = dp / dρ . For an isothermal process TR = p / ρ = K, where K is a constant. This can be differentiated: dp = Kdρ = RTdρ. Hence, the speed of sound is c = RT .
9.7
& S = 0 is: Eq. 9.1.4 with Q& = W
V2 + c p T = cons't. 2 V2 (V + ∆V ) 2 V 2 + 2V∆V + ( ∆V ) 2 + c pT = + c p (T + ∆T ) = + c p T + c p ∆T . 2 2 2
2V ∆V ( ∆V )2 + + c p ∆T . ∴ −V ∆V = c p ∆T = ∆h. 2 2 We neglected (∆V)2 . The velocity of a small wave is V = c. ∴0 =
9.8
For water dp ρ = 2110 × 10 6 Pa dρ Since ρ = 1000 kg / m 3 , we see that 201
∴ ∆h = − c∆V .
c = dp / dρ = 2110 × 10 6 / 1000 = 1453 m / s
9.9
∆p dp 2110 × 10 6 For water c = ≅ = = 1453 m / s. ∆ρ dρ 1000 L = velocity × time = 1453 × 0.6 = 872 m.
9.10
Since c = 1450 m/s for the small wave, the time increment is d 10 ∆t = = = 0.0069 seconds c 1450
9.11
a) M =
V 200 = = 0.588. c 1. 4 × 287 × 288 b) M = 600/ 1.4 × 1716× 466 = 0.567. c) M = 200 / 1.4 × 287 × 223 = 0.668. d) M = 600/ 1.4 ×1716 × 392 = 0.618. e) M = 200 / 1.4 × 287 × 238 = 0.647.
9.12
c = kRT = 1. 4 × 287 × 263 = 256 m / s.
∴d = ct = 256 × 1.21 = 309 m.
9.13
a) Assume T = 20°C: c = kRT = 1. 4 × 287 × 293 = 343 m /s. d = c ∆t = 343 × 2 = 686 m b) Assume T = 70°F: c = kRT = 1. 4 × 1716 × 530 = 1130 fps. d = c∆t = 1130 × 2 = 2260 ft. For every second that passes, the lightning flashed about 1000 ft away. Count 5 seconds and it is approximately one mile away.
9.14
c = 1.4 × 287 × 263 = 256 m / s.
sin α =
1 c = . M V
1000 sin α = 0.256. ∴ tan α = 0.2648 = . ∴ L = 3776 m L 3776 ∆t = = 3.776 s. 1000
202
V 1000 m
L
9.15
Use Eq. 9.2.13: c a) = sin α or V = V
1.4 × 287 × 288 = 908 m / s sin 22 o
c = sin α or V = V
1.4 × 1716 × 519 = 2980 fps sin 22 o
b)
9.16
∆p ∆p 0. 3 =− =− = −0.113 fps. ρc ρ kRT .00237 1.4 × 1716 × 519 V2 (V = ∆V) 2 Energy Eq: + c pT = + c p ( T + ∆T ). ∴ 0 = V∆V + c p ∆T . 2 2 ∴ ∆T = −c∆V / c p = − 1. 4 × 1716 × 519 ( −.113) /( 0.24 × 778 × 32.2) = 0.021o F. Btu ft - lb lbm ft - lb Note: c p =.24 × 778 × 32.2 =.24 × 778 × 32.2 . o lbm - F Btu slug slug - o F Eq. 9.2.4: ∆V = −
Then 9.17
ft 2 / sec 2 ft 2 − lb - sec 2 − o F o = = F. ft - lb / (slug - o F) sec 2 − ft - lb - ft
(units can be a pain!)
a) ρAV = ρAV + ρAdV + AVdρ + AdρdV + ρVdA + ρdAdV + VdρdA + dρdAdV Keep only the first order terms (the higher order terms—those with more than one differential quantity—will be negligible): 0 = ρAdV + AVdρ + ρVdA Divide by ρAV: dV dρ dA + + =0 V ρ A b) Expand the r.h.s. of Eq. 9.3.5 (keep only first order terms): V2 k p V 2 + 2VdV k p + dp + = + . 2 k−1ρ 2 k − 1 ρ + dρ Hence, 2VdV k p + dp p 0= + − 2 k − 1 ρ + dρ ρ
= VdV +
k ρp + ρdp − pρ − pdρ k −1 ρ 2 + ρdρ
= VdV +
k ρdp − pdρ k −1 ρ2
where we neglected ρdρ compared to ρ 2 . For an isentropic process Eq. 9.2.8 gives ρdp = kpdρ , so the above becomes
203
k kpdρ − pdρ k−1 ρ2 p k ( k − 1) pdρ = VdV + = VdV + k 2 dρ 2 k−1 ρ ρ But dρ / ρ = −dV / V − dA / A so that the above equation is p dV dA 0 = VdV + k − − ρ V A 0 = VdV +
which can be written as dV dA V 2 ρ = − 1 . A kp V Since c 2 = kp / ρ , and M = V/c, this is put in the form dA V 2 dV = 2 − 1 A c V
dA dV = M2 − 1 A V
(
or
)
c) Substituting in V = M c, c 2 = kRT , and R / c p = ( k − 1) / k , we find
T0 V2 M2 c 2 M 2 kRT = +1= +1= +1 T 2c p T 2c p T 2c p T M 2 k( k − 1) k−1 2 + 1= 1+ M . 2k 2 k /( 1 − k ) k − 1 2 p0 1 + M k k 2 d) m & =p AM = AM −1 / 2 TR R k − 1 2 T0 1 + M 2 =
k+1
= p0
k k − 1 2 2( 1− k ) M A 1 + M RT0 2
At the critical area A * , M * = 1. Hence, k+1
k k + 1 2( 1− k ) & = p0 m A* . RT0 2 e) Since m & is constant throughout the nozzle, we can equate Eq. 9.3.17 to Eq. 9.3.18: k +1
p0
k+1
k k − 1 2 2( 1− k ) k k + 1 2( 1− k ) M A 1 + M = p0 A* 2 RT0 2 RT0
or k+1
A 1 2 + ( k − 1) M 2 2( k − 1) = A* M k +1
204
9.18
a) p s = patm + 10 = 69.9 + 10 = 79.9 kPa abs. p1 = 69.9 kPa abs.
V 1
p p V2 p From 1 → s : 1 + 1 = s . ρ s = ρ 1 s 2 ρ1 ρs p1
1/k
79.9 =. 906 69.9
s
V s=0
1/1. 4
= 0.997 kg / m 3 .
V12 69 900 79 900 ∴ + = . ∴V1 = 77.3 m / s. 2 .906 .997 b) p s = 26.4 + 10 = 36.4 kPa abs. p 1 = 26.4 kPa abs. p p V2 p From 1 → s : 1 + 1 = s . ρ s = ρ 1 s 2 ρ1 ρ s p1
V12 26 400 36 400 + = . 2 .412 .518 9.19
V2 p p a) 1 + 1 = s . 2 ρ1 ρ s
1 /k
36. 4 = 0. 412 26.4
1 /1 . 4
= 0. 518 kg / m 3 .
∴V1 = 111 m /s. 1/ k
p ρ s = ρ1 s p1
1/1.4
105 = 1.22 101
= 1.254 kg/m3 .
V12 1.4101 000 105 0001.4 + = . ∴V1 = 81.3 m/s. 2 .4 1.22 1.254 .4 V 2 4000 81.3-81 b) 1 = . ∴V1 = 81.0 m/s. % error = × 100 = 0.42%. 2 1.22 81.3 9.20
Is p r < . 5283p 0 ?
0.5283 × 200 = 105.7 kPa.
a) p r < .5283 p 0 .
∴ choked flow. ∴ M e = 1. ∴V e2 = kRTe . p e = 105.7 kPa. 1.4 × 287 Te 1000 × 298 = + 1000 Te . ∴ Te = 248.1 K, Ve = 315. 8 m / s. 2 105.7 & = 1.484 × π ×.01 2 × 315.8 = 0.1473 kg / s. ρe = = 1.484 kg / m 3 . ∴ m .287 × 248.1 1. 4 Ve2 1.4 130 000 130 ρ e b) p r > .5283 p 0 . ∴ M e < 1. 1000 × 298 = + . = 2 .4 ρe 200 2.338
200 = 2. 338. ∴ ρ e = 1.7187 kg / m 3 . .287 × 298 & = 1.7187 × π ×.01 2 × 257.9 = 0.1393 kg / s. ∴m ρ0 =
9.21
Is p r < . 5283p 0 ?
∴V e = 257. 9 m / s.
0.5283 × 30 = 15.85 psia.
a) p r < 15.85. ∴ choked flow and M e = 1 , p e = 15.85 psia. V e2 = kRT. 1.4 × 1716 × Te 0.24 × 530 = + 0.24 Te . ∴ Te = 441.7 o R, Ve = 1030 fps. 2( 778 × 32.2)
205
ρe =
15.85 ×144 = 0.003011 slug/ft 3 . 1716 × 441.7 2
.5 ∴ m& = .003011 × π × 1030 = 0.01692 slug/sec. 12 b) pr > 15.85. ∴ M e < 1, and pe = 20 psia. 30 ×144 ρ0 = = .00475 slug/ft 3 . 1716 × 530 1/1.4
20 ∴ ρ e = .00475 30
= .003556 slug/ft 3 .
Ve2 1.4 20 × 144 + . 2 .4 .003556 2 .5 & =.003556 × π × 838.9 = 0.01627 slug / sec. ∴Ve = 838. 9 fps. ∴ m 12 0.24 × 530(778 × 32.2) =
ft-lb ft-lb (Note: c p =0.24 Btu/lbm-oR=0.24×778 =0.24× 778×32.2 .) o lbm- R slug-oR
9.22 a) p r < .5283 p 0 . ∴ M e = 1. ∴ p e =.5283 × 200 = 105.7 kPa. Te =.8333 × 298 = 248.3 K. 105.7 ρe = = 1.483 kg / m 3 . V e = 1. 4 × 287 × 248. 3 = 315. 9 m / s. .287 × 248.3 & ∴ m = 1.483 × π ×.01 2 × 315.9 = 0.1472 kg / s. b) p r > .5283 p 0 . ∴ p e = 130 kPa,
pe = 0.65. ∴ M e =.81 , Te =.884T0 p0
130 = 1.719 kg / m 3 , Ve =. 81 1. 4 × 287 × 263. 4 = 263.5 m / s. .287 × 263. 4 & = 1.719 × π ×.01 2 × 263. 5 = 0.1423 kg / s. ∴m ρe =
9.23
a) p r < .5283 p 0 . ∴ M e = 1. ∴ p e =.5283 × 30 = 15.85 psia. Te =. 8333 × 530 = 441.6 o R.
slug 15.85 × 144 =.003012 . Ve = 1.4 × 1716 × 441.6 = 1030 fps. 1716 × 441.6 ft 3 2 .5 & =.003012 × π × 1030 = 0.01692 slug / sec. m 12 p 20 b) p r > .5283 p 0 . ∴ p e = 20 psia. e = =.6667 . ∴ M e =.785. Te = 0.890T0 . p 0 30 20 × 144 ∴ ρ0 = =.00356. Ve =.785 1. 4 × 1716 × 472 = 836 fps. 1716 × 472 2 .5 & =.00356π × 836 = 0.01664 slug /sec. ∴m 12 ∴ρe =
206
9.24 p e =.5283 × 400 = 211.3 kPa abs . Te =.8333 × 303 = 252.5 K. 211.3 & = Ve = 1.4 × 287 × 252.5 = 318.5 m / s. ∴ m π ×.05 2 × 318. 5 = 7 .29 kg /s. .287 × 252. 5 9.25 p e =.5283 p 0 = 101 kPa. ∴ p 0 = 191.2 kPa abs. Te =. 8333 × 283 = 235.8 K. 101 & = Ve = 1.4 × 287 × 235. 8 = 307. 8 m / s. ∴ m π ×.03 2 × 307 .8 = 1.30 kg /s. .287 × 235.8 p 0 = 2 × 191.2 = 382.4 kPa abs. p e =.5283 p 0 = 202.0 kPa abs. Te = 235. 8 K. 202 & = Ve = 307.8 m / s since M e = 1. ∴ m π ×.03 2 × 307.8 = 2.60 kg / s. .287 × 235.8 9.26 p e =.5283 p 0 = 14.7 psia .
∴ p 0 = 27. 83 psia . Te =.8333 × 500 = 416. 6o R.
Ve = 1.4 × 1716 × 416.6 =1000 fps. ∴ ρ e = 0.3203 kg/m3 and pe = 199.4 kPa abs. p0 = 2×27.83. pe = 0.5283 p0 = 29.4 psia, & = 0.202 slug / sec. ∴m
9.27
Te = 416.6o R,
Ve = 1000 fps.
Treat the pipeline as a reservoir. Then, p e =. 5283 p 0 = 264.5 kPa abs.
M e = 1 and Ve = 1. 4 × 287(.8333 × 283 ) = 307 .8 m /s. 264.5 & = m × 30 × 10 −4 × 307.8 = 3.61 kg / s. .287 × (.8333 × 283) m & ∆t 3.61 × 6 × 60 ∆ V− = = = 333 m 3 . ρ 264.5 / (.287× .8333 × 283) 1 . 667
1. 667 × 2077 T e
225 . 667 9.28 5193 × 300 = + 5193 T e . ∴ T e = 225 K. ∴ p e = 200 300 2 =97.45 kPa. Next, Tt = 225 K, p t = 97. 45 kPa; ∴Vt = 1.667 × 2077 × 225 = 882. 6 m / s. 97.45 ρt = = 0.2085 kg/m 3. 0.2085 × π × .032 × 882.6 = ρeπ × 0.0752Ve 2.077 × 225 V 2 1.667 p e 5193 × 300 = e + . 2 . 667 ρ e
ρe p e = 200 200 / 2.077 × 300
1. 667
= 1330ρ e 1. 667 kPa.
Ve2 + 3324 × 10 3 × 9.54Ve− . 667 . 2 6 or 3.116 × 10 = Ve2 + 63 420 × 10 3 Ve−. 667 . Trial - and - error: Ve = 91.8 m / s. =
∴ ρ e = 0.3203 kg/m3 and pe = 199.4 kPa abs.
207
9.29
300 + 100 340 ρ1 = = = 4.757 kg / m 3 . ρ 2 = 4 .757 400 RT1 .287 × 293 p1
1 /1 . 4
= 4 .236 kg / m 3 .
V1 × 4 .757 × 10 2 = V2 × 4.236 × 5 2 . ∴V2 = 4. 492 V1 . V12 V12 1.4 400 000 4.492 2 V12 1.4 340 000 k p 1 V22 k p2 + = + . + = + . 2 k − 1 ρ1 2 k − 1 ρ2 2 . 4 4.757 2 .4 4.236 m ∴V1 = 37.35 . s & = ρ 1 A1V1 = 4.757 × π ×.05 2 × 37.35 = 1. 395 kg / s. ∴m 9.30
ρ1 =
p1 slug ( 45 + 14 .7 )144 = = 0.009634 . RT1 1716 × 520 ft 3
50.7 ρ 2 =.009634 59.7
1 / 1. 4
=.008573 slug / ft 3 .
V1 ×.009634 × 4 2 = V2 ×.008573 × 2 2 . ∴V2 = 4 .495 V1 . V12 1. 4 59.7 × 144 4.495 2 V12 1. 4 50.7 × 144 + = + . ∴V1 = 121.9 fps. 2 .4 .009634 2 .4 .008573 & =.009634 π × ( 2 / 12 ) 2 × 121.9 = 0.1025 slug / sec . ∴m 9.31
V22 Energy 0 → 2: 1000 × 303 = + 1000 T2 . V2 = 3 kRT2 2 ∴ p2l = 1.627 × 20 = 32.5 kPa.
0
1
2
1.4
5.39 107.9 .4 ∴ p2 = 200 = 0.1740 kg/m 3 . = 5.390 kPa. ρ 2 = .287 × 107.9 303 2 V V12 Energy 0 → 1: 1000 × 303 = 1 + 1000 . ∴V1 = 318. 4 m / s, T1 = 252.3 K. 2 1.4 × 287 252.3 p1 = 200 303
1. 4 .4
= 105.4 kPa. ρ 1 =
Continuity: 1.455π ×.05 2 × 318.4 =.174π 9.32
Vt2 = kRT t . 1000 × 293 =
244 ∴ pt = 500 293
105.4 = 1.455 kg / m 3 . .287 × 252.3
d 22 × 3 1.4 × 287 × 107.9 . ∴ d 2 = 0.2065 m. 4
1.4 × 287 Tt + 1000 Tt . ∴ Tt = 244 .0 K. V t = 313.1 m / s. 2
1. 4 .4
= 263.5 kPa abs.
∴ ρt =
208
263.5 = 3.763 kg / m 3 . .287 × 244
Ve2 1.4 pe pe 263 500 2 2 + . 3.763 × π × .025 × 313.1 = ρe π × .075 Ve . 1.4 = 2 .4 ρ e ρe 3.7631.4
1000 × 293 =
Ve2 + 1.014 × 106 Ve−.4 . Trial-and-error: Ve = 22.2 m/s, 659 m/s. 2 ∴ ρ e = 5.897 , 0.1987 kg / m 3 . ∴ p e = 494 .2 kPa, 4.29 kPa abs. ∴ 293 000=
9.33
Ae
9.34
M t = 1. ∴ pt =.5283 × 120 = 63.4 psia, Tt =.8333 × 520 = 433.3 o R.
*
A
pe = 0.997 from Table D.1. ∴ pe = 500 ×.997 = 498.5 kPa. p0 p and e = 0.00855 from Table D.1. ∴ pe = 4.28 kPa abs. p0
= 9. ∴
∴ ρ t =.01228
slug . ft 3
& = 1 =.01228 m
π d t2 4
1. 4 × 1716 × 433.3 .
∴ d t = 0. 319 ft.
p 15 = =.125. ∴ M e = 2.014 , Te =.552 × 520 = 287 o R, Ve = 2.014 1.4 × 1716 × 287 p 0 120 = 684 fps. 2 2 π de A π ×.319 = 1.708. ∴ = 1.708 . ∴d e = 0.417 ft. * A 4 4 9.35
M e = 4. For
A A*
= 10.72, pe = .006586 × 2000 = 13.17 kPa, Te = .2381 × 293 = 69.76 K.
A = 10.72 , M e =.0584. * A
∴ p e =.9976 p 0 =.9976 × 2000 = 1995.2 kPa abs.
150
9.36
Let M t = 1. Neglect viscous effects. M1 =
= 0.430. 1.4 × 287 × 303 A A1 π × .052 π dt2 ∴ = 1.5007. ∴ At = = = . ∴ dt = 0.0816 m or 8.16 cm. 1.5007 1.5007 4 A*
9.37
p e = .5283 × 400 = 211.3 kPa abs. Tes =.8333 × 303 = 252.5. 303 − Te .96 = . ∴Te = 254.5 K. ∴Ve = 1.4 × 287 × 254.5 = 319.8 m/s. 303 − 252.5 211.3 ∴ m& = π × .052 × 319.8 = 7.27 kg/s. .287 × 254.5
209
9.38
Isentropic flow. Since k = 1.4 for nitrogen, the isentropic table may be used. A M = 3: = 4.235. * A
t
i M>1
Ve ~= 0 M<1
e
Mt = 1
100 = .9027 kg/m 3 . .297 × 373 & m 10 .00938 ∴ Ai = = = 0.00938 m 2 . ∴ A t = = 0.00221 m 2 . ρ iV i .9027 × 1181 4 .235 At M = 3 , T =. 3571 T0 , p =.02722 p 0 . 373 100 ∴ T0 = Te = = 1044 K or 772 o C . p 0 = = p e = 3670 kPa. .3571 .02722 Vi = 3 1.4 × 297 × 373 = 1181 m/s.
9.39
ρi =
Isentropic flow. Since k = 1.4 for nitrogen, the isentropic table may be used. A M = 3: = 4.235. * A
t
i M>1
Ve ~= 0 M<1
e
Mt = 1
slug 15 × 144 =.001843 . 1776 × 660 ft 3 .2 .0283 Ai = =.0283 ft 2 . ∴ At = = 0.00667 ft 2 . .001843 × 3840 4.235 At M = 3 , T =. 3571 T0 , p =.02722 p 0 . 660 15 ∴ T0 = Te = = 1848 o R or 1388 o F. p0 = p e = = 551 psia. .3571 .02722 Vi = 3 1.4 × 1776 × 660 = 3840 fps.
9.40
9.41
9.42
ρi =
101 =.4198 kg / m 3 . .189 × 1273 80 000 × 9.81 & = ρ AV 2 . Momentum: F = mV = .4198π × .252 V 2 . 6 ∴V = 1260 m/s.
Assume p e = 101 kPa. Then ρ e =
101 =.403 kg / m 3 . (Assume gases are air. ) .287 × 873 100 × 9.81 = .403 × 200 × 10−4 V 2 . ∴V = 349 m/s. & = ρAV 2 . ρ = F = mV
M t = 1.
Ae *
= 4 ; ∴ M e = 2.94 , p e =.02980 p 0 .
A Te = .3665 T0 = .3665 × 300 = 109.95 K,
pe = 100 = .0298 p0 . ∴ p0 = 3356 kPa abs.
210
FB p0A0
Ve
∴Ve = 2.94 1. 4 × 287 × 109.95 = 618 m / s. −100 ∴ FB = π ×.05 2 × 618 2 + 3 356 000π ×.2 2 = 412 000 N. .287 × 109.95
9.43
Assume an isentropic flow; Eq. 9.3.13 provides 1
103 . p k − 1 2 k −1 = 1+ M . p 2 Using k = 1.4 this gives M 2 = 0.0424 or M = 0.206. For standard conditions V = M c = 0.206 14 . × 287 × 288 = 70 m / s. 9.44
a) 0.9850 × 1000 = ρ2V2 . 80 000 − p2 = 0.985 ×1000(V2 − 1000)
V22 − 1000 2 1.4 p 2 80 + − 287 × 283 = 0. ρ 1 = =.9850 kg / m 3 . 2 .4 ρ 2 .287 × 283
V22 10002 1.4 V2 − + ( −985V2 + 1 065 000) − 284 300 = 0 2 2 .4 985 ∴ 3V22 − 3784V2 + 784 300 = 0. ∴V2 = 261 m / s. ρ 2 = 3.774 kg / m 3 . Substitute in and find p 2 = 808 kPa. 1000 808 M1 = = 2.966. T2 = = 746 K or 473 o C . .287 × 3.774 1.4 × 287 × 283 261 M2 = = 0.477 . 1. 4 × 287 × 746 b) M 1 = 1000 / 1.4 × 287 × 283 = 2.97. ∴ M 2 = 0.477. p 2 = 10.12 p 1 = 809.6 kPa. 809.6 T2 = 2.644 × 283 = 748 K or 475 o C . ∴ ρ 2 = = 3.771 kg / m 3 . .287 × 748 9.45
slug 12 × 144 =.002014 . .002014 × 3000 = ρ 2V2 . 1716 × 500 ft 3 Momentum: 12 ×144 − p2 = .002014 × 3000(V2 − 3000).
a) ρ 1 =
V22 − 3000 2 1.4 p2 + − 1716 ×500 = 0. 2 .4 ρ2 V 2 2 6 V2 − 3000 + 7 2 ( 19 ,854 − 6.042V 2 ) − 6.006 × 10 = 0. 6.042 2
6
∴ 6V2 − 23 ,000V2 + 15 × 10 = 0. ∴V2 = 833 fps. ρ 2 = 0.00725
slug ft 3
p2 = 102.9 psia.
M1 =
3000 102.9 × 144 = 2.74. T2 = = 1191 o R or 731 o F. 1716×.00725 1.4 × 1716 × 500
211
.
833 = 0. 492. 1.4 × 1716 × 1191 b) M1 = 3000/ 1.4 ×1716 × 500 = 2.74. ∴ M 2 = 0.493. p2 = 8.592 ×12 = 103.1 psia. 103.1 × 144 T2 = 2.386 × 500 = 1193 o R or 733 o F. ∴ ρ 2 = = 0.00725 slug / ft 3 . 1716 × 1193 M2 =
9.46
ρ 2 p2 T1 2 kM 21 − k + 1 ( k + 1) 2 M 21 ( k + 1)M 21 = = = . ρ 1 p 1 T2 k +1 2 + ( k − 1) M 21 1 + k − 1 M 2 4 kM 2 − 2k + 2 1 1 2 k + 1 p2 k − 1 M 21 = + . (This is Eq. 9.4.12). Substitute into above: 2k p 1 2k
[
p2 ( k + 1) ( k + 1) + ( k − 1) p1 ρ2 = = ρ1 p2 4 k + ( k − 1)( k + 1) + ( k − 1) p1 k − 1 + ( k + 1) p 2 / p 1 = . k + 1 + ( k − 1) p 2 / p 1 p For a strong schock in which 2 >> 1, p1
9.47
]
p2 ( k + 1) ( k + 1) + k − 1 p1 . p 2 2 ( k + 1) + ( k − 1)( k + 1) p1
ρ2 k + 1 = . ρ1 k − 1
Assume standard conditions: T1 = 15 o C, ρ 1 = 101 kPa. ∴V 1 = 2 1.4 × 287 × 288 = 680 m / s. M1 = 2. ∴ M 2 = .5774. T2 = 1.688 × 288 = 486 K. p2 = 4.5 ×101 = 454 kPa.
stationary shock V2
∴V2 = .5774 1.4 × 287 × 486 = 255 m/s. ∴Vinduced = V1 − V2 = 680 − 255 = 425 m/s.
The high pressure and high induced velocity cause extreme damage. 9.48
If M 2 =.5 , then M 1 = 2.645.
∴V1 = 2.645 1.4 × 287 × 293 = 908 m /s. 1600 p 2 = 8.00 × 200 = 1600 kPa abs. ρ 2 = = 8.33 kg / m 3 . .287 × ( 2.285 × 293)
9.49
If M 2 =.5 , then M 1 = 2.645.
∴V1 = 2.645 1.4 × 1716 × 520 = 1118 fps .
p2 = 8.00 × 30 = 240 psia. ρ 2 =
240 × 144 = 0.01695 slug / ft 3 . 1716 × ( 2.285 × 520)
212
V1
9.50
p 1 =.2615 × 101 = 26.4 kPa. T1 = 223.3 K. M 1 = 1000 / 1. 4 × 287 × 223.3 = 3.34. ∴ M 2 =. 4578. p 2 = 12.85 × 26.4 = 339 kPa. T2 = 3.101 × 223.3 = 692.5 K. For isentropic flow from ‚ → €: For M = .458, p = .866 p 0 and T =.960 T0 .
9.51
9.52
∴ p 0 = 339/.866 = 391 kPa abs. T0 = 692.5/.960 = 721 K or 448 o C .
After the shock M 2 =.4752 , p 2 = 10.33 × 800 = 8264 kPa abs. For isentropic flow from ‚ → €: For M = .475, p = .857 p 0 . ∴ p 0 = 8264 /.857 = 9640 kPa abs. A = 4. ∴ M e =.147. p e =.985 p 0 ∴ p 0 = 101/.985 = 102.5 kPa abs. * A M t = 1. p t =.5283 × 102.5 = 54 .15 kPa. Tt =.8333 × 298 = 248. 3 K. 54.15 ∴ ρt = =.7599 kg / m 3 . Vt = 1.4 × 287 × 248.3 = 315.9 m / s. .287 × 248.3 & ∴ m =.7599 × π ×.025 2 × 315.9 = 0.471 kg / s. If throat area is reduced, M t
& =.7599 × π × .02 2 × 315.9 = 0.302 kg / s. remains at 1, ρ t =.7599 kg / m 3 and m 9.53
A = 4. ∴ M 1 = 2.94 , and p 2 / p 1 = 9.918. * A ∴ p 1 = 101 / 9.918 = 10.18 kPa. At M 1 = 2.94 , p / p 0 =.0298. ∴ p 0 = 10.18 /.0298 = 342 kPa abs. M t = 1, p t =.5283 × 342 = 181 kPa abs. Tt =.8333 × 293 = 244 .1 K. p e = 101 kPa = p 2 .
∴Vt = 1.4 × 287 × 244.1 = 313 m / s. M 1 = 2.94 , p 1 = 10.18 kPa abs. T1 =.3665 × 293 = 107.4 K. ∴V1 = 2.94 1.4 × 287 × 107 .4 = 611 m / s. M 2 =. 4788, p e = 101 kPa . Te = T2 = 2.609 × 107 .4 = 280.2 K. ∴V2 =.4788 1.4 × 287 × 280.2 = 161 m / s. 9.54
A = 4. ∴ M 1 = 2.94 , and p 2 / p 1 = 9.918. * A ∴ p 1 = 14 .7 / 9.918 = 1.482 psia. At M 1 = 2.94 , p / p 0 =.0298. ∴ p 0 = 1.482/.0298 = 49.7 psia . p e = 14.7 psia = p2 .
M t = 1, p t =.5283 × 49.7 = 26. 3 psia . Tt =.8333 × 520 = 433. 3 o R. ∴Vt = 1.4 × 1716 × 433.3 = 1020 fps.
M 1 = 2.94 , p 1 = 1.482 psia. T1 =.3665 × 520 = 190.6 o R. ∴V1 = 2.94 1.4 × 1716 × 190.6 = 1989 fps.
213
M 2 =. 4788, p e = 14.7 psia . Te = T2 = 2.609 × 190.6 = 497.3 o R. ∴V2 =.4788 1.4 × 1716 × 497.3 = 523 fps.
9.55
M t = 1. p t =.5283 × 500 = 264 kPa. Tt =.8333 × 298 = 248.3 K. A1 8 2 = = 2.56. ∴ M 1 = 2. 47 , p 1 =.0613 × 500 = 30.65. A* 5 2 T1 = .451 × 298 = 134.4 K. ∴V1 = 2.47 1.4 × 287 × 134 .4 = 574 m / s. M 2 =.516 , p 2 = 6.95 × 30.65 = 213 kPa. T2 = 2.108 × 134.4 = 283.3 K. A After the shock it’s isentropic flow. At M =.516 , * = 1.314 . A 2 π ×.04 p 02 =.511 × 500 = 255.5 kPa. A * = =.003825 m 2 . 1.314 Ae π ×.05 2 = = 2.05. ∴ p e =.940 × 255.5 = 240 kPa abs. = p r . M e =.298. A* .003825 . 2857 213 Te = 283.3 = 273.8 K. ∴Ve =.298 1.4 × 287 × 273.8 = 99 m / s. 240 . 3 /1 . 3
9.56
9.57
655 pt =.546 p0 =.546 × 1200 = 655 kPa. Tt = 673 = 585 K. 1200 655 ∴ ρt = = 2. 42 kg / m 3 . Vt = 1. 3 × 462 × 585 = 593 m /s. ( M t = 1. ) .462 × 585 π × d t2 & = ρ t At Vt . ∴ 4 = 2.42 × m × 593. ∴ dt = 0.060 m or 6 cm. 4 . 3 / 1. 3 101 101 Te = 673 = 380.2 K ∴ ρ e = =.575 kg / m 3 . 1200 .462 × 380.2 2 Ve + 1872 × 380.2 = 1872 × 673. (Energy from € → e .) (c p = 1872 J / kg ⋅ K) 2 πd 2e ∴Ve = 1050 m / s. ∴ 4 =.575 × 1050. ∴ d e = 0.092 m or 9.2 cm. 4
M e = 1. p e =.546 p 0 =.546 × 1000 = 546 kPa. .3
546 1. 3 Te = 623 = 542 K. 1000
kg 546 = 2.18 . .462 × 542 m3 πd 2 15 = 2.18 e × 571. ∴ d e = 0.124 m or 12.4 cm. 4
∴ρ e =
Ve = 1.3 × 462 × 542 = 571 m / s.
214
.3
9.58
81.9 1. 3 o M e = 1. p e =.546 × 150 = 81.9 psia. Te = 1160 = 1009 R. 150
slug 81.9 × 144 =.00423 . Ve = 1.3 × 2760 × 1009 = 1903 fps. 2762 × 1009 ft 3 πd e2 .25 =.00423 × 1903. ∴ d e = 0.199 ft. or 2.39". 4
∴ρe =
. 3 / 1. 3
9.59
655 M t = 1. p t =.546 × 1200 = 655 kPa. Tt = 673 = 585 K. 1200 655 ∴Vt = 1.3 × 462 × 585 = 593 m / s. ρ t = = 2.42 kg / m 3 . .462 × 585 & = 2.42 × π ×.0075 2 × 593 = 0.254 kg / s per nozzle ∴m 120 Te = 673 1200
9.60
. 3 /1 . 3
= 396 K.
800 = 2.29. 1. 4 × 287 × 303 From Fig. 9.15, β = 46 o , 79 o . M1 =
V2 V1
a) β = 46o. ∴ M1n = 2.29sin46o = 1.65.
∴ M 2n = .654 = M 2 sin(46o − 20o ). ∴ M 2 = 1. 49.
p 2 = 3.01 × 40 = 120.4 kPa abs. T2 = 1.423 × 303 = 431 K. V2 = 1.4 × 287 × 431 × 1.49 = 620 m / s. b) β = 79 . ∴ M 1n = 2.29 sin 79 o = 2.25. ∴ M 2n =.541 = M 2 sin( 79 o − 20 o ). ∴ M 2 = 0.631. o
p 2 = 5.74 × 40 = 230 kPa abs. T2 = 1.90 × 303 = 576 K. V2 = 1.4 × 287 × 576 × .631 = 303 m / s. a detached shock
c) V1
= 35o
215
= 20o
9.61
β 1 = 40 o . ∴θ = 10 o . M 1n = 2 sin 40 o = 1.29. ∴ M 2n =.791 = M 2 sin(40 o − 10 o ). ∴ M 2 = 1.58. If θ 2 = 10 o then, with M = 1.58 , β 2 = 51o . 1.58 sin 51o = M 2n . ∴ M 2n = 1.23. ∴ M 3n =.824 = M 3 sin( 51o − 10 o ). ∴ M 3 = 1.26. β = β 2 − 10 = 51 − 10 = 41 o .
9.62
M 1n = 3.5 sin 35 o = 2.01. ∴ M 2n =.576. T2 = 1.696 × 303 = 514 K. .576 M2 = = 2.26. θ 1 = 20 o = θ 2 . ∴ β 2 = 47 o . o o sin( 35 − 20 ) M 2n = 2.26 sin 47 o = 1.65. ∴ M 3n =.654 = M 3 sin( 47 o − 20 o ). ∴ M 3 = 1.44. T3 = 1.423 × 514 = 731 K. V3 = M 3 kRT3 = 1.44 1.4 × 287 × 731 = 780 m /s.
9.63
M 1n = 3.5 sin 35 o = 2.01. ∴ M 2n =.576. T2 = 1.696 × 490 = 831o R. .576 M2 = = 2.26. θ 1 = 20 o = θ 2 . ∴ β 2 = 47 o . o o sin( 35 − 20 ) M 2n = 2.26 sin 47 o = 1.65. ∴ M 3n =.654 = M 3 sin( 47 o − 20 o ). ∴ M 3 = 1. 44. T3 = 1.423 × 831 = 1180 o R. V3 = M 3 kRT3 = 1.44 1.4 × 1716 × 1180 = 2420 fps .
9.64
M 1 = 3 , θ = 10 o . ∴ β 1 = 28 o . M 1n = 3 sin 28 o = 1.41. ∴ M 2n =.736. ∴ p 2 = 2.153 × 40 = 86.1 kPa. .736 M2 = = 2. 38. ∴ p 3 = 6.442 × 86.1 = 555 kPa . sin( 28 o − 10 o ) ( p 3 ) normal = 10.33 × 40 = 413 kPa.
9.65
At M 1 = 3 , θ 1 = 49.8 o , µ 1 = 19.47 o . (See Fig. 9.18.) θ 1 + θ 2 = 49.8 + 25 = 74 .8 o . ∴ M 2 = 4.78. p p 1 From isentropic flow table: p2 = p 1 0 2 = 20 × ×.002452 = 1.80 kPa. p1 p0 .02722 T T 1 T2 = T1 0 2 = 253 × × .1795 = 127K or −146o C. µ 2 = 12.08o. T1 T0 .3571 V2 = 4 .78 1.4 × 287 × 127 = 1080 m / s. α = 90 + 25 − 70.53 − 12.08 = 32.4 o .
9.66
θ 1 = 26.4 o . For M = 4 , θ = 65.8 o . (See Fig. 9.18.) ∴θ = 65.8 − 26.4 = 39.4 o . T T 1 T2 = T1 0 2 = 273 ×.2381 = 117 K. ∴V2 = 4 1.4 × 287 × 117 = 867 m / s. T1 T0 .5556 T2 = −156 o C.
216
9.67
θ = 26.4 o . For M = 4 , θ = 65.8 o . ∴θ = 65.8 − 26.4 = 39.4 o . T T 1 T2 = T1 0 2 = 490 × .2381 = 210o R or −250o F. T1 T0 .5556 V2 = 4 1.4 × 1716 × 210 = 2840 fps.
9.68
1 ×.04165 .0585 = 14.24 kPa. o = 2.5 sin 27 = 1.13. ∴ M 2n =.889. ∴ p 2l = 1.32 × 20 = 26.4 kPa.
a) θ 1 = 39.1 o . θ 2 = 39.1 + 5 = 44.1 o . ∴ M u = 2.72. p 2 u = 20 For θ = 5 o and M = 2.5 , β = 27 o . M 1n Ml = M2 =
.889 = 2. 37. sin( 27 o − 5 o )
b) M = 2.72 , θ = 5 o . ∴ β = 25 o . M 1n = 2.72 sin 25 o = 1.15 , M 2n =.875. .875 M 2u = = 2.56. sin( 25 o − 5 o ) For M = 2. 37 , θ = 36.0 o . For θ = 36 + 5 = 41 o , M 2 l = 2.58. c) Force on plate = ( 26.4 − 14.24 ) × 1000 × A = F . F cos 5 o = 1 2 ρ 1V1 A 2 F sin 5 o d) C D = = 1 2 ρ 1V1 A 2 CL =
9.69
12.2×.996 × 1000A
= 0.139. 1 2 × 1.4 × 2.5 × 20 000A 2 12.2 × 1000 A×.0872 = 0.0122. 1 2 × 1.4 × 2.5 × 20 000A 2
F Airfoil surface Drag
β = 19 o . M 1n = 4 sin 19 o = 1.30. ∴ p 2 = 1.805 × 20 = 36.1 kPa. M 2n =.786. .786 M2 = = 3.25. θ 1 = 54.36. θ 2 = 59.36. ∴ M 3 = 3.55. sin( 19 o − 5 o ) shock p p 1 p3 = p 2 0 3 = 36.1 × ×.0122 = 23.4 kPa. p3 M p 2 M2 p2 p0 .0188 M 3 1
36.1 A − 23.4 A sin 5 o 6.35×.0872 2 2 CD = = = 0.0025. 1 1 2 2 ρV1 A × 1.4 × 4 × 20 2 2
217
Lift
9.70
If θ = 5o with M 1 = 4, then Fig. 9.15 → β = 18o .
M1
o
M1n = 4sin18 = 1.24. ∴ M 2n = .818. ∴ p2l = 1.627 × 20 = 32.5 kPa. .818 ∴ M2 l = = 3.64. sin( 18 o − 5 o )
shock
M2u M2 l
p0 p2 .002177 = 20 p p0 .006586 = 6.61 kPa. o o Lift 32.5 A cos5 − 20 × A / 2 − 6.61 × A / 2 × cos10 CL = = = 0.0854. 1 1 2 2 ρV A × 14 . × 4 × 20 A 2 1 2 Drag 32.5 A sin 5 o − 6.61 × A / 2 × sin 10 o CD = = = 0.010. 1 1 2 2 ρV1 A × 1.4 × 4 × 20 A 2 2
At M 1 = 4 , θ 1 = 65.8 o . At 75.8 o M 2u = 4.88. p 2 u = p 1
218
shock