Chapter09

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chapter09 as PDF for free.

More details

  • Words: 7,699
  • Pages: 19
CHAPTER 9

Compressible Flow 9.1

c p = 0.24

Btu

778

o

lbm- R

ft-lb lbm ft-lb 32.2 = 6012 Btu slug slug-o R

cv = c p − R = 6012 − 1716 = 4296 = 0.171

9.2

c p = cv + R.

ft - lb ft - lb 1 Btu 1 slug = 4296 o slug - R slug - o R 778 ft - lb 32.2 lbm

Btu lbm- o R c p = kcv .

∴cp =

 1 + R or c p  1 −  = R.  k k

cp

∴ c p = Rk / ( k − 1). 9.3

If ∆s = 0, Eq. 9.1.9 can be written as cp

p  T  or ln 2  = ln 2   T1   p1  It follows that, using c p = cv + R and c p / cv = k , T p c p ln 2 = R ln 2 T1 p1

T2  p2  =  T1  p1  Using Eq. 9.1.7,

R /c p

p  = 2  p1  1−

1−

R

1 k

.

1

p  T2 p 2 ρ 1  p 2  k ρ = =  or 1 =  2  T1 ρ 2 p 1  p 1  ρ2  p1  Finally, this can be written as

− 1/ k

.

k

p2  ρ2  =  . p1  ρ1 

9.4

Substitute Eq. 4.5.18 into Eq. 4.5.17 and neglect potential energy change: & −W & S V22 − V12 p 2 p 1 Q = + − +~ u2 − ~ u1 . & m 2 ρ 2 ρ1

200

Enthalpy is defined in Thermodynamics as h = ~ u + pv = u~ + p / ρ. Therefore, & −W & S V22 − V12 Q = + h2 − h 1 . & m 2 Assume the fluid is an ideal gas with constant specific heat so that ∆h = c p ∆T. Then & −W & Q V 2 − V12 S = 2 + c p (T2 − T1 ). & m 2 Next, let c p = cv + R and k = c p / cv so that c p / R = k ( k − 1). Then, with the ideal gas

law T = p / Rρ , the first law takes the form & −W & p  Q V22 − V12 k  p2 S = + − 1 .  & m 2 k − 1  ρ2 ρ 1  9.5

Differentiate pρ − k = c using d( xy) = ydx + xdy: ρ − k dp − pkρ − k − 1 dρ = 0.

Rewrite: dp p =k . dρ ρ 9.6

The speed of sound is given by c = dp / dρ . For an isothermal process TR = p / ρ = K, where K is a constant. This can be differentiated: dp = Kdρ = RTdρ. Hence, the speed of sound is c = RT .

9.7

& S = 0 is: Eq. 9.1.4 with Q& = W

V2 + c p T = cons't. 2 V2 (V + ∆V ) 2 V 2 + 2V∆V + ( ∆V ) 2 + c pT = + c p (T + ∆T ) = + c p T + c p ∆T . 2 2 2

2V ∆V ( ∆V )2 + + c p ∆T . ∴ −V ∆V = c p ∆T = ∆h. 2 2 We neglected (∆V)2 . The velocity of a small wave is V = c. ∴0 =

9.8

For water dp ρ = 2110 × 10 6 Pa dρ Since ρ = 1000 kg / m 3 , we see that 201

∴ ∆h = − c∆V .

c = dp / dρ = 2110 × 10 6 / 1000 = 1453 m / s

9.9

∆p dp 2110 × 10 6 For water c = ≅ = = 1453 m / s. ∆ρ dρ 1000 L = velocity × time = 1453 × 0.6 = 872 m.

9.10

Since c = 1450 m/s for the small wave, the time increment is d 10 ∆t = = = 0.0069 seconds c 1450

9.11

a) M =

V 200 = = 0.588. c 1. 4 × 287 × 288 b) M = 600/ 1.4 × 1716× 466 = 0.567. c) M = 200 / 1.4 × 287 × 223 = 0.668. d) M = 600/ 1.4 ×1716 × 392 = 0.618. e) M = 200 / 1.4 × 287 × 238 = 0.647.

9.12

c = kRT = 1. 4 × 287 × 263 = 256 m / s.

∴d = ct = 256 × 1.21 = 309 m.

9.13

a) Assume T = 20°C: c = kRT = 1. 4 × 287 × 293 = 343 m /s. d = c ∆t = 343 × 2 = 686 m b) Assume T = 70°F: c = kRT = 1. 4 × 1716 × 530 = 1130 fps. d = c∆t = 1130 × 2 = 2260 ft. For every second that passes, the lightning flashed about 1000 ft away. Count 5 seconds and it is approximately one mile away.

9.14

c = 1.4 × 287 × 263 = 256 m / s.

sin α =

1 c = . M V

1000 sin α = 0.256. ∴ tan α = 0.2648 = . ∴ L = 3776 m L 3776 ∆t = = 3.776 s. 1000

202

V 1000 m

L

9.15

Use Eq. 9.2.13: c a) = sin α or V = V

1.4 × 287 × 288 = 908 m / s sin 22 o

c = sin α or V = V

1.4 × 1716 × 519 = 2980 fps sin 22 o

b)

9.16

∆p ∆p 0. 3 =− =− = −0.113 fps. ρc ρ kRT .00237 1.4 × 1716 × 519 V2 (V = ∆V) 2 Energy Eq: + c pT = + c p ( T + ∆T ). ∴ 0 = V∆V + c p ∆T . 2 2 ∴ ∆T = −c∆V / c p = − 1. 4 × 1716 × 519 ( −.113) /( 0.24 × 778 × 32.2) = 0.021o F. Btu ft - lb lbm ft - lb Note: c p =.24 × 778 × 32.2 =.24 × 778 × 32.2 . o lbm - F Btu slug slug - o F Eq. 9.2.4: ∆V = −

Then 9.17

ft 2 / sec 2 ft 2 − lb - sec 2 − o F o = = F. ft - lb / (slug - o F) sec 2 − ft - lb - ft

(units can be a pain!)

a) ρAV = ρAV + ρAdV + AVdρ + AdρdV + ρVdA + ρdAdV + VdρdA + dρdAdV Keep only the first order terms (the higher order terms—those with more than one differential quantity—will be negligible): 0 = ρAdV + AVdρ + ρVdA Divide by ρAV: dV dρ dA + + =0 V ρ A b) Expand the r.h.s. of Eq. 9.3.5 (keep only first order terms): V2 k p V 2 + 2VdV k p + dp + = + . 2 k−1ρ 2 k − 1 ρ + dρ Hence, 2VdV k  p + dp p  0= + −   2 k − 1  ρ + dρ ρ 

= VdV +

k  ρp + ρdp − pρ − pdρ    k −1 ρ 2 + ρdρ 

= VdV +

k  ρdp − pdρ    k −1 ρ2 

where we neglected ρdρ compared to ρ 2 . For an isentropic process Eq. 9.2.8 gives ρdp = kpdρ , so the above becomes

203

k kpdρ − pdρ k−1 ρ2 p k ( k − 1) pdρ = VdV + = VdV + k 2 dρ 2 k−1 ρ ρ But dρ / ρ = −dV / V − dA / A so that the above equation is p dV dA 0 = VdV + k  − −  ρ V A 0 = VdV +

which can be written as  dV dA  V 2 ρ = − 1 . A  kp  V Since c 2 = kp / ρ , and M = V/c, this is put in the form dA  V 2  dV =  2 − 1 A c  V

dA dV = M2 − 1 A V

(

or

)

c) Substituting in V = M c, c 2 = kRT , and R / c p = ( k − 1) / k , we find

T0 V2 M2 c 2 M 2 kRT = +1= +1= +1 T 2c p T 2c p T 2c p T M 2 k( k − 1) k−1 2 + 1= 1+ M . 2k 2 k /( 1 − k ) k − 1 2  p0  1 + M    k k 2 d) m & =p AM = AM −1 / 2 TR R k − 1 2  T0  1 + M    2 =

k+1

= p0

k k − 1 2  2( 1− k )  M A 1 + M    RT0 2

At the critical area A * , M * = 1. Hence, k+1

k  k + 1  2( 1− k ) & = p0 m A*  .  RT0  2  e) Since m & is constant throughout the nozzle, we can equate Eq. 9.3.17 to Eq. 9.3.18: k +1

p0

k+1

k k − 1 2  2( 1− k ) k   k + 1 2( 1− k ) M A 1 + M  = p0 A*      2  RT0 2 RT0

or k+1

A 1  2 + ( k − 1) M 2  2( k − 1) =  A* M  k +1 

204

9.18

a) p s = patm + 10 = 69.9 + 10 = 79.9 kPa abs. p1 = 69.9 kPa abs.

V 1

p p  V2 p From 1 → s : 1 + 1 = s . ρ s = ρ 1  s  2 ρ1 ρs  p1 

1/k

 79.9  =. 906   69.9 

s

V s=0

1/1. 4

= 0.997 kg / m 3 .

V12 69 900 79 900 ∴ + = . ∴V1 = 77.3 m / s. 2 .906 .997 b) p s = 26.4 + 10 = 36.4 kPa abs. p 1 = 26.4 kPa abs. p p  V2 p From 1 → s : 1 + 1 = s . ρ s = ρ 1  s  2 ρ1 ρ s  p1 

V12 26 400 36 400 + = . 2 .412 .518 9.19

V2 p p a) 1 + 1 = s . 2 ρ1 ρ s

1 /k

 36. 4  = 0. 412   26.4 

1 /1 . 4

= 0. 518 kg / m 3 .

∴V1 = 111 m /s. 1/ k

p  ρ s = ρ1  s   p1 

1/1.4

 105  = 1.22    101 

= 1.254 kg/m3 .

V12 1.4101 000 105 0001.4 + = . ∴V1 = 81.3 m/s. 2 .4 1.22 1.254 .4 V 2 4000 81.3-81 b) 1 = . ∴V1 = 81.0 m/s. % error = × 100 = 0.42%. 2 1.22 81.3 9.20

Is p r < . 5283p 0 ?

0.5283 × 200 = 105.7 kPa.

a) p r < .5283 p 0 .

∴ choked flow. ∴ M e = 1. ∴V e2 = kRTe . p e = 105.7 kPa. 1.4 × 287 Te 1000 × 298 = + 1000 Te . ∴ Te = 248.1 K, Ve = 315. 8 m / s. 2 105.7 & = 1.484 × π ×.01 2 × 315.8 = 0.1473 kg / s. ρe = = 1.484 kg / m 3 . ∴ m .287 × 248.1 1. 4 Ve2 1.4 130 000 130  ρ e  b) p r > .5283 p 0 . ∴ M e < 1. 1000 × 298 = + . =  2 .4 ρe 200  2.338 

200 = 2. 338. ∴ ρ e = 1.7187 kg / m 3 . .287 × 298 & = 1.7187 × π ×.01 2 × 257.9 = 0.1393 kg / s. ∴m ρ0 =

9.21

Is p r < . 5283p 0 ?

∴V e = 257. 9 m / s.

0.5283 × 30 = 15.85 psia.

a) p r < 15.85. ∴ choked flow and M e = 1 , p e = 15.85 psia. V e2 = kRT. 1.4 × 1716 × Te 0.24 × 530 = + 0.24 Te . ∴ Te = 441.7 o R, Ve = 1030 fps. 2( 778 × 32.2)

205

ρe =

15.85 ×144 = 0.003011 slug/ft 3 . 1716 × 441.7 2

 .5  ∴ m& = .003011 × π   × 1030 = 0.01692 slug/sec.  12  b) pr > 15.85. ∴ M e < 1, and pe = 20 psia. 30 ×144 ρ0 = = .00475 slug/ft 3 . 1716 × 530 1/1.4

 20  ∴ ρ e = .00475    30 

= .003556 slug/ft 3 .

Ve2 1.4 20 × 144 + . 2 .4 .003556 2 .5   & =.003556 × π   × 838.9 = 0.01627 slug / sec. ∴Ve = 838. 9 fps. ∴ m  12  0.24 × 530(778 × 32.2) =

ft-lb ft-lb (Note: c p =0.24 Btu/lbm-oR=0.24×778 =0.24× 778×32.2 .) o lbm- R slug-oR

9.22 a) p r < .5283 p 0 . ∴ M e = 1. ∴ p e =.5283 × 200 = 105.7 kPa. Te =.8333 × 298 = 248.3 K. 105.7 ρe = = 1.483 kg / m 3 . V e = 1. 4 × 287 × 248. 3 = 315. 9 m / s. .287 × 248.3 & ∴ m = 1.483 × π ×.01 2 × 315.9 = 0.1472 kg / s. b) p r > .5283 p 0 . ∴ p e = 130 kPa,

pe = 0.65. ∴ M e =.81 , Te =.884T0 p0

130 = 1.719 kg / m 3 , Ve =. 81 1. 4 × 287 × 263. 4 = 263.5 m / s. .287 × 263. 4 & = 1.719 × π ×.01 2 × 263. 5 = 0.1423 kg / s. ∴m ρe =

9.23

a) p r < .5283 p 0 . ∴ M e = 1. ∴ p e =.5283 × 30 = 15.85 psia. Te =. 8333 × 530 = 441.6 o R.

slug 15.85 × 144 =.003012 . Ve = 1.4 × 1716 × 441.6 = 1030 fps. 1716 × 441.6 ft 3 2 .5 & =.003012 × π   × 1030 = 0.01692 slug / sec. m  12  p 20 b) p r > .5283 p 0 . ∴ p e = 20 psia. e = =.6667 . ∴ M e =.785. Te = 0.890T0 . p 0 30 20 × 144 ∴ ρ0 = =.00356. Ve =.785 1. 4 × 1716 × 472 = 836 fps. 1716 × 472 2 .5   & =.00356π   × 836 = 0.01664 slug /sec. ∴m  12  ∴ρe =

206

9.24 p e =.5283 × 400 = 211.3 kPa abs . Te =.8333 × 303 = 252.5 K. 211.3 & = Ve = 1.4 × 287 × 252.5 = 318.5 m / s. ∴ m π ×.05 2 × 318. 5 = 7 .29 kg /s. .287 × 252. 5 9.25 p e =.5283 p 0 = 101 kPa. ∴ p 0 = 191.2 kPa abs. Te =. 8333 × 283 = 235.8 K. 101 & = Ve = 1.4 × 287 × 235. 8 = 307. 8 m / s. ∴ m π ×.03 2 × 307 .8 = 1.30 kg /s. .287 × 235.8 p 0 = 2 × 191.2 = 382.4 kPa abs. p e =.5283 p 0 = 202.0 kPa abs. Te = 235. 8 K. 202 & = Ve = 307.8 m / s since M e = 1. ∴ m π ×.03 2 × 307.8 = 2.60 kg / s. .287 × 235.8 9.26 p e =.5283 p 0 = 14.7 psia .

∴ p 0 = 27. 83 psia . Te =.8333 × 500 = 416. 6o R.

Ve = 1.4 × 1716 × 416.6 =1000 fps. ∴ ρ e = 0.3203 kg/m3 and pe = 199.4 kPa abs. p0 = 2×27.83. pe = 0.5283 p0 = 29.4 psia, & = 0.202 slug / sec. ∴m

9.27

Te = 416.6o R,

Ve = 1000 fps.

Treat the pipeline as a reservoir. Then, p e =. 5283 p 0 = 264.5 kPa abs.

M e = 1 and Ve = 1. 4 × 287(.8333 × 283 ) = 307 .8 m /s. 264.5 & = m × 30 × 10 −4 × 307.8 = 3.61 kg / s. .287 × (.8333 × 283) m & ∆t 3.61 × 6 × 60 ∆ V− = = = 333 m 3 . ρ 264.5 / (.287× .8333 × 283) 1 . 667

1. 667 × 2077 T e

 225  . 667 9.28 5193 × 300 = + 5193 T e . ∴ T e = 225 K. ∴ p e = 200   300  2 =97.45 kPa. Next, Tt = 225 K, p t = 97. 45 kPa; ∴Vt = 1.667 × 2077 × 225 = 882. 6 m / s. 97.45 ρt = = 0.2085 kg/m 3. 0.2085 × π × .032 × 882.6 = ρeπ × 0.0752Ve 2.077 × 225 V 2 1.667 p e 5193 × 300 = e + . 2 . 667 ρ e

 ρe  p e = 200   200 / 2.077 × 300 

1. 667

= 1330ρ e 1. 667 kPa.

Ve2 + 3324 × 10 3 × 9.54Ve− . 667 . 2 6 or 3.116 × 10 = Ve2 + 63 420 × 10 3 Ve−. 667 . Trial - and - error: Ve = 91.8 m / s. =

∴ ρ e = 0.3203 kg/m3 and pe = 199.4 kPa abs.

207

9.29

300 + 100  340  ρ1 = = = 4.757 kg / m 3 . ρ 2 = 4 .757    400  RT1 .287 × 293 p1

1 /1 . 4

= 4 .236 kg / m 3 .

V1 × 4 .757 × 10 2 = V2 × 4.236 × 5 2 . ∴V2 = 4. 492 V1 . V12 V12 1.4 400 000 4.492 2 V12 1.4 340 000 k p 1 V22 k p2 + = + . + = + . 2 k − 1 ρ1 2 k − 1 ρ2 2 . 4 4.757 2 .4 4.236 m ∴V1 = 37.35 . s & = ρ 1 A1V1 = 4.757 × π ×.05 2 × 37.35 = 1. 395 kg / s. ∴m 9.30

ρ1 =

p1 slug ( 45 + 14 .7 )144 = = 0.009634 . RT1 1716 × 520 ft 3

50.7  ρ 2 =.009634   59.7 

1 / 1. 4

=.008573 slug / ft 3 .

V1 ×.009634 × 4 2 = V2 ×.008573 × 2 2 . ∴V2 = 4 .495 V1 . V12 1. 4 59.7 × 144 4.495 2 V12 1. 4 50.7 × 144 + = + . ∴V1 = 121.9 fps. 2 .4 .009634 2 .4 .008573 & =.009634 π × ( 2 / 12 ) 2 × 121.9 = 0.1025 slug / sec . ∴m 9.31

V22 Energy 0 → 2: 1000 × 303 = + 1000 T2 . V2 = 3 kRT2 2 ∴ p2l = 1.627 × 20 = 32.5 kPa.

0

1

2

1.4

5.39  107.9  .4 ∴ p2 = 200  = 0.1740 kg/m 3 .  = 5.390 kPa. ρ 2 = .287 × 107.9  303  2 V V12 Energy 0 → 1: 1000 × 303 = 1 + 1000 . ∴V1 = 318. 4 m / s, T1 = 252.3 K. 2 1.4 × 287  252.3  p1 = 200   303 

1. 4 .4

= 105.4 kPa. ρ 1 =

Continuity: 1.455π ×.05 2 × 318.4 =.174π 9.32

Vt2 = kRT t . 1000 × 293 =

 244  ∴ pt = 500   293 

105.4 = 1.455 kg / m 3 . .287 × 252.3

d 22 × 3 1.4 × 287 × 107.9 . ∴ d 2 = 0.2065 m. 4

1.4 × 287 Tt + 1000 Tt . ∴ Tt = 244 .0 K. V t = 313.1 m / s. 2

1. 4 .4

= 263.5 kPa abs.

∴ ρt =

208

263.5 = 3.763 kg / m 3 . .287 × 244

Ve2 1.4 pe pe 263 500 2 2 + . 3.763 × π × .025 × 313.1 = ρe π × .075 Ve . 1.4 = 2 .4 ρ e ρe 3.7631.4

1000 × 293 =

Ve2 + 1.014 × 106 Ve−.4 . Trial-and-error: Ve = 22.2 m/s, 659 m/s. 2 ∴ ρ e = 5.897 , 0.1987 kg / m 3 . ∴ p e = 494 .2 kPa, 4.29 kPa abs. ∴ 293 000=

9.33

Ae

9.34

M t = 1. ∴ pt =.5283 × 120 = 63.4 psia, Tt =.8333 × 520 = 433.3 o R.

*

A

pe = 0.997 from Table D.1. ∴ pe = 500 ×.997 = 498.5 kPa. p0 p and e = 0.00855 from Table D.1. ∴ pe = 4.28 kPa abs. p0

= 9. ∴

∴ ρ t =.01228

slug . ft 3

& = 1 =.01228 m

π d t2 4

1. 4 × 1716 × 433.3 .

∴ d t = 0. 319 ft.

p 15 = =.125. ∴ M e = 2.014 , Te =.552 × 520 = 287 o R, Ve = 2.014 1.4 × 1716 × 287 p 0 120 = 684 fps. 2 2 π de A π ×.319 = 1.708. ∴ = 1.708 . ∴d e = 0.417 ft. * A 4 4 9.35

M e = 4. For

A A*

= 10.72, pe = .006586 × 2000 = 13.17 kPa, Te = .2381 × 293 = 69.76 K.

A = 10.72 , M e =.0584. * A

∴ p e =.9976 p 0 =.9976 × 2000 = 1995.2 kPa abs.

150

9.36

Let M t = 1. Neglect viscous effects. M1 =

= 0.430. 1.4 × 287 × 303 A A1 π × .052 π dt2 ∴ = 1.5007. ∴ At = = = . ∴ dt = 0.0816 m or 8.16 cm. 1.5007 1.5007 4 A*

9.37

p e = .5283 × 400 = 211.3 kPa abs. Tes =.8333 × 303 = 252.5. 303 − Te .96 = . ∴Te = 254.5 K. ∴Ve = 1.4 × 287 × 254.5 = 319.8 m/s. 303 − 252.5 211.3 ∴ m& = π × .052 × 319.8 = 7.27 kg/s. .287 × 254.5

209

9.38

Isentropic flow. Since k = 1.4 for nitrogen, the isentropic table may be used. A M = 3: = 4.235. * A

t

i M>1

Ve ~= 0 M<1

e

Mt = 1

100 = .9027 kg/m 3 . .297 × 373 & m 10 .00938 ∴ Ai = = = 0.00938 m 2 . ∴ A t = = 0.00221 m 2 . ρ iV i .9027 × 1181 4 .235 At M = 3 , T =. 3571 T0 , p =.02722 p 0 . 373 100 ∴ T0 = Te = = 1044 K or 772 o C . p 0 = = p e = 3670 kPa. .3571 .02722 Vi = 3 1.4 × 297 × 373 = 1181 m/s.

9.39

ρi =

Isentropic flow. Since k = 1.4 for nitrogen, the isentropic table may be used. A M = 3: = 4.235. * A

t

i M>1

Ve ~= 0 M<1

e

Mt = 1

slug 15 × 144 =.001843 . 1776 × 660 ft 3 .2 .0283 Ai = =.0283 ft 2 . ∴ At = = 0.00667 ft 2 . .001843 × 3840 4.235 At M = 3 , T =. 3571 T0 , p =.02722 p 0 . 660 15 ∴ T0 = Te = = 1848 o R or 1388 o F. p0 = p e = = 551 psia. .3571 .02722 Vi = 3 1.4 × 1776 × 660 = 3840 fps.

9.40

9.41

9.42

ρi =

101 =.4198 kg / m 3 . .189 × 1273 80 000 × 9.81 & = ρ AV 2 . Momentum: F = mV = .4198π × .252 V 2 . 6 ∴V = 1260 m/s.

Assume p e = 101 kPa. Then ρ e =

101 =.403 kg / m 3 . (Assume gases are air. ) .287 × 873 100 × 9.81 = .403 × 200 × 10−4 V 2 . ∴V = 349 m/s. & = ρAV 2 . ρ = F = mV

M t = 1.

Ae *

= 4 ; ∴ M e = 2.94 , p e =.02980 p 0 .

A Te = .3665 T0 = .3665 × 300 = 109.95 K,

pe = 100 = .0298 p0 . ∴ p0 = 3356 kPa abs.

210

FB p0A0

Ve

∴Ve = 2.94 1. 4 × 287 × 109.95 = 618 m / s. −100 ∴ FB = π ×.05 2 × 618 2 + 3 356 000π ×.2 2 = 412 000 N. .287 × 109.95

9.43

Assume an isentropic flow; Eq. 9.3.13 provides 1

103 . p  k − 1 2  k −1 = 1+ M  .   p 2 Using k = 1.4 this gives M 2 = 0.0424 or M = 0.206. For standard conditions V = M c = 0.206 14 . × 287 × 288 = 70 m / s. 9.44

a) 0.9850 × 1000 = ρ2V2 . 80 000 − p2 = 0.985 ×1000(V2 − 1000)

 V22 − 1000 2 1.4  p 2 80   + − 287 × 283 = 0.  ρ 1 = =.9850 kg / m 3 .    2 .4  ρ 2 .287 × 283 

V22 10002 1.4 V2 − + ( −985V2 + 1 065 000) − 284 300 = 0 2 2 .4 985 ∴ 3V22 − 3784V2 + 784 300 = 0. ∴V2 = 261 m / s. ρ 2 = 3.774 kg / m 3 . Substitute in and find p 2 = 808 kPa. 1000 808 M1 = = 2.966. T2 = = 746 K or 473 o C . .287 × 3.774 1.4 × 287 × 283 261 M2 = = 0.477 . 1. 4 × 287 × 746 b) M 1 = 1000 / 1.4 × 287 × 283 = 2.97. ∴ M 2 = 0.477. p 2 = 10.12 p 1 = 809.6 kPa. 809.6 T2 = 2.644 × 283 = 748 K or 475 o C . ∴ ρ 2 = = 3.771 kg / m 3 . .287 × 748 9.45

slug 12 × 144 =.002014 . .002014 × 3000 = ρ 2V2 . 1716 × 500 ft 3 Momentum: 12 ×144 − p2 = .002014 × 3000(V2 − 3000).

a) ρ 1 =

V22 − 3000 2 1.4  p2  + − 1716 ×500  = 0.  2 .4  ρ2   V  2 2 6 V2 − 3000 + 7 2  ( 19 ,854 − 6.042V 2 ) − 6.006 × 10 = 0.  6.042  2

6

∴ 6V2 − 23 ,000V2 + 15 × 10 = 0. ∴V2 = 833 fps. ρ 2 = 0.00725

slug ft 3

p2 = 102.9 psia.

M1 =

3000 102.9 × 144 = 2.74. T2 = = 1191 o R or 731 o F. 1716×.00725 1.4 × 1716 × 500

211

.

833 = 0. 492. 1.4 × 1716 × 1191 b) M1 = 3000/ 1.4 ×1716 × 500 = 2.74. ∴ M 2 = 0.493. p2 = 8.592 ×12 = 103.1 psia. 103.1 × 144 T2 = 2.386 × 500 = 1193 o R or 733 o F. ∴ ρ 2 = = 0.00725 slug / ft 3 . 1716 × 1193 M2 =

9.46

ρ 2 p2 T1 2 kM 21 − k + 1 ( k + 1) 2 M 21 ( k + 1)M 21 = = = . ρ 1 p 1 T2 k +1 2 + ( k − 1) M 21 1 + k − 1 M 2  4 kM 2 − 2k + 2 1 1  2  k + 1 p2 k − 1 M 21 = + . (This is Eq. 9.4.12). Substitute into above: 2k p 1 2k

[

 p2  ( k + 1) ( k + 1) + ( k − 1)  p1 ρ2   = = ρ1  p2  4 k + ( k − 1)( k + 1) + ( k − 1) p1   k − 1 + ( k + 1) p 2 / p 1 = . k + 1 + ( k − 1) p 2 / p 1 p For a strong schock in which 2 >> 1, p1

9.47

]

 p2  ( k + 1) ( k + 1) + k − 1 p1   . p 2 2 ( k + 1) + ( k − 1)( k + 1) p1

ρ2 k + 1 = . ρ1 k − 1

Assume standard conditions: T1 = 15 o C, ρ 1 = 101 kPa. ∴V 1 = 2 1.4 × 287 × 288 = 680 m / s. M1 = 2. ∴ M 2 = .5774. T2 = 1.688 × 288 = 486 K. p2 = 4.5 ×101 = 454 kPa.

stationary shock V2

∴V2 = .5774 1.4 × 287 × 486 = 255 m/s. ∴Vinduced = V1 − V2 = 680 − 255 = 425 m/s.

The high pressure and high induced velocity cause extreme damage. 9.48

If M 2 =.5 , then M 1 = 2.645.

∴V1 = 2.645 1.4 × 287 × 293 = 908 m /s. 1600 p 2 = 8.00 × 200 = 1600 kPa abs. ρ 2 = = 8.33 kg / m 3 . .287 × ( 2.285 × 293)

9.49

If M 2 =.5 , then M 1 = 2.645.

∴V1 = 2.645 1.4 × 1716 × 520 = 1118 fps .

p2 = 8.00 × 30 = 240 psia. ρ 2 =

240 × 144 = 0.01695 slug / ft 3 . 1716 × ( 2.285 × 520)

212

V1

9.50

p 1 =.2615 × 101 = 26.4 kPa. T1 = 223.3 K. M 1 = 1000 / 1. 4 × 287 × 223.3 = 3.34. ∴ M 2 =. 4578. p 2 = 12.85 × 26.4 = 339 kPa. T2 = 3.101 × 223.3 = 692.5 K. For isentropic flow from ‚ → €: For M = .458, p = .866 p 0 and T =.960 T0 .

9.51

9.52

∴ p 0 = 339/.866 = 391 kPa abs. T0 = 692.5/.960 = 721 K or 448 o C .

After the shock M 2 =.4752 , p 2 = 10.33 × 800 = 8264 kPa abs. For isentropic flow from ‚ → €: For M = .475, p = .857 p 0 . ∴ p 0 = 8264 /.857 = 9640 kPa abs. A = 4. ∴ M e =.147. p e =.985 p 0 ∴ p 0 = 101/.985 = 102.5 kPa abs. * A M t = 1. p t =.5283 × 102.5 = 54 .15 kPa. Tt =.8333 × 298 = 248. 3 K. 54.15 ∴ ρt = =.7599 kg / m 3 . Vt = 1.4 × 287 × 248.3 = 315.9 m / s. .287 × 248.3 & ∴ m =.7599 × π ×.025 2 × 315.9 = 0.471 kg / s. If throat area is reduced, M t

& =.7599 × π × .02 2 × 315.9 = 0.302 kg / s. remains at 1, ρ t =.7599 kg / m 3 and m 9.53

A = 4. ∴ M 1 = 2.94 , and p 2 / p 1 = 9.918. * A ∴ p 1 = 101 / 9.918 = 10.18 kPa. At M 1 = 2.94 , p / p 0 =.0298. ∴ p 0 = 10.18 /.0298 = 342 kPa abs. M t = 1, p t =.5283 × 342 = 181 kPa abs. Tt =.8333 × 293 = 244 .1 K. p e = 101 kPa = p 2 .

∴Vt = 1.4 × 287 × 244.1 = 313 m / s. M 1 = 2.94 , p 1 = 10.18 kPa abs. T1 =.3665 × 293 = 107.4 K. ∴V1 = 2.94 1.4 × 287 × 107 .4 = 611 m / s. M 2 =. 4788, p e = 101 kPa . Te = T2 = 2.609 × 107 .4 = 280.2 K. ∴V2 =.4788 1.4 × 287 × 280.2 = 161 m / s. 9.54

A = 4. ∴ M 1 = 2.94 , and p 2 / p 1 = 9.918. * A ∴ p 1 = 14 .7 / 9.918 = 1.482 psia. At M 1 = 2.94 , p / p 0 =.0298. ∴ p 0 = 1.482/.0298 = 49.7 psia . p e = 14.7 psia = p2 .

M t = 1, p t =.5283 × 49.7 = 26. 3 psia . Tt =.8333 × 520 = 433. 3 o R. ∴Vt = 1.4 × 1716 × 433.3 = 1020 fps.

M 1 = 2.94 , p 1 = 1.482 psia. T1 =.3665 × 520 = 190.6 o R. ∴V1 = 2.94 1.4 × 1716 × 190.6 = 1989 fps.

213

M 2 =. 4788, p e = 14.7 psia . Te = T2 = 2.609 × 190.6 = 497.3 o R. ∴V2 =.4788 1.4 × 1716 × 497.3 = 523 fps.

9.55

M t = 1. p t =.5283 × 500 = 264 kPa. Tt =.8333 × 298 = 248.3 K. A1 8 2 = = 2.56. ∴ M 1 = 2. 47 , p 1 =.0613 × 500 = 30.65. A* 5 2 T1 = .451 × 298 = 134.4 K. ∴V1 = 2.47 1.4 × 287 × 134 .4 = 574 m / s. M 2 =.516 , p 2 = 6.95 × 30.65 = 213 kPa. T2 = 2.108 × 134.4 = 283.3 K. A After the shock it’s isentropic flow. At M =.516 , * = 1.314 . A 2 π ×.04 p 02 =.511 × 500 = 255.5 kPa. A * = =.003825 m 2 . 1.314 Ae π ×.05 2 = = 2.05. ∴ p e =.940 × 255.5 = 240 kPa abs. = p r . M e =.298. A* .003825 . 2857 213   Te = 283.3 = 273.8 K. ∴Ve =.298 1.4 × 287 × 273.8 = 99 m / s.   240  . 3 /1 . 3

9.56

9.57

655  pt =.546 p0 =.546 × 1200 = 655 kPa. Tt = 673 = 585 K.   1200  655 ∴ ρt = = 2. 42 kg / m 3 . Vt = 1. 3 × 462 × 585 = 593 m /s. ( M t = 1. ) .462 × 585 π × d t2 & = ρ t At Vt . ∴ 4 = 2.42 × m × 593. ∴ dt = 0.060 m or 6 cm. 4 . 3 / 1. 3 101  101  Te = 673 = 380.2 K ∴ ρ e = =.575 kg / m 3 .   1200  .462 × 380.2 2 Ve + 1872 × 380.2 = 1872 × 673. (Energy from € → e .) (c p = 1872 J / kg ⋅ K) 2 πd 2e ∴Ve = 1050 m / s. ∴ 4 =.575 × 1050. ∴ d e = 0.092 m or 9.2 cm. 4

M e = 1. p e =.546 p 0 =.546 × 1000 = 546 kPa. .3

 546  1. 3 Te = 623  = 542 K.  1000 

kg 546 = 2.18 . .462 × 542 m3 πd 2 15 = 2.18 e × 571. ∴ d e = 0.124 m or 12.4 cm. 4

∴ρ e =

Ve = 1.3 × 462 × 542 = 571 m / s.

214

.3

9.58

 81.9  1. 3 o M e = 1. p e =.546 × 150 = 81.9 psia. Te = 1160  = 1009 R.  150 

slug 81.9 × 144 =.00423 . Ve = 1.3 × 2760 × 1009 = 1903 fps. 2762 × 1009 ft 3 πd e2 .25 =.00423 × 1903. ∴ d e = 0.199 ft. or 2.39". 4

∴ρe =

. 3 / 1. 3

9.59

655  M t = 1. p t =.546 × 1200 = 655 kPa. Tt = 673 = 585 K.   1200  655 ∴Vt = 1.3 × 462 × 585 = 593 m / s. ρ t = = 2.42 kg / m 3 . .462 × 585 & = 2.42 × π ×.0075 2 × 593 = 0.254 kg / s per nozzle ∴m 120  Te = 673   1200 

9.60

. 3 /1 . 3

= 396 K.

800 = 2.29. 1. 4 × 287 × 303 From Fig. 9.15, β = 46 o , 79 o . M1 =

V2 V1

a) β = 46o. ∴ M1n = 2.29sin46o = 1.65.

∴ M 2n = .654 = M 2 sin(46o − 20o ). ∴ M 2 = 1. 49.

p 2 = 3.01 × 40 = 120.4 kPa abs. T2 = 1.423 × 303 = 431 K. V2 = 1.4 × 287 × 431 × 1.49 = 620 m / s. b) β = 79 . ∴ M 1n = 2.29 sin 79 o = 2.25. ∴ M 2n =.541 = M 2 sin( 79 o − 20 o ). ∴ M 2 = 0.631. o

p 2 = 5.74 × 40 = 230 kPa abs. T2 = 1.90 × 303 = 576 K. V2 = 1.4 × 287 × 576 × .631 = 303 m / s. a detached shock

c) V1

= 35o

215

= 20o

9.61

β 1 = 40 o . ∴θ = 10 o . M 1n = 2 sin 40 o = 1.29. ∴ M 2n =.791 = M 2 sin(40 o − 10 o ). ∴ M 2 = 1.58. If θ 2 = 10 o then, with M = 1.58 , β 2 = 51o . 1.58 sin 51o = M 2n . ∴ M 2n = 1.23. ∴ M 3n =.824 = M 3 sin( 51o − 10 o ). ∴ M 3 = 1.26. β = β 2 − 10 = 51 − 10 = 41 o .

9.62

M 1n = 3.5 sin 35 o = 2.01. ∴ M 2n =.576. T2 = 1.696 × 303 = 514 K. .576 M2 = = 2.26. θ 1 = 20 o = θ 2 . ∴ β 2 = 47 o . o o sin( 35 − 20 ) M 2n = 2.26 sin 47 o = 1.65. ∴ M 3n =.654 = M 3 sin( 47 o − 20 o ). ∴ M 3 = 1.44. T3 = 1.423 × 514 = 731 K. V3 = M 3 kRT3 = 1.44 1.4 × 287 × 731 = 780 m /s.

9.63

M 1n = 3.5 sin 35 o = 2.01. ∴ M 2n =.576. T2 = 1.696 × 490 = 831o R. .576 M2 = = 2.26. θ 1 = 20 o = θ 2 . ∴ β 2 = 47 o . o o sin( 35 − 20 ) M 2n = 2.26 sin 47 o = 1.65. ∴ M 3n =.654 = M 3 sin( 47 o − 20 o ). ∴ M 3 = 1. 44. T3 = 1.423 × 831 = 1180 o R. V3 = M 3 kRT3 = 1.44 1.4 × 1716 × 1180 = 2420 fps .

9.64

M 1 = 3 , θ = 10 o . ∴ β 1 = 28 o . M 1n = 3 sin 28 o = 1.41. ∴ M 2n =.736. ∴ p 2 = 2.153 × 40 = 86.1 kPa. .736 M2 = = 2. 38. ∴ p 3 = 6.442 × 86.1 = 555 kPa . sin( 28 o − 10 o ) ( p 3 ) normal = 10.33 × 40 = 413 kPa.

9.65

At M 1 = 3 , θ 1 = 49.8 o , µ 1 = 19.47 o . (See Fig. 9.18.) θ 1 + θ 2 = 49.8 + 25 = 74 .8 o . ∴ M 2 = 4.78. p p 1 From isentropic flow table: p2 = p 1 0 2 = 20 × ×.002452 = 1.80 kPa. p1 p0 .02722 T T 1 T2 = T1 0 2 = 253 × × .1795 = 127K or −146o C. µ 2 = 12.08o. T1 T0 .3571 V2 = 4 .78 1.4 × 287 × 127 = 1080 m / s. α = 90 + 25 − 70.53 − 12.08 = 32.4 o .

9.66

θ 1 = 26.4 o . For M = 4 , θ = 65.8 o . (See Fig. 9.18.) ∴θ = 65.8 − 26.4 = 39.4 o . T T 1 T2 = T1 0 2 = 273 ×.2381 = 117 K. ∴V2 = 4 1.4 × 287 × 117 = 867 m / s. T1 T0 .5556 T2 = −156 o C.

216

9.67

θ = 26.4 o . For M = 4 , θ = 65.8 o . ∴θ = 65.8 − 26.4 = 39.4 o . T T 1 T2 = T1 0 2 = 490 × .2381 = 210o R or −250o F. T1 T0 .5556 V2 = 4 1.4 × 1716 × 210 = 2840 fps.

9.68

1 ×.04165 .0585 = 14.24 kPa. o = 2.5 sin 27 = 1.13. ∴ M 2n =.889. ∴ p 2l = 1.32 × 20 = 26.4 kPa.

a) θ 1 = 39.1 o . θ 2 = 39.1 + 5 = 44.1 o . ∴ M u = 2.72. p 2 u = 20 For θ = 5 o and M = 2.5 , β = 27 o . M 1n Ml = M2 =

.889 = 2. 37. sin( 27 o − 5 o )

b) M = 2.72 , θ = 5 o . ∴ β = 25 o . M 1n = 2.72 sin 25 o = 1.15 , M 2n =.875. .875 M 2u = = 2.56. sin( 25 o − 5 o ) For M = 2. 37 , θ = 36.0 o . For θ = 36 + 5 = 41 o , M 2 l = 2.58. c) Force on plate = ( 26.4 − 14.24 ) × 1000 × A = F . F cos 5 o = 1 2 ρ 1V1 A 2 F sin 5 o d) C D = = 1 2 ρ 1V1 A 2 CL =

9.69

12.2×.996 × 1000A

= 0.139. 1 2 × 1.4 × 2.5 × 20 000A 2 12.2 × 1000 A×.0872 = 0.0122. 1 2 × 1.4 × 2.5 × 20 000A 2

F Airfoil surface Drag

β = 19 o . M 1n = 4 sin 19 o = 1.30. ∴ p 2 = 1.805 × 20 = 36.1 kPa. M 2n =.786. .786 M2 = = 3.25. θ 1 = 54.36. θ 2 = 59.36. ∴ M 3 = 3.55. sin( 19 o − 5 o ) shock p p 1 p3 = p 2 0 3 = 36.1 × ×.0122 = 23.4 kPa. p3 M p 2 M2 p2 p0 .0188 M 3 1

 36.1 A − 23.4 A sin 5 o    6.35×.0872 2 2 CD = = = 0.0025. 1 1 2 2 ρV1 A × 1.4 × 4 × 20 2 2

217

Lift

9.70

If θ = 5o with M 1 = 4, then Fig. 9.15 → β = 18o .

M1

o

M1n = 4sin18 = 1.24. ∴ M 2n = .818. ∴ p2l = 1.627 × 20 = 32.5 kPa. .818 ∴ M2 l = = 3.64. sin( 18 o − 5 o )

shock

M2u M2 l

p0 p2 .002177 = 20 p p0 .006586 = 6.61 kPa. o o Lift 32.5 A cos5 − 20 × A / 2 − 6.61 × A / 2 × cos10 CL = = = 0.0854. 1 1 2 2 ρV A × 14 . × 4 × 20 A 2 1 2 Drag 32.5 A sin 5 o − 6.61 × A / 2 × sin 10 o CD = = = 0.010. 1 1 2 2 ρV1 A × 1.4 × 4 × 20 A 2 2

At M 1 = 4 , θ 1 = 65.8 o . At 75.8 o M 2u = 4.88. p 2 u = p 1

218

shock

Related Documents