Chapter 7.docx

  • Uploaded by: Claudine Pansacala
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chapter 7.docx as PDF for free.

More details

  • Words: 2,211
  • Pages: 9
CHAPTER7 STIRRUPS & LATERAL TIES

101 | R e i n f o r c e d C o n c r e t e

2nd Floor 3rd Floor 4th Floor Roof deck

For 3m length Fy.i Fy.j -116.058 -180.705 -92.8214 -157.002 -43.3879 -107.372 30.836 -47.7588

For 5m length Fy.i Fy.j 119.6972 -158.328 118.8608 -151.802 118.9183 -136.364 83.6707 -87.2842

For lengths 3m 2ND FLOOR b = 295 mm f’c = 28 MPa

d = 407.5 mm fy= 230 MPa

0.66√f ′ c bw d = 0.66 √28 (295) (407.5) = 419829.14 N = 419.83 kN> Vs (OK!) 𝜋

Av = 2Ab = 4 (10)2 (2) Use 10 mm Ø RSB

Av = 50 𝜋 mm2

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(407.5) = Vs 115340 N S = 127.64 mm “say” 120 mm

Solution:

S=

For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(295)(407.5) = 209.91 kN> VS d

So, 𝑠𝑚𝑎𝑥 = 2 = 180.705 − 116.058 Vu − 116.058 = 3 3 − (0.4075 + 0.2) Vu = 167.61 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (295) (407.5) Vc = 108137 N = 108.14 kN ØVc = 0.75 (108.14) ØVc = 81.11 kN< Vu STIRRUPS ARE NECESSARY Vs = VS =

Vu − Vc ϕ 167.61 − 0.75

108.14= 115.34 kN

(verify if the section is adequate to carry the shear)

407.5 2

= 203.75 𝑜𝑟 600mm

Therefore, use s = 120 mm @ d+200 407.5+200 = 607.5 mm ≈ 610mm N=

0.61 = 5 stirrups @ 120mm 0.12

5 @ 120 mm forward, 2 @ 120mm = 240 mm @ 0.9m 180.705 − 116.058 Vu − 116.058 = 3 3 − (0.9) Vu = 161.31 kN

102 | R e i n f o r c e d C o n c r e t e

= 0.17𝜆√f ′ c bd VC Vc = 0.17 (1) √28 (295) (407.5) Vc = 108137 N = 108.14 kN

3RD FLOOR

ØVc = 0.75 (108.14) ØVc = 81.11 kN< Vu

Use 10 mm Ø RSB

b = 285 mm f’c = 28 MPa

d = 402.5 mm fy= 230 MPa

Solution:

STIRRUPS ARE NECESSARY Vu − Vc ϕ 161.31 VS = 0.75 − 108.14 = 106.94 kN Vs =

(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (295) (407.5) = 419829.14 N = 419.83 kN> Vs (OK!) 𝜋 Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(407.5) = Vs 106940 N S = 137.67 mm “say” 130 mm S=

For maximum spacing,

= 209.91 kN> VS d

407.5 2

= 203.75 𝑜𝑟 600mm

Therefore, use s = 130 mm So, 4 @ 130 mm = 520 mm SPACING

LENGTH

7 @ 120mm 840 mm 4 @ 130mm 520mm Rest@140mm

Vu = 144.11 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (285) (402.5) Vc = 103190.25 N = 103.19 kN ØVc = 0.75 (103.19) ØVc = 77.39 kN< Vu STIRRUPS ARE NECESSARY

0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(295)(407.5)

So, 𝑠𝑚𝑎𝑥 = 2 =

157.002 − 92.8214 Vu − 92.8214 = 3 3 − (0.4025 + 0.2)

TOTAL DISTANCE FROM SUPPORT 840 mm 1360 mm

Vu − Vc ϕ 144.11 VS = 0.75 − 103.19 = 88.96 kN Vs =

(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (285) (402.5) =400620.99 N = 400.62 kN> Vs (OK!) 𝜋

Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(402.5) = Vs 88960 N S = 163.46 mm “say” 130 mm S=

103 | R e i n f o r c e d C o n c r e t e

For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(285)(402.5) = 200.31 kN> VS So, 𝑠𝑚𝑎𝑥 =

d 2

=

402.5 2

= 201.25 𝑜𝑟 600 mm

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(402.5) = Vs 80480 N S = 180.67 mm “say” 140 mm S=

For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(285)(402.5) = 200.31 kN> VS

Therefore, use s = 130 mm d

So, 𝑠𝑚𝑎𝑥 = 2 =

@ d+200 402.5+200 = 602.5 ≈ 610mm 0.61 N= = 4 stirrups @ 130 mm 0.13 1 @ 90mm & 4 @ 130 mm forward, 2 @ 130 mm = 260 mm @ 0.9m 157.002 − 92.8214 Vu − 92.8214 = 3 3 − (0.9) Vu = 137.75 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (285) (402.5) Vc = 103190.25 N = 103.19 kN

402.5 2

= 201.25 𝑜𝑟 600mm

Therefore, use s = 140 mm So, 5 @ 140 mm SPACING

LENGTH

1 @ 90 mm 90mm 6 @ 130 mm 520mm 5 @ 140 mm 700 mm Rest @150mm

TOTAL DISTANCE FROM SUPPORT 90mm 610 mm 1310 mm

4TH FLOOR b = 255 mm f’c = 28 MPa

d = 367.5 mm fy= 230 MPa

Use 10 mm Ø RSB Solution:

ØVc = 0.75 (103.19) ØVc = 77.39 kN< Vu STIRRUPS ARE NECESSARY Vu − Vc ϕ 137.75 VS = 0.75 − 103.19 = 80.48 kN Vs =

(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (285) (402.5) = 400620.99 N = 400.62 kN> Vs (OK!) 𝜋

Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2

107.372 − 43.3879 Vu − 43.3879 = 3 3 − (0.3675 + 0.2) Vu = 95.27 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (255) (367.5) Vc = 84299.59 = 84.30 kN 104 | R e i n f o r c e d C o n c r e t e

ØVc = 0.75 (84.30) ØVc = 63.23 kN< Vu

Solution:

STIRRUPS ARE NECESSARY Vu − Vc ϕ 95.27 VS = − 84.30 = 42.73 kN Vs =

0.75

(verify if the section is adequate to carry the shear) 47.7588 30.836 = 𝑥 3−𝑥

0.66√f ′ c bw d = 0.66 √28 (255) (367.5) = 327280.76N = 327.28 kN> Vs (OK!)

x = 1.82

𝜋

Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(367.5) = Vs 42730 N S = 310.72 mm ≈ 300 mm S=

For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(255)(367.5) = 163.64 kN> VS d

367.5

So, 𝑠𝑚𝑎𝑥 = = = 183.75 ≈ 2 2 200 mm 𝑜𝑟 600 mm Therefore, use s = 200 mm

SPACING

LENGTH

TOTAL DISTANCE FROM SUPPORT

47.7588 𝑉𝑢 = 1.82 1.82 − (0.3125 + 0.2) Vu = 34.31 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (205) (312.5) Vc = 57627.77 N = 57.63 kN ØVc = 0.75 (57.63) ØVc = 43.22 kN> Vu but, 1 1 ØVc = 2 (43.22) = 21.61 kN 2 then,

1

Vu >2ØVc s=

𝑑 2

=

312.5 2

= 156.25 mm “say” 120 mm

Rest@200mm

Solving for minimum area of stirrup:

ROOF DECK

Av =

b = 205 mm f’c = 28 MPa

d = 312.5 mm fy= 230 MPa

Av=

𝑏𝑤 𝑠 3 𝑓𝑦 205 (120) 3 (230)

= 35.65 mm2

Therefore, use s = 120 mm Use 10 mm Ø RSB SPACING

LENGTH

TOTAL DISTANCE FROM SUPPORT

Rest @120mm

105 | R e i n f o r c e d C o n c r e t e

For lengths 5m 2ND FLOOR

= 419829.14 N = 419.83 kN> Vs (OK!)

b = 295 mm f’c = 28 MPa

d = 407.5 mm fy= 230 MPa

Use 10 mm Ø RSB Solution:

𝜋

Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(407.5) = Vs 57970 N S = 253.96 mm “say” 250 mm S=

For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(295)(407.5) = 209.91 kN> VS d

407.5

So, 𝑠𝑚𝑎𝑥 = = = 203.75 ≈ 2 2 200 mm 𝑜𝑟 600mm Therefore, use s = 200 mm 158.328 119.6972 = 𝑥 5−𝑥 x = 2.85 158.328 Vu = 2.85 2.85 − (0.4075 + 0.2) Vu = 124.58 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (295) (407.5) Vc = 108137.81 N = 108.14 kN ØVc = 0.75 (108.14) ØVc = 81.11 kN< Vu

SPACING

LENGTH

TOTAL DISTANCE FROM SUPPORT

Rest @200mm 3RD FLOOR b = 285 mm f’c = 28 MPa

d = 407.5 mm fy= 230 MPa

Use 10 mm Ø RSB Solution:

STIRRUPS ARE NECESSARY Vu − Vc ϕ 124.58 VS = 0.75 − 108.14 = 57.97 kN Vs =

(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (295) (407.5) 106 | R e i n f o r c e d C o n c r e t e

151.802 118.8608 = 𝑥 5−𝑥 x = 2.80 151.802 Vu = 2.80 2.80 − (0.4075 + 0.2) Vu = 118.87 kN

Therefore, use s = 200 mm SPACING

LENGTH

TOTAL DISTANCE FROM SUPPORT

Rest@200mm

VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (285) (407.5) Vc = 104472.12 N = 104.47 kN

4TH FLOOR

ØVc = 0.75 (104.47) ØVc = 78.35 kN< Vu

b = 255 mm f’c = 28 MPa

STIRRUPS ARE NECESSARY

Use 10 mm Ø RSB

Vu − Vc ϕ 118.87 VS = − 104.47 = 54.02 kN

Solution:

d = 367.5 mm fy= 230 MPa

Vs =

0.75

(verify if the section is adequate to carry the shear) 0.66√f ′ c bw d = 0.66 √28 (285) (407.5) = 405597.64 N = 405.60 kN> Vs (OK!) 𝜋

Av = 2Ab = 4 (10)2 (2) Av = 50 𝜋 mm2

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(407.5) = Vs 54020 N S = 272.53 mm “say” 250 mm

136.364 118.9183 = 𝑥 5−𝑥

S=

x = 3.07

For maximum spacing,

118.9183 Vu = 3.07 3.07 − (0.3675 + 0.2) Vu = 96.94 kN

0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(285)(407.5) = 202.80 kN> VS d

407.5

So, 𝑠𝑚𝑎𝑥 = 2 = 2 = 203.75 ≈ 200 mm 𝑜𝑟 600 mm

VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (255) (367.5) Vc = 84299.59 N = 84.30 kN ØVc = 0.75 (84.30) ØVc = 63.23 kN< Vu STIRRUPS ARE NECESSARY Vu Vs = − Vc ϕ 96.94 VS = − 84.30 = 44.95 kN 0.75

(verify if the section is adequate to carry the shear) 107 | R e i n f o r c e d C o n c r e t e

0.66√f ′ c bw d = 0.66 √28 (255) (367.5) = 327280.76 N = 327.28 kN> Vs (OK!) 𝜋 4

Av = 2Ab = (10)2 (2) Av = 50 𝜋 mm2 S=

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(367.5) = Vs 44950 N

87.2842 𝑉𝑢 = 2.92 2.92 − (0.3125 + 0.2) Vu = 71.96 kN VC = 0.17𝜆√f ′ c bd Vc = 0.17 (1) √28 (205) (312.5) Vc = 57627.77 N = 57.63 kN

S = 295.38 mm “say” 250 mm

ØVc = 0.75 (57.63) ØVc = 43.22 kN< Vu

For maximum spacing,

STIRRUPS ARE NECESSARY

0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(255)(367.5) = 163.64 kN> VS d

367.5

So, 𝑠𝑚𝑎𝑥 = 2 = 2 = 183.75 ≈ 200 mm 𝑜𝑟 600 mm

Vu − Vc ϕ 71.96 VS = 0.75 − 57.63 = 38.32 kN Vs =

(verify if the section is adequate to carry the shear)

Therefore, use s = 200 mm

SPACING

LENGTH

TOTAL DISTANCE FROM SUPPORT

Rest@200mm

0.66√f ′ c bw d = 0.66 √28 (205) (312.5) = 223731.35 N = 223.73 kN> Vs (OK!) 𝜋 4

Av = 2Ab = (10)2 (2) Av = 50 𝜋 mm2

ROOF DECK b = 205 mm f’c = 28 MPa

d = 312.5 mm fy= 230 MPa

Use 10 mm Ø RSB Solution:

S=

𝐴𝑣 𝑓𝑦 𝑑 50𝜋 (230)(312.5) = Vs 38320 N

S = 294.63 mm ≈ 250 mm For maximum spacing, 0.33√𝑓 ′ 𝑐 𝑏𝑤 𝑑 = 0.33√28(205)(312.5) = 111.87 kN> VS d

312.5

So, 𝑠𝑚𝑎𝑥 = 2 = 2 = 156.25 ≈ 150 mm 𝑜𝑟 600 mm Therefore, use s = 150 mm 87.2842 83.6707 = 𝑥 5−𝑥 x = 2.92

SPACING

LENGTH

TOTAL DISTANCE FROM SUPPORT

Rest @150mm

108 | R e i n f o r c e d C o n c r e t e

LATERAL TIES Spacing of ties: a) 16 x db = 16(25) = 400 mm b) 48 x tie diameter= 48(10) = 480 mm c) Least dimension of column = 400 mm use 10mm ties at 400 o.c. SPACING

LENGTH

5 @50mm 5@100mm 3@150mm Rest @ 400mm

250mm 500mm 450mm

TOTAL DISTANCE FROM SUPPORT 250mm 750mm 1200mm

Based on the results, use this spacing for stirrups from the following lengths: For 3 m length: SPACING

LENGTH

1 @ 90 mm 6 @ 130 mm 5 @ 140 mm Rest @150mm

90mm 520mm 700 mm

TOTAL DISTANCE FROM SUPPORT 90mm 610 mm 1310 mm

For 5 m length: SPACING

LENGTH

TOTAL DISTANCE FROM SUPPORT

All stirrups @200mm

109 | R e i n f o r c e d C o n c r e t e

Related Documents

Chapter
May 2020 60
Chapter
November 2019 76
Chapter
October 2019 79
Chapter 1 - Chapter 2
June 2020 62

More Documents from ""

Bridge.docx
April 2020 6
Th.docx
December 2019 3
Chapter 7.docx
December 2019 6