Chapter 7 Algebraaic Expressions

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chapter 7 Algebraaic Expressions as PDF for free.

More details

  • Words: 6,161
  • Pages: 33
Module PMR

CHAPTER 7 : ALGEBRAIC EXPRESSIONS

A. Unknown *An unknown is a quantity whose value has not been determined. *Letters can be used to represent unknowns or objects. Example Exercise 1. The teacher gives some pencils 1. I bought some books to the students Solution : …………………………… Solution : The unknown is the number of pencils 2. There are many monkeys in the garden. Solution : ……………………………. 2. There are x students in m class Solution : x is unknown 3. Azman bought y durian in z shop m is object yesterday. Solution : unknown…………….. object ………………. 4. Mr a sold his car for k ringgit Solution : unknown ……………….. object :………………….. B Algebraic Terms i) Algebraic Term with one unknown - is the product of an unknown and a number. Example : 4y is called an algebraic term 4y Number

4y = 4 x y = y + y + y + y

unknown

* Identify coefficients in given algebraic term - Coefficient is the number that multiply the unknown Example 1) 7m : coefficient of m is 7 2)

r 1 : coefficient of r is 4 4

3) – y : coefficient of y is -1

Exercise 1) -3z : coefficient of z is…………… 2)

2 x : coefficient of x is ………….. 5

3) 0.7 h : coefficient of h is ………… 4) p : coefficient of p is …………..

Algebraic Expressions

77

Module PMR

(ii) Like and Unlike Algebraic Terms * Like term : terms with the same unknowns * Unlike terms : terms with different unknowns. Example 1. 3m and -4m 2. 4x and ¼ x 3. 0.9z and 5z 1. 2w and 8h 2, -5f and ½g 3. 1.2q and 3.5g

Exercise Determine whether each of the Like term following pairs of algebraic terms are (same unknown) like term / unlike term 1. 6s , - t : …………………… y 2. , 8y : …………………….. 4 3. 19 d , 19e : …………………… 2 4. , 4e : ……………………….. e

unlike term (different unknown)

C Algebraic Expressions An algebraic expression is a combination of two or more algebraic terms by addition, subtraction or both Examples : 2x + 4y , 6r – 3s + 6z (i)

Number of terms in a given algebraic expression

Example Determine the number of terms in the algebraic expressions below :

Exercise Determine the number of terms in the algebraic expressions below :

1. 3x + 6y : 2 terms

1. 6m + 8n – 9 : …………………..

2. 7p + 5q – 9 : 3 terms

2. 3b + 2e – 10b -5e : …………….

3. w – 2z – 8y + 1 : 4 terms

3. 2s – 4s + 5s + 3 – w :………….

(ii) Simplifying Algebraic Expressions - Group all the like terms together - Add / subtract the coefficient of the terms - unlike terms cannot be simplified

Algebraic Expressions

78

Module PMR

Examples 1. 6m – 2n + 4m – 5n = 6m + 4m -2n -5n (group like terms) = 10m – 7n

Exercise .1. 2x – 7y + 5x – y =

2. -7x + 4y + 3y + 2x = -7x + 2x + 4y + 3y = -5x + 7y

2. 11z -3w - 8z- 8w =

3. ( 12a – 4b) + ( 5a + 7b) = 12a+ 5a – 4b + 7b = 17a + 3b

3. ( 6r + 9s) + ( 3r – 2s) =

4. ( 9q + 2p) – ( 4q – 6p) = 9q + 2p – 4q + 6p = 9q – 4q + 2p + 6p = 5q + 8p

4. ( 5k -3) – ( 7k + 2) =

5. 8x – ( - 4x) + x = 8x + 4x + x = 13x

5. (2t +4s) – (7t – 3s) =

6. -3c –(- d) +(-2d) = -3c +d – 2d =-3d -d

6. – 3s – (- 5s + 1) =

7. -14w –(-3w) -7w =

D. Algebraic Terms in two or more unknowns Is the multiplying factors of the term Examples : 3xy , ½abc, 0.8 def * Identifying the coefficient of an unknown Example In the term 8xy2 * 8y(xy) the coefficient of xy is 8y * 8x(y2) the coefficient of y2 is 8x * 8y2 (x) the coefficient of x is 8y2 * 8(xy2) the coefficient of xy2 is 8 Algebraic Expressions

Exercise 1. in the term -3ab2c * the coefficient of abc =……………….. * the coefficient of ab2 = ……………….. * the coefficient of ab2c =…………….. * the coefficient of ac = ………………. 79

Module PMR

E. Multiplication & Division of 2 or more terms (i) Finding the product of 2 algebraic terms - collect all numbers and similar unknowns together - then multiply the numbers and the unknown separately. Example 1. 2ab x 4b2c =2xaxbx4xbxbxc =2x4xaxbxbxbxc = 8 x a x b2 x c = 8ab3c

Exercise 1. ab x a2b =

2. 3xy x (-2 yz) 2

2

2. 4m x ½ mn =4x½xmxmxmxnxn = 2 x m 3 x n2 = 2 m3 n2 Exercise 4 1 pqr × (− pqr ) 6. 5 2 =

7. (-3m2hk3)x (-7m2hk2) =

=

3.. 6ab2c x (½ bc3) =

4. (-8p3qr) x ( -7pqr2) =

5. − =

Algebraic Expressions

80

2 2 w z × ( −9 wz 3 ) 3

Module PMR

(ii) Finding the quotient of two algebraic terms - Express the division in fraction form - cancel similar unknowns that are found in both numerator and denominator Example 14 xyz 1. 7 xz 14 2 × x × y × z = 7× x× z = 2y 2. 12m2n ÷ 3mn 12 4 × m × m × n = 3× m × n = 4m 3. -5cd2e ÷ 15c2de (−5) × c × d × d × e = 3 15 × c × c × d × e d = − 3c

Exercise 1. 24pq2z ÷ 8qr =

− 16 x 3 y 2 2. − 4x 2 y 3 =

3. 12abc ÷ (-18cd) =

4. (- 18sr3t2) ÷ 6sr2t =

iii) Multiplication and Division involving algebraic terms Example 1. 4p x 6q2 ÷ 3pq 4 × p × 62 × q × q = 3× p × q = 8q − 4c 2 de × 9cde 2 6ce 2 − 4 2 × c × c × d × e × 93 × c × d × e × e = 6 31 ×c × e × e

2.

= -2 x c x d x 3 x c x d x e = -2 x 3 x c x c x d x d x e = -6c2d2e Algebraic Expressions

Exercise 1. 6p2qr ÷ 3pq x 8pr =

2.

− 12 gh × (−9kh) 6 gh 2 =

3. 10a2b3 x (-2b2c) ÷ 5abc 81

Module PMR

F) Computations involving Algebraic Expressions * In Multiplication / division of algebraic expressions by a number, every term In the expression is multiply/ divide by the same number Example Exercise 1. 3 ( 2a –b) 1. 8 ( 5m -2) = 3 x 2a – 3 x b = = 6a – 3b 2

1 − (5t + 10 s ) 5 1 1 = − × 5t − × 10 2 s 5 5 = −t − 2 s

3. h – 9(h – 2) = h – 9h + 18 = -8h +18

4. 2 (4e +y) – 5( 2e – 3y) = 2 x 4e + 2 x y – 5 x 2e + 5 x 3y = 8e + 2y – 10e + 15y = 8e -10e +2y + 15y = -2e + 17y 5. (6ab – 4bc) ÷ 2b = 6ab ÷ 2b – 4bc ÷ 2b = 3a – 2c 6.

2. - ½ ( 4a + 12b) = 3. – p – 7 ( p -3 ) =

4. – 5 ( t -2) + 8t = 5. 3 ( 2s -7) – 4( s + 3) =

6. . ( -12pq + 8qr – 4pqr) ÷ 4 =

7.

1 3 (4 p 2 − 8 pq) − (4 p 2 − 12 pq ) 2 4 2 = 2 p − 4 pq − 3 p 2 + 9 pq = 2 p 2 − 3 p 2 − 4 pq + 9 pq = − p 2 + 5 pq 12 x − 4 4 = 10x -5 – (3x - 1) = 10x -5 -3x + 1 = 10x -3x -5 + 1

8.

3x − 9 − 5y 3 =

1 2 (5 p 2 − 10 pq) − (6 p 2 − 3 pq) 5 3 =

7. 5(2x – 1) -

Algebraic Expressions

9. 82

18 − 24u 2 + 5(2u 2 − 3) 6

Module PMR

= 7x -4

=

Common Errors Errors 1. 7pq x 3pq = 21 pq

Correct Steps 1. 7pq x 3pq =7x3xpxpxqxq = 21 p2q2

2. 2 ( 4e – 3 d) = 8e – 3d

2. 2( 4e – 3d) = 2 x 4e – 2 x 3d = 8e – 6d

3. (6de2 – 4ef) ÷ 2e = 3de – 4ef

3. (6de2 – 4ef) ÷ 2e = 6de2 ÷ 2e – 4ef ÷ 2e = 3de – 2f

4. (x – 4y) – ( 2x + y) = x – 4y – 2x + y = x -2x -4y + y = -x-3y

4. (x – 4y) – ( 2x + y) = x – 4y – 2x - y = x -2y -4y - y = - x - 5y

5. -2p ( pq – 3) = - 2pq – 6p

5. -2p ( pq – 3) = - 2p2q + 6p

6. 10abc – 4 abc =6

6. 10abc – 4 abc = 6abc

7. 3a +6b – 8a – 3b = 3a + 8a - 6b -3b = 11a – 9b

7. 3a +6b – 8a – 3b = 3a - 8a + 6b -3b = -5a +3b

8. ( - 4rs2t) x 5r3st2 = (-4) x 5 x r x r3 x s2 x s x t x t2 = 20r3s2t2

8. ( - 4rs2t) x 5r3st2 = (-4) x 5 x r x r3 x s2 x s x t x t2 = -20r4s3t3

9. -5s - ( 3t – 2)

9. -5s - ( 3t – 2) = -5s -3t +2

= +15st -10s Algebraic Expressions

83

Module PMR

(G) Expanding single Brackets * Expanding algebraic expressions by multiplying each term inside the bracket by the number or term outside * p(q + r)= p × q + p × r = pq + pr Example 1. 2p (p – 3q) = 2p x p – 2p x 3q = 2p2 – 6pq 2. -4b(2a + b) = -4b x 2a -4b x b = -8ab – 4b2 3.

2 b (6a – 9c) 3 3 2 2 2 = b x 6 a - b x 9c 3 3 = 4ab -6bc

Exercise 1. y ( w + y) =

2. -5e ( 3f + 2g) =

3.

r (12 − 9 s + 3t ) 3 =

4. xy ( 4z – 2w + xy) =

5.

2 x( xy − 5 yz 2 + 10 z ) 5 =

6. - 7ab(2a – 4b + c) = Algebraic Expressions

84

Module PMR

(H) Expanding double brackets * Expanding algebraic Expressions by multiplying each term within the first pair of brackets by every term within the second pair of brackets ( a + b)(x + y) = a( x +y) + b( x+y) = ax + ay + bx + by Example 1. (x -3)(y+5) = x (y + 5) – 3(y + 5) = xy + 5x – 3y – 15 2. (2k -1)(k – 3) = 2k(k -3) – 1(k -3) = 2k2- 6k – k + 3 = 2k2 -7k + 3 3. (p – 3q)2 = (p – 3q)(p -3q) = p(p-3q) – 3q (p-3q) = p2 – 3pq – 3pq + 9q2 = p2 – 6pq + 9q2 4. (2a +b)2 = (2a+b)(2a+b) = 2a(2a+b) + b(2a+b) = 4a2 +2ab +2ab + b2 = 4a2 +4ab +b2

Exercise 1. (a -2)(b +1) =

2. (m +3)( 3m – n) =

3. (-2s -5)( 3t + 4) =

4. ( a -3)2 =

5. (3m –n)2 =

6. ( 5x +2)2 =

Algebraic Expressions

85

Module PMR

7. (y + 4d)2 =

Common Errors Errors 1. 2x(x-3)

Correct Steps 1. 2x(x-3)

= 2x2 -3 2. (a+b)2

= 2x2 – 6 2. (a+b)2

= a2 + b2 3. ( a – b)2

= a2 +2ab + b2 3.. ( a – b)2

= a2 – b2 4

2m2(3m2n – 4 mn3)

= a2 – 2ab + b2 4.

= 6m4n – 4m2n3 5. -4 ( 3de – 2rst2)

= 6m4n – 8m3n3 5. -4 ( 3de – 2rst2)

= - 12de – 2rst2 6. ( x -3)2

= - 12de + 8rst2 6. ( x -3)2

= x2 – 9 7. 4a2 –(a + b)2

2m2(3m2n – 4 mn3)

= x2 – 6x + 9 7. 4a2 –(a + b)2

= 4a 2 –a2 + b2

= 4a 2 –( a2 +2ab + b2 )

= 3a2 + b2

= 4a2 – a2 - 2ab - b2 = 3a2 -2ab –b2

8. (2x -3)(x + 4)

8. (2x -3)(x + 4)

= 2x( x+4) – 3 (x + 4) Algebraic Expressions

= 2x( x+4) – 3 (x + 4) 86

Module PMR

= 2x2 + 8x – 3x + 12

= 2x2 + 8x – 3x - 12

= 2x2 +5x + 12

= 2x2 +5x – 12

(I ) Factorization * Process of writing an expression as a product of two or more factors. -

List out common factors for each alg. term , determine the HCF of the terms . Write as the product of 2 factors

Example 1. st – sr = s( t – r )

ab – ac = a ( b – c) a = common factor Exercise 1. 6a – 24c =

2. 4m + 12mn – 16m2 2. 4m3 – 6m2 = 4 xm + 4 x 3x mxn- 4 x 4 x m x m = = 4m ( 1 + 3n – 4m) 3. 6d2 – 3d = 3 x 2 x d xd – 3 x d = 3d ( 2d – 1)

3. 8ax + 4bx – 2cx =

4. 10mn – 15m2 =5x2xmxn–5x3xmxm = 5m ( 2n – 3m )

4. x2yz – xy2z =

5. 3st2 – 15 stw =

6. 2yz – 4yz2 + 6xyz = Algebraic Expressions

87

Module PMR

*Factorize an expression by using the difference between 2 squares i) expressions which consist of 2 terms : a2 – b2 = ( a – b)( a + b) Example 1 9 – a2 = 32 – a2 = ( 3-a)(3+a)

Exercise 1. w2 – 25 =

2. 4x2 – 25y2 = 22 x2 – 52 y2 = ( 2x)2 – (5y)2 = ( 2x – 5y)( 2x + 5y)

2. 5x2 -5 =

3. 8g2 – 18h2 = 2 ( 4g2 – 9h2 ) = 2 [ ( 2g)2 – ( 3h)2 ] = 2 (2g -3h) (2g + 3h)

3. 12d2 – 75 =

4. 36c2 -100e2 =

ii) expressions which consist of 3 terms a2 + 2ab + b2 = (a + b)2 a2 - 2ab + b2 = (a - b)2 Example 1. 9x2 + 6xy + y2 = (3x2) + 2 (3x)(y) + y2 = ( 3x + y)2 2. p2 – 4pq + q2 = p2 – 2(p)(q) + q2 = (p – q)2 Algebraic Expressions

Exercise 1. a2 + 4ab + b2 =

2. 4x2- 20x + 25 = 88

Module PMR

3. 16p2 – 24pq + 9q2 = (4p)2 – 2(4p)(3q) +(3q)2 = (4p –3q)2

3. 9e2 – 12 ef + 4f2 =

iii) expressions which consist of 4 terms ax + ay - bx - by = (ax + ay) -(bx + by) = a( x+y) - b(x+ y) = (a -b)(x + y)

ax + ay + bx + by = (ax + ay) + (bx + by) = a( x+y) + b(x+y) = (a+b)(x+y) Example 1. w2 + wz + 6w + 6z

Exercise 1. pq + qr + ps + rs

= (w2 + wz) +( 6w + 6z)

=

= w(w+z) + 6(w+z) = (w + 6)(w+z) 2. a2b2 + a2b + b+1

2. 2ab + bc + 6ad + 3cd

= (a2b2 + a2b) + (b+1)

=

= a2b (b + 1) + 1(b+1) = (a2b +1)(b+1) 3. 2x2 - 4xy + 6y – 3x

3. de – de2 + 7de – 7d

=(2x2 - 4xy) + (6y – 3x)

=

= 2x (x -2y) + 3 (2y- x) = 2x(x – 2y) – 3(x - 2y) = (2x - 3)( x - 2y) 4. ab + bc – ad – dc

4. 10 + 3ab – 15a – 2b

= (ab + bc) – (ad + dc)

=

= b(a+c) – d(a+c) = (b– d)(a+c) Algebraic Expressions

89

Module PMR

Common Errors Errors 2m − 2 1. 6m 2 =

2.

Correct Steps 2m − 2 1. 6m 2

m−2 3m 2

x2 − 9 x−3 =

=

2(m − 1) 2 × 3× m2

=

m −1 3m 2

x2 − 9 x−3

2.

( x − 3)( x − 3) ( x − 3)

=

( x − 3)( x + 3) ( x − 3)

=x+3

= x–3 3.

3. x2 – 9

x2 – 9 = x2 - 32

= (x + 9 ) ( x – 9)

= (x + 3 ) ( x – 3) 4. y2 - 62

4. y2 - 62

= ( y – 6 )( y + 6)

= ( y – 6 )2

J) Factorizing & Simplifying Algebraic Expressions * Algebraic Fractions are fractions with either its numerator or denominator or both having algebraic expressions Examples : Algebraic Expressions

x p − q 2a , , y + 1 x 2 4 − 3b 90

Module PMR

I) Simplifying algebraic Expressions * divide the numerator and denominator by their common factors. * factorizing the numerator or denominator or both and then divide the numerator and denominator by their common factors. Example 4a 2 b 1. 2ab 2 4× a× a×b = 2× a×b×b 2 × a 2a = = b b

Exercise 5rs 1. 10r 2 s =

− 12m 3 n 2. 20m 2 n 2 − 4 × 3× m × m × m × n = 5× 4× m× m× n × n − 3× m 3m =− = 5× n 5n

2.

3.

b+c b2 − c2 (b + c) 1 = = (b − c)(b + c ) b − c

x2 − 9 4. 2x 2 − 6x x 2 − 32 = 2× x × x − 2× 3× x ( x − 3)( x + 3) = 2 x ( x − 3) Algebraic Expressions

3.

21c 2 de 3 14cde 2 =

3−d 9−d2 =

e2 − f 2 4. 3e − 3 f =

91

Module PMR

=

x+3 2x

ii) Addition & Subtraction of Algebraic Expressions a) Algebraic Fractions with same denominator Example Exercise 2x 4 rt 5s − − 1. 1. y y 9k 9k = 2x − 4 = y 2.

2m − 1 m + 4 − 3n 3n (2m − 1) − (m + 4) = 3n 2m − 1 − m − 4 = 3n 2m − m − 1 − 4 = 3n m−5 = 3n

2.

x − 4 3x + 2 − 6 xy 6 xy =

b) Algebraic Fractions with different denominator Example Exercise 1 2 4x y + 1. + (LCM = 5b) 1 b 5b 2 5 = 1× b 2 = + 5b 5b b+2 = 5b 2.

5y 3 − ( LCM =4x2y) 2 2 xy 4x 5 y × y 3 × 2x − = 4x 2 y 4x 2 y

2.

5 y 2 − 6x = 4x 2 y 3.

2d − 3 5d + 1 − 2a 3b

Algebraic Expressions

(LCM = 6ab) 92

4q 5q − 2 a b 2ab 2 =

Module PMR

3b × (2d − 3) 2a × (5d + 1) − 6ab 6ab 6bd − 9b 10ad + 2a − = 6ab 6ab 6bd − 9b − (10ad + 2a ) = 6ab 6bd − 9b − 10ad − 2a = 6ab =

3.

ab + 1 2 − a − 4r 18rs =

iii)Multiplication and Division of Algebraic Expressions a) Multiplication 2 algebraic fractions involving 2 types : * Denominator with one term Example 1. 2 p 3q × 7 5a 2 p × 3q = 7 × 5a 6 pq = 35a 2.

6m 2 4n 2 × 2n 3m 2 × 3× m × m 2 × 2 × n × n × = 2× n 3× m 2× m× 2× n = 1 = 4mn

Algebraic Expressions

Exercise 7 2 × 1. 3r 9 y =

2.

3.

3x 18 y × 2 6 yz 15 x 2 =

p+r 3 × 12 x q

93

Module PMR

* denominator with two terms 1.

Example x2 − y2 x × 2x x− y ( x − y )( x + y ) x . = × 2x ( x − y) x+ y = 2

2.

2x 2 + x x 2 − y 2 × x+ y 2 xy + y x(2 x + 1) ( x − y )( x + y ) × = x+ y y (2 x + 1) x( x − y ) = y

Exercise 3x x−3 × 1. 2 x − 9 6x 2 =

2.

2x − 2 x + 3 × x 2 − 9 4x − 4 =

.

Division of Algebraic Fractions * Denominator with one term Example a 2c a e ae ÷ = × = 1. d e d 2c 2cd

2.

3.

m − n 2( m − n ) ÷ 4c 2c ( m − n) 2c × = 2(m − n) 2 4c 1 = 4 x 2 − 16 y 2 x + 4 y ÷ xy 2x 2 2 2 x − (4 y ) x + 4y ÷ = 2 xy 2x ( x − 4 y )( x + 4 y ) x× y × = 2× x× x ( x + 4 y)

Algebraic Expressions

Exercise 5 10 z 1. ÷ 2 x x =

2.

3.

94

a + b 2a + 2b ÷ cd 3c 2 d =

3b − 3a a 2 − b 2 ÷ 2d 4d 2 =

Module PMR

=

y( x − 4 y) 2x

.

m − 5 m 2 − 25 ÷ 4. 4 pq 6q

*Denominator with 2 terms Example 1. 2p p ÷ 2 q+2 q −4 2 p q 2 − 22 × q+2 p 2p (q − 2)(q + 2) = × (q + 2) p = 2(q − 2) =

2.

ab 2 2a ÷ 2 ( a − b) ( a − b 2 ) ab 2 2a ÷ (a − b) (a − b)(a + b) ab 2 (a − b)(a + b) × = ( a − b) 2a 2 b ( a + b) = 2

Exercise 5 10m ÷ 1. n − 3 3n − 9 =

3g 2 27 gh ÷ 2. 2 2 y−x y −x =

=

Algebraic Expressions

3.

95

s 2 + st rs + rt ÷ 2 w − 3 12 − 8w =

Module PMR

3,

7 x 2 − 14 x 2 x − 4 ÷ 2x + 2 x +1 1 7 x ( x − 2) ( x + 1)1 × = 2( x + 1)1 2( x − 2)1 7x ×1 = 2× 2 7x = 4

d 2 − e 2 ( d − e) 2 4. ÷ 12b − 6a 3a − 6b =

5.

ab 2 2a ÷ 2 ( a − b) ( a − b 2 ) =

Common Errors Errors 3b + 6 1. 9b 3b1 + 6 = 9b3 1+ 6 7 = = 3 3 2.

3.

Correct Steps 3b + 6 1. 9b 3(b + 2) = 9b3b b+2 = 3b

1 2 + x 3x 1+ 2 = x + 3x 3 = 4x

2.

2 p − 3q 9q − 6 p (2 p − 3q )1 1 = = 3(3q − 2 p)1 3

Algebraic Expressions

3.

96

1 2 + x 3x 1× 3 2 + = 3x 3 x 3+ 2 5 = = 3x 3x 2 p − 3q 9q − 6 p ( 2 p − 3q )1 = − 3(2 p − 3q )1

=-

1 3

Module PMR

4.

5.

1 h −1 − hk h 1 (h − 1)(×k ) = − hk h(×k ) 1 − kh − k = hk

4.

2x ÷ xy y 2x = × xy y

1 h −1 − hk h 1 (h − 1)(×k ) = − hk h(×k ) 1 − kh + k = hk 2x ÷ xy y 2x 1 2 = × = 2 y xy y

5

= 2x 2 6.

m + 4 2x − m m 4 2x = − m m 4 − 2x 2x = = m m

6

m + 4 2x − m m m + 4 − 2x = m

Questions based on PMR Format (A) Simplify each of the following expressions : 1) 4a – (a – 5) 11. (a – 3)2

2) 10q + ( -6q) -5

12 ( 3x + 2)2

3) 6p – ( -3p) – 2p

13. (5d – t)2

4) 4a – a( b+4)

14. (x – 2)2 – x( x -6)

Algebraic Expressions

97

Module PMR

5) -5m – 4(m – 2)

15. ( 2y + 3)2 – ( 5y - 2)

6) 6b – (b +3)

16. ( 3w –z)2 + z(2w –z)

7) 5x – 3(2 - x)

17) (k-2)2- 8 + 3k

8) 4k(k – 3m) – 3m(m – 4k)

18) ( 6s -1)2 – ( 4s + 1)

9) 3(x –y ) – 2 ( y – x)

19) 2 ( 3y- 4) + ( y -5)2

10) -3 ( c – d) + 2 ( 4c -2d)

20) (2p +q)2 - q(4p – 2q)

(B) Factorise completely each of the following expressions : 1. 12xy – 4x2 11. 4x -3y –xy – 12

Algebraic Expressions

98

Module PMR

2. 6e – 18ef

12, a2 b2 + a2b + b + 1

3. 4x2 -100

13. 2m2 –m + 2mn

4, 75 – 3m2

14 9c2 – 100d2

5. 3y + 12

15 uv + wv –ux –wx

6. 20 – 5x2

16 ab+ bc –ad-cd

7. 3st – 15st2u

17. k2-14k + 49

8. 36x2 – 81y2

18. g2 -12g + 36

9. m3 – 9m

19. 3x-4y-6wx+8wy

10. 4p2 -1

20. 2pq- 6pz – 3rq + 9rz

Algebraic Expressions

99

Module PMR

(C) Express each of the following expressions as a single fraction in its simplest form 2 x p 1− p − − 1. 9. 3 x 12 3m m

2.

4q 3 − p pq

10

2m − 3 m + 2 − 4 6

3.

4 1− s − s 2s 2

11

2  m−3 −  3m  12m 2 

4.

5 x −1 − 2w t

12.

8 1 − 4w − 5n 10n

5.

x+3 2− y − 2e 4

13.

3( p + 1) 6 − n − 3np n

6.

p 1− p + 3f f

14.

7 m−4 − 12m 4m 2

Algebraic Expressions

100

Module PMR

7

1 2z − 1 − 4n 8n 2

15.

8.

5p p2 + 6 − 6q 12 pq

16.

9 y − y ( y + 3) y + 3

2 4−n − 3n 9n 2

(D) Expand each of the following expressions 1. 2 (m+1) 10. (p + 2z )( p – x)

2. 3b (b – 3)

11 (n -7)2

3 -2a ( x – 4)

12. ( r – t)2 -4rt

4. 2k2 ( k – 7)

13 (4m -2)2 + 7m

5. – 5x ( x – 2y)

14 (a+ 2d)( a+ 2d)

Algebraic Expressions

101

Module PMR

6. 2e( 4e – f + 7)

7

15 (3ª +b)(2a- 2c)

16

2 s (6 x − 12 y + 9) 3

( x – 3y)( x + 3y)

8. -6pq(2pq + 4p – 3q)

17 . (2a + 1)( b- 3)

9 4 ( - 3s + 5h)

18. (x -2)( y + 3)

PMR past year questions 2004 1. Simplify (3x-1)2 –(7x + 4)

(2 marks)

2. Factorise completely a) 9xy -3x2

b) p2 – 6(p+1) – (8 –p)

( 3 marks)

Algebraic Expressions

102

Module PMR

1   1− p  3  2  − 3. Express as a single fraction in its simplest form 2m  mp      ( 3 marks)

2005 4. Simplify (2p- q)2 + q(4p –q)

5.

( 2marks)

Factorise completely each of the following expressions : (a) 4e – 12ef b) 3x 2 - 48 ( 3 marks)

5. Express

1 m+2 − as a single fraction in its simplest form. 2m 6m 2 ( 3 marks)

2006 6. Factorise completely 50 – 2m2

Algebraic Expressions

103

(2 marks)

Module PMR

7. Simplify 3 (2p -5) + (p – 3)2

8. Express

( 2 marks)

1 5 − 2v − as a single fraction in its simplest form 5m 15mv (3 marks)

2007 9. Factorise completely each of the following expressions : b) 12 – 3x2

a) 2y + 6

( 3 marks)

10. Expand each of the following expressions : (a) q(2 + p) (b) ( 3m –n)2 ( 3 marks)

11. Express

Algebraic Expressions

5 2 − 3w + as a single fraction in its simplest form 3n 6n (3 marks)

104

Module PMR

2008 12. Simplify 2p – 3q – (p + 5q)

( 2 marks)

13. Expand each of the following expressions : (a) 2g ( 5 –k)

(b) ( h – 5)(3h + 2) ( 3 marks)

14. Express

1 n−4 − as a single fraction in its simplest form n 3n ( 3marks)

CHAPTER 7 : ALGEBRAIC EXPRESSIONS ANSWERS A unknown 1. Number of books 2. number of monkeys 3. unknown : y Object : z 4. unknown : k Object : a

3) 0.7 4) 1 (ii) 1) unlike term 2) like term 3) unlike term 4) unlike term C) Algebraic Expressions i) Number of term 1) 3 2) 4 3) 5 ii) simplify Algebraic Exp. 1) 7x – 8y 2) 3z – 11w

B Algebraic terms (i) 1) -3 2 2) 5 Algebraic Expressions

105

Module PMR

3) 9r + 7s 4) -2k-5 5) -5t+7s 6) 2s -1 7) -18w

H. Expanding double brackets 1. ab + a -2b -1 2. 3m2-mn + 9m -3n 3. -6st – 8s – 15t -20 4. a2 -6a + 9 5. 9m2 -6mn +n2 6. 25x2+20x + 4 7. y2+8dy+16d2

D) Alg Terms in two or more terms * Identify coefficient of unknown -3b , -3c, -3, -3b2 E) Multiplication & division of alg terms i) find product of 2 alg terms 1) a3b2 2) -6xy2z 3) 3ab3c4 4) 56p4q2r3 5) 6w3z4 2 2 2 2 6) - p q r 5 7) 21m 4 h 2 k 5

I. Factorization 1. 6( a – 4c) 2. 2m2( 2m -3) 3. 2x ( 4a + 2b –c) 4. xyz( x -y) 5. 3st (t-5w) 6. 2yz( 1- 2z +3x)

i) expressions which consist of 2 terms 1) (w – 5)(w + 5) 2) 5(x – 1)(x + 1) 3) 3(2d-5)(2d +5) 4) (6c -10e)(6c +10e)

ii) find quotient of 2 alg. Terms 2ab 3 pqz 1) 3) − r 3d 4x 2) 4) -3rt y iii) Multiplication &Division of alg terms 1. 16p2r2 2 18k 3. -4ab4 F. Computation involve Alg Exp. 1. 40m – 16 2. -2a – 6b 3. -8p + 21 4 10 + 3t 5 2s - 33 6 -3pq+2qr –pqr 7 x – 3 – 5y 8. -3p2 9. 6u2-12 G. Expanding single Brackets 1. wy + y2 2. -15ef – 10eg 3 4r – 3rs + rt 4 4xyz – 2xyw + x2y2 Algebraic Expressions

ii) expressions which consist of 3 terms 1) (a + b)2 2) (2x – 5)2 3) ( 3e – 2f)2 iii) expressions which consist of 4 terms 1) (q +s)(p + r) 2) (b+ 3d)(2a+c) 3) (de – 7e)(1- e) 4) (5 –b)(2 – 3a ) J) Factorising & simplifying Alg Expressions. i) Simplifying alg Expressions 1 1. 2r 3ce 2 2 1 3. 3+ d 106

Module PMR

e+ f 3 ii) Addition & Subtraction of alg Exp. a) Alg Fraction with same denominator rt − 5s 1. 9k 3− x 2 3 xy b)Alg Fraction with different denominator 10 x + y 1. 5 8bq − 5aq 2. 2a 2 b 2 9abs + 9b − 4 + 2a 3. 36rs 4

iii) Mul & division of Alg Exp a) Multiplication of 2 alg fractions * Denominator with one term 14 1. 27 ry 3 2. 5 xz 2 p+r 3. 4 xq * denominator with 2 terms 1 1. 2 x( x + 3) 1 2 2( x + 3) b) Division of Alg Fractions * Denominator with one term x 1. 2z 3c 2. 2 3 3. − 2d ( a + b) Algebraic Expressions

4.

3 2 p (m + 5)

* Denominator with 2 terms 3 1. 2m g 2. 9h( y + x ) 4s 3. − r d +e 4 − d −e b 2 ( a + b) 5. 2

Questions based on PMR Format A. Simplify expressions 1. 3a+ 5 2. 4q -5 3. 7p 4. –ab 5. -9m+8 6. 5b -3 7. 8x – 6 8. 4k2 - 3m2 9. 5x – 5y 10. 5c – d 11 a2 - 6a + 9 12 9x2+ 12x +4 13 25d2 -10dt + t2 14 2x + 4 15 4y2 + 7y + 11 16 9w2 - 4wz 17 k3 –k -4 18 36s2 – 16s 19 y2 -4y + 17 20 4p2 + 3q2 B. Factorise Expressions 1 4x( 3y – x) 2. 6e( 1 – 3f) 107

Module PMR

3 4. 5. 6. 7. 8 9 10 11 12 13 14 15 16 17 18 19 20

(2x – 10)( 2x + 10) 3 (5 –m)(5+m) 3( y + 4) 5(2-x)(2+x) 3st(1 – 5tu) 9(2x -3y)(2x+3y) m(m-3)(m+3) (2p-1)(2p+1) (x+3)(4-y) (a2b+1)(b+1) m(2m-1+2n) (3c-10d)(3c+10d) (v-x)(u+w) (b-d)(a+c) (k -7)2 (g – 6)2 (3x -4y)( 1-2w) (2p-3r)(q-2)

C) Express expressions as a single fraction in its simplest form 8 − x2 1. . 12 x 4q 2 − 3 2. pq 9s − 1 3. 2s 2 5t − 2 wx + 2 w 4. 2 wt 2 x + 6 − 2e + ey 5. 4e p + 3 − 3p 6. 3f 2n − 2 x + 1 7. 8n 2 9 p2 − 6 8. 12 pq PMR Past Year Questions

9. 10. 11. 12. 13 14. 15. 16.

D Expand expressions 1. 2m+2 2. 3b2 -9b 3. -2ax+ 8x 4.. 2k3 – 14k2 5. -5x2+ 10xy 6. 8e2 -2ef +14e 7. 4sx -8sy +6s 8. -12p2q2 -24p2q +18pq2 9. -12s +20h 10. p2 –px + 2pz – 2zx 11. n2 -14x +49 12. r2 -6rt +t2 13. 16m2 -9m + 4 14, a2 +4ad + 4d2 15. 6a2 -6ac+2ab-2bc 16. x2 + 9y2 17. 18.

2004 1. 9x2 -13x -3 2. a) 3x(3y-x) b) p2- 7p -14 2 p −1 3. mp Algebraic Expressions

4p −3 m 4m − 13 12 7m + 3 12m 2 15 + 4 w 10n 3 − 15 p + 3 pn 3np m+3 3m 2 3− y y 7n − 4 9n 2

108

2ab- 6ª + b -3 xy +3x -2y -6

Module PMR

2005 4. 4p2 5. a) 4e(1-3f) 6. m −1 7. 3m 2

b) 3(x-4)(x+4)

2006 6. 2(5 –m)(5 +m) 7. p2 – 6 v −1 8. 3mv 2007 9. a) 2(y+3) 10. a) 2q+pq 4−w 11. 2n

b) 3(2-x)(2+x) b) 9m2- 6mn +n2

2008 12. p -8q 13. a) 10g -2gh b) 3h2 -12h -10 7−n 14. 3n

Algebraic Expressions

109

Related Documents

Chapter 7
April 2020 21
Chapter 7
November 2019 40
Chapter 7
November 2019 44