CHAPTER7 STIRRUPS & LATERAL TIES
101 | R e i n f o r c e d C o n c r e t e
2nd Floor 3rd Floor 4th Floor Roof deck
For 3m length Fy.i Fy.j -116.058 -180.705 -92.8214 -157.002 -43.3879 -107.372 30.836 -47.7588
For 5m length Fy.i Fy.j 119.6972 -158.328 118.8608 -151.802 118.9183 -136.364 83.6707 -87.2842
For lengths 3m 2ND FLOOR b = 295 mm f’c = 28 MPa
d = 407.5 mm fy= 230 MPa
0.66√f ′ c bw d = 0.66 √28 (295) (407.5) = 419829.14 N = 419.83 kN> Vs (OK!) 𝜋
Av = 2Ab = 4 (10)2 (2) Use 10 mm Ø RSB
Av = 50 𝜋 mm2
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(407.5) = Vs 115340 N S = 127.64 mm “say” 120 mm
Solution:
S=
For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(295)(407.5) = 209.91 kN> VS d
So, 𝑠𝑚𝑎𝑥 = 2 = 180.705 − 116.058 Vu − 116.058 = 3 3 − (0.4075 + 0.2) Vu = 167.61 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (295) (407.5) Vc = 108137 N = 108.14 kN ØVc = 0.75 (108.14) ØVc = 81.11 kN< Vu STIRRUPS ARE NECESSARY Vs = VS =
Vu − Vc ϕ 167.61 − 0.75
108.14= 115.34 kN
(verify if the section is adequate to carry the shear)
407.5 2
= 203.75 𝑜𝑟 600mm
Therefore, use s = 120 mm @ d+200 407.5+200 = 607.5 mm ≈ 610mm N=
0.61 = 5 stirrups @ 120mm 0.12
5 @ 120 mm forward, 2 @ 120mm = 240 mm @ 0.9m 180.705 − 116.058 Vu − 116.058 = 3 3 − (0.9) Vu = 161.31 kN
102 | R e i n f o r c e d C o n c r e t e
= 0.17𝜆√f ′ c bd VC Vc = 0.17 (1) √28 (295) (407.5) Vc = 108137 N = 108.14 kN
3RD FLOOR
ØVc = 0.75 (108.14) ØVc = 81.11 kN< Vu
Use 10 mm Ø RSB
b = 285 mm f’c = 28 MPa
d = 402.5 mm fy= 230 MPa
Solution:
STIRRUPS ARE NECESSARY Vu − Vc ϕ 161.31 VS = 0.75 − 108.14 = 106.94 kN Vs =
(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (295) (407.5) = 419829.14 N = 419.83 kN> Vs (OK!) 𝜋 Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(407.5) = Vs 106940 N S = 137.67 mm “say” 130 mm S=
For maximum spacing,
= 209.91 kN> VS d
407.5 2
= 203.75 𝑜𝑟 600mm
Therefore, use s = 130 mm So, 4 @ 130 mm = 520 mm SPACING
LENGTH
7 @ 120mm 840 mm 4 @ 130mm 520mm Rest@140mm
Vu = 144.11 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (285) (402.5) Vc = 103190.25 N = 103.19 kN ØVc = 0.75 (103.19) ØVc = 77.39 kN< Vu STIRRUPS ARE NECESSARY
0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(295)(407.5)
So, 𝑠𝑚𝑎𝑥 = 2 =
157.002 − 92.8214 Vu − 92.8214 = 3 3 − (0.4025 + 0.2)
TOTAL DISTANCE FROM SUPPORT 840 mm 1360 mm
Vu − Vc ϕ 144.11 VS = 0.75 − 103.19 = 88.96 kN Vs =
(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (285) (402.5) =400620.99 N = 400.62 kN> Vs (OK!) 𝜋
Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(402.5) = Vs 88960 N S = 163.46 mm “say” 130 mm S=
103 | R e i n f o r c e d C o n c r e t e
For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(285)(402.5) = 200.31 kN> VS So, 𝑠𝑚𝑎𝑥 =
d 2
=
402.5 2
= 201.25 𝑜𝑟 600 mm
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(402.5) = Vs 80480 N S = 180.67 mm “say” 140 mm S=
For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(285)(402.5) = 200.31 kN> VS
Therefore, use s = 130 mm d
So, 𝑠𝑚𝑎𝑥 = 2 =
@ d+200 402.5+200 = 602.5 ≈ 610mm 0.61 N= = 4 stirrups @ 130 mm 0.13 1 @ 90mm & 4 @ 130 mm forward, 2 @ 130 mm = 260 mm @ 0.9m 157.002 − 92.8214 Vu − 92.8214 = 3 3 − (0.9) Vu = 137.75 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (285) (402.5) Vc = 103190.25 N = 103.19 kN
402.5 2
= 201.25 𝑜𝑟 600mm
Therefore, use s = 140 mm So, 5 @ 140 mm SPACING
LENGTH
1 @ 90 mm 90mm 6 @ 130 mm 520mm 5 @ 140 mm 700 mm Rest @150mm
TOTAL DISTANCE FROM SUPPORT 90mm 610 mm 1310 mm
4TH FLOOR b = 255 mm f’c = 28 MPa
d = 367.5 mm fy= 230 MPa
Use 10 mm Ø RSB Solution:
ØVc = 0.75 (103.19) ØVc = 77.39 kN< Vu STIRRUPS ARE NECESSARY Vu − Vc ϕ 137.75 VS = 0.75 − 103.19 = 80.48 kN Vs =
(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (285) (402.5) = 400620.99 N = 400.62 kN> Vs (OK!) 𝜋
Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2
107.372 − 43.3879 Vu − 43.3879 = 3 3 − (0.3675 + 0.2) Vu = 95.27 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (255) (367.5) Vc = 84299.59 = 84.30 kN 104 | R e i n f o r c e d C o n c r e t e
ØVc = 0.75 (84.30) ØVc = 63.23 kN< Vu
Solution:
STIRRUPS ARE NECESSARY Vu − Vc ϕ 95.27 VS = − 84.30 = 42.73 kN Vs =
0.75
(verify if the section is adequate to carry the shear) 47.7588 30.836 = 𝑥 3−𝑥
0.66√f ′ c bw d = 0.66 √28 (255) (367.5) = 327280.76N = 327.28 kN> Vs (OK!)
x = 1.82
𝜋
Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(367.5) = Vs 42730 N S = 310.72 mm ≈ 300 mm S=
For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(255)(367.5) = 163.64 kN> VS d
367.5
So, 𝑠𝑚𝑎𝑥 = = = 183.75 ≈ 2 2 200 mm 𝑜𝑟 600 mm Therefore, use s = 200 mm
SPACING
LENGTH
TOTAL DISTANCE FROM SUPPORT
47.7588 𝑉𝑢 = 1.82 1.82 − (0.3125 + 0.2) Vu = 34.31 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (205) (312.5) Vc = 57627.77 N = 57.63 kN ØVc = 0.75 (57.63) ØVc = 43.22 kN> Vu but, 1 1 ØVc = 2 (43.22) = 21.61 kN 2 then,
1
Vu >2ØVc s=
𝑑 2
=
312.5 2
= 156.25 mm “say” 120 mm
Rest@200mm
Solving for minimum area of stirrup:
ROOF DECK
Av =
b = 205 mm f’c = 28 MPa
d = 312.5 mm fy= 230 MPa
Av=
𝑏𝑤 𝑠 3 𝑓𝑦 205 (120) 3 (230)
= 35.65 mm2
Therefore, use s = 120 mm Use 10 mm Ø RSB SPACING
LENGTH
TOTAL DISTANCE FROM SUPPORT
Rest @120mm
105 | R e i n f o r c e d C o n c r e t e
For lengths 5m 2ND FLOOR
= 419829.14 N = 419.83 kN> Vs (OK!)
b = 295 mm f’c = 28 MPa
d = 407.5 mm fy= 230 MPa
Use 10 mm Ø RSB Solution:
𝜋
Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(407.5) = Vs 57970 N S = 253.96 mm “say” 250 mm S=
For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(295)(407.5) = 209.91 kN> VS d
407.5
So, 𝑠𝑚𝑎𝑥 = = = 203.75 ≈ 2 2 200 mm 𝑜𝑟 600mm Therefore, use s = 200 mm 158.328 119.6972 = 𝑥 5−𝑥 x = 2.85 158.328 Vu = 2.85 2.85 − (0.4075 + 0.2) Vu = 124.58 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (295) (407.5) Vc = 108137.81 N = 108.14 kN ØVc = 0.75 (108.14) ØVc = 81.11 kN< Vu
SPACING
LENGTH
TOTAL DISTANCE FROM SUPPORT
Rest @200mm 3RD FLOOR b = 285 mm f’c = 28 MPa
d = 407.5 mm fy= 230 MPa
Use 10 mm Ø RSB Solution:
STIRRUPS ARE NECESSARY Vu − Vc ϕ 124.58 VS = 0.75 − 108.14 = 57.97 kN Vs =
(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (295) (407.5) 106 | R e i n f o r c e d C o n c r e t e
151.802 118.8608 = 𝑥 5−𝑥 x = 2.80 151.802 Vu = 2.80 2.80 − (0.4075 + 0.2) Vu = 118.87 kN
Therefore, use s = 200 mm SPACING
LENGTH
TOTAL DISTANCE FROM SUPPORT
Rest@200mm
VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (285) (407.5) Vc = 104472.12 N = 104.47 kN
4TH FLOOR
ØVc = 0.75 (104.47) ØVc = 78.35 kN< Vu
b = 255 mm f’c = 28 MPa
STIRRUPS ARE NECESSARY
Use 10 mm Ø RSB
Vu − Vc ϕ 118.87 VS = − 104.47 = 54.02 kN
Solution:
d = 367.5 mm fy= 230 MPa
Vs =
0.75
(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (285) (407.5) = 405597.64 N = 405.60 kN> Vs (OK!) 𝜋
Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(407.5) = Vs 54020 N S = 272.53 mm “say” 250 mm
136.364 118.9183 = 𝑥 5−𝑥
S=
x = 3.07
For maximum spacing,
118.9183 Vu = 3.07 3.07 − (0.3675 + 0.2) Vu = 96.94 kN
0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(285)(407.5) = 202.80 kN> VS d
407.5
So, 𝑠𝑚𝑎𝑥 = 2 = 2 = 203.75 ≈ 200 mm 𝑜𝑟 600 mm
VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (255) (367.5) Vc = 84299.59 N = 84.30 kN ØVc = 0.75 (84.30) ØVc = 63.23 kN< Vu STIRRUPS ARE NECESSARY Vu Vs = − Vc ϕ 96.94 VS = − 84.30 = 44.95 kN 0.75
(verify if the section is adequate to carry the shear) 107 | R e i n f o r c e d C o n c r e t e
0.66√f ′ c bw d = 0.66 √28 (255) (367.5) = 327280.76 N = 327.28 kN> Vs (OK!) 𝜋 4
Av = 2Ab = (10)2 (2) Av = 50 𝜋 mm2 S=
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(367.5) = Vs 44950 N
87.2842 𝑉𝑢 = 2.92 2.92 − (0.3125 + 0.2) Vu = 71.96 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (205) (312.5) Vc = 57627.77 N = 57.63 kN
S = 295.38 mm “say” 250 mm
ØVc = 0.75 (57.63) ØVc = 43.22 kN< Vu
For maximum spacing,
STIRRUPS ARE NECESSARY
0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(255)(367.5) = 163.64 kN> VS d
367.5
So, 𝑠𝑚𝑎𝑥 = 2 = 2 = 183.75 ≈ 200 mm 𝑜𝑟 600 mm
Vu − Vc ϕ 71.96 VS = 0.75 − 57.63 = 38.32 kN Vs =
(verify if the section is adequate to carry the shear)
Therefore, use s = 200 mm
SPACING
LENGTH
TOTAL DISTANCE FROM SUPPORT
Rest@200mm
0.66√f ′ c bw d = 0.66 √28 (205) (312.5) = 223731.35 N = 223.73 kN> Vs (OK!) 𝜋 4
Av = 2Ab = (10)2 (2) Av = 50 𝜋 mm2
ROOF DECK b = 205 mm f’c = 28 MPa
d = 312.5 mm fy= 230 MPa
Use 10 mm Ø RSB Solution:
S=
𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(312.5) = Vs 38320 N
S = 294.63 mm ≈ 250 mm For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(205)(312.5) = 111.87 kN> VS d
312.5
So, 𝑠𝑚𝑎𝑥 = 2 = 2 = 156.25 ≈ 150 mm 𝑜𝑟 600 mm Therefore, use s = 150 mm 87.2842 83.6707 = 𝑥 5−𝑥 x = 2.92
SPACING
LENGTH
TOTAL DISTANCE FROM SUPPORT
Rest @150mm
108 | R e i n f o r c e d C o n c r e t e
LATERAL TIES Spacing of ties: a) 16 x db = 16(25) = 400 mm b) 48 x tie diameter= 48(10) = 480 mm c) Least dimension of column = 400 mm use 10mm ties at 400 o.c. SPACING
LENGTH
5 @50mm 5@100mm 3@150mm Rest @ 400mm
250mm 500mm 450mm
TOTAL DISTANCE FROM SUPPORT 250mm 750mm 1200mm
Based on the results, use this spacing for stirrups from the following lengths: For 3 m length: SPACING
LENGTH
1 @ 90 mm 6 @ 130 mm 5 @ 140 mm Rest @150mm
90mm 520mm 700 mm
TOTAL DISTANCE FROM SUPPORT 90mm 610 mm 1310 mm
For 5 m length: SPACING
LENGTH
TOTAL DISTANCE FROM SUPPORT
All stirrups @200mm
109 | R e i n f o r c e d C o n c r e t e