Chapter 6 - Design Of Beams.docx

  • Uploaded by: Claudine Pansacala
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chapter 6 - Design Of Beams.docx as PDF for free.

More details

  • Words: 4,061
  • Pages: 16
CHAPTER 6 DESIGN OF BEAMS

114 | R e i n f o r c e d C o n c r e t e

Moment Results from Grasp:

Exterior Beams Midspan Support 45.1587 -92.7698 80.8547 -179.847 139.8988 -233.931 156.3688 -254.288

Roof Deck 4th Floor 3rd Floor 2nd Floor

Interior Beams Midspan support 54.6783 -100.902 93.9771 -200.572 126.8842 -242.67 141.9795 -260.629

Solving for 𝝆b; f’c = 28 Mpa; fy = 414 Mpa; db = 25 mm 𝝆b =

0.85f′cβ600 fy(600+fy)

0.8(28)(0.85)600

=

414(600+414)

𝝆b = 0.02891 Solving for 𝝆, 𝝆max = 0.75 𝝆b = 0.75(0.02891) = 0.02168 𝝆min =

1.4 fy

=

1.4 414

= 0.003381

𝝆 = 0.6 𝝆max = 0.6 (0.02168) = 0.01301 So, use 𝝆 = 0.01301 Solving for ω, ω=

ρfy f′c

=

(0.01301)(414) 28

ω = 0.19236 Solving for 𝝎𝒎𝒂𝒙, 𝝎𝒎𝒂𝒙 =

ρ𝑚𝑎𝑥fy f′c

=

(0.02168)(414) 28

𝝎𝒎𝒂𝒙 = 0.32055

115 | R e i n f o r c e d C o n c r e t e

Designing for Exterior Beams:

Roof Deck Mumidspan = 45.1587 kN - m Musupport = -92.7698 kN - m Midspan Mu = 45.1587 kN – m 𝝆 = 0.01301 ω = 0.19236

fy = 414 MPa f’c = 28 MPa

Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd

Solution: Mu = ∅f′cωbd2(1 − 0.59ω) 45.1587×106 = 0.9 (28) (0.19236) bd2 (1 – 0.59 (0.19236)) bd2 = 10508570.9 mm Assume d = 1.75b b(1.75b)2 = 10508570.9 mm b = 150.83 mm “say” 220 mm d = 263.95 mm “say” 300 mm As = ρbd = 0.01301 (150.83) (263.95) = 517.95 mm2 Using 25 mm ∅ main bars: N=

517.95 π(25)2

Investigate:

= 1.06 “say” 2 bars

𝜋(25)2

(2) = ρ (220) (327.5) ρ = 0.0136 (ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

(0.0136)(414) 28

ω = 0.2011 Mu(capacity) = 0.9 (28) (0.2011) (220) (327.5)2 (1 – 0.59 (0.2011)) Mu(capacity) = 105.39 kN – m Mu(capacity) > Mu(design) = 45.1587 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY!

4

S = 220 – 100 – 2(25) = 70 mm > 50 mm (OK!)

Support

2 A ȳ = 2 A (62.5) ȳ = 62.5 mm

Mu = -92.7698 kN – m 𝝆max = 0.02168 ωmax = 0.32055

D = 300 + 62.5 = 362.5 mm “say” 390 mm dnew = 390 – 62.5 = 327.5 mm

Solution:

fy = 414 MPa f’c = 28 MPa

Mumax = ∅f′cωmaxbd2(1 − 0.59ωmax) Mumax = 0.9 (28) (0.32055) (220) (327.5)2 (1 – 0.59 (0.32055)) Mumax = 154.56 kN – m > Mu(design) 116 | R e i n f o r c e d C o n c r e t e

𝜋(25)2

DESIGN AS SINGLY REINFORCED Mu = ∅f′cωbd2(1 − 0.59ω) 92.7698 x 106 = 0.9 (28) (ω) (220) (327.5)2 (1 – 0.59 (ω)) ω = 0.1738 ω=

ρfy f′c

0.1738 =

ρ(414) 28

ρ = 0.0118 (ρmin < ρ < ρmax) (OK!) As = ρbd = 0.0118 (220) (327.5) = 850.19 mm2

(2) = ρ (220) (327.5) ρ = 0.0136 (ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

(0.0136)(414) 28

ω = 0.2011 Mu(capacity) = 0.9 (28) (0.2011) (220) (327.5)2 (1 – 0.59 (0.2011)) Mu(capacity) = 105.39 kN – m Mu(capacity) > Mu(design) = 92.7698 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY!

Using 25 mm ∅ main bars: N=

850.19 π(25)2

= 1.73 “say” 2 bars

4th Floor

4

S = 220 – 100 – 2(25) = 70 mm > 50 mm (OK!)

Mumidspan = 80.8547 kN - m Musupport = -179.847 kN - m Midspan

2 A ȳ = 2 A (62.5) ȳ = 62.5 mm dnew = 390 – 62.5 = 327.5 mm

Mu = 80.8547 kN – m 𝝆 = 0.01301 ω = 0.19236

fy = 414 MPa f’c = 28 MPa

Solution: Mu = ∅f′cωbd2(1 − 0.59ω) 80.8547×106 = 0.9 (28) (0.19236) bd2 (1 – 0.59 (0.19236)) bd2 = 18815141.89 mm Assume d = 1.75b b(1.75b)2 = 18815141.89 mm b = 183.15 mm “say” 270 mm d = 320.51 mm “say” 350 mm Investigate:

As = ρbd = 0.01301 (183.15) (320.51) = 763.71 mm2

Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd

Using 25 mm ∅ main bars:

117 | R e i n f o r c e d C o n c r e t e

N=

763.71 π(25)2

= 1.56 “say” 2 bars

4

S = 270 – 100 – 2(25) = 120 mm > 50 mm (OK!) 2 A ȳ = 2 A (62.5) ȳ = 62.5 mm D = 350 + 62.5 = 412.5 mm “say” 430 mm dnew = 430 – 62.5 = 367.5 mm

Support Mu = -179.847 kN – m 𝝆max = 0.02168 ωmax = 0.32055

fy = 414 MPa f’c = 28 MPa

Solution: Mumax = ∅f′cωmaxbd2(1 − 0.59ωmax) Mumax = 0.9 (28) (0.32055) (270) (367.5)2 (1 – 0.59 (0.32055)) Mumax = 238.85 kN – m > Mu(design) DESIGN AS SINGLY REINFORCED Mu = ∅f′cωbd2(1 − 0.59ω) 179.847 x 106 = 0.9 (28) (ω) (270) (367.5)2 (1 – 0.59 (ω)) ω = 0.2258 ω=

ρfy f′c

0.2258 =

ρ = 0.01527

Investigate: Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd 𝜋(25)2

(2) = ρ (270) (367.5) ρ = 0.00989 (ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

ρ(414)

(0.00989)(414) 28

ω = 0.14623 Mu(capacity) = 0.9 (28) (0.14623) (270) (367.5)2 (1 – 0.59 (0.14623)) Mu(capacity) = 122.78 kN – m

28

(ρmin < ρ < ρmax) (OK!)

As = ρbd = 0.01527 (270) (367.5) = 1515.17 mm2 Using 25 mm ∅ main bars: 1515.17 N = π(25)2 = 3.09 “say” 4 bars 4

S = 270 – 100 – 2(25) = 120 mm > 50 mm (OK!) 4 A ȳ = 2 A (62.5) + 2 A (112.5) ȳ = 87.5 mm dnew = 430 – 87.5 = 342.5 mm

Mu(capacity) > Mu(design) = 80.969 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY! 118 | R e i n f o r c e d C o n c r e t e

Solution: Mu = ∅f′cωbd2(1 − 0.59ω) 139.8988×106 = 0.9 (28) (0.19236) bd2 (1 – 0.59 (0.19236)) bd2 = 32554888.85 mm Assume d = 1.75b b(1.75b)2 = 32554888.85 mm b = 219.88 mm “say” 290 mm d = 384.79 mm “say” 390 mm Investigate: As = ρbd = 0.01301 (219.88) (384.79) = 1100.75 mm2

Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd

Using 25 mm ∅ main bars:

𝜋(25)2

(4) = ρ (270) (342.5) ρ = 0.02123 (ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

(0.02123)(414)

N=

1100.75 π(25)2

= 2.24 “say” 3 bars

4

290−100−3(25)

S= (OK!)

28

ω = 0.3139 Mu(capacity) = 0.9 (28) (0.3139) (270) (342.5)2 (1 – 0.59 (0.3139)) Mu(capacity) = 204.14 kN-m Mu(capacity) > Mu(design) = 179.145 kN – m

2

= 57.5 mm > 50 mm

3 A ȳ = 3 A (62.5) ȳ = 62.5 mm D = 390 + 62.5 = 452.5 mm “say” 470 mm dnew = 470 – 62.5 = 407.5 mm

THEREFORE, THE DESIGN IS SAFE AND OKAY!

3rd Floor Mumidspan = 139.8988 kN - m Musupport = -233.931 kN - m Midspan Mu = 139.8988 kN – m 𝝆 = 0.01301 ω = 0.19236

fy = 414 MPa f’c = 28 MPa

Investigate: Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd 119 | R e i n f o r c e d C o n c r e t e

𝜋(25)2

(3) = ρ (290) (407.5) ρ = 0.01246 (ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

Using 25 mm ∅ main bars: N=

(0.01246)(414)

1772.63 π(25)2

= 3.61 “say” 4 bars

4

28

ω = 0.18423

S = 290 – 100 – 2(25) = 140 mm > 50 mm (OK!)

Mu(capacity) = 0.9 (28) (0.18423) (290) (407.5)2 (1 – 0.59 (0.18423)) Mu(capacity) = 199.27 kN – m

4 A ȳ = 2 A (62.5) + 2 A (112.5) ȳ = 87.5 mm

Mu(capacity) > Mu(design) = 139.8988 kN – m

dnew = 470 – 87.5 = 382.5 mm

THEREFORE, THE DESIGN IS SAFE AND OKAY!

Support Mu = -233.931kN – m 𝝆max = 0.02168 ωmax = 0.32055

fy = 414 MPa f’c = 28 MPa

Solution: Mumax = ∅f′cωmaxbd2(1 − 0.59ωmax) Mumax = 0.9 (28) (0.32055) (290) (407.5)2 (1 – 0.59 (0.32055)) Mumax = 315.43 kN – m > Mu(design) DESIGN AS SINGLY REINFORCED Mu = ∅f′cωbd2(1 − 0.59ω) 233.931 x 106 = 0.9 (28) (ω) (290) (407.5)2 (1 – 0.59 (ω)) ω = 0.22179

Investigate: Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd 𝜋(25)2

(4) = ρ (290) (382.5) ρ = 0.0177 (ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

(0.0177)(414) 28

ω = 0.26171 ω=

ρfy f′c

0.22179 = ρ = 0.015

ρ(414) 28

(ρmin < ρ < ρmax) (OK!)

As = ρbd = 0.015 (290) (407.5) = 1772.63 mm2

Mu(capacity) = 0.9 (28) (0.26171) (290) (382.5)2 (1 – 0.59 (0.26171)) Mu(capacity) = 236.61 kN – m Mu(capacity) > Mu(design) = 233.038 kN – m

120 | R e i n f o r c e d C o n c r e t e

THEREFORE, THE DESIGN IS SAFE AND OKAY!

2nd Floor Mumidspan = 156.3688 kN - m Musupport = -254.288 kN - m Midspan Mu = 156.3688 kN – m 𝝆 = 0.01301 ω = 0.19236

fy = 414 MPa f’c = 28 MPa

Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd

Solution: Mu = ∅f′cωbd2(1 − 0.59ω) 156.3688×106 = 0.9 (28) (0.19236) bd2 (1 – 0.59 (0.19236)) bd2 = 36387509.43 mm Assume d = 1.75b b(1.75b)2 = 36387509.43 mm b = 228.19 mm “say” 300 mm d = 399.33 mm “say” 400 mm As = ρbd = 0.01301 (228.19) (399.33) = 1185.51 mm2 Using 25 mm ∅ main bars: N=

Investigate:

1185.51 π(25)2

= 2.42 “say” 3 bars

𝜋(25)2

(3) = ρ (300) (402.5) ρ = 0.0122 (ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

(0.0122)(414) 28

ω = 0.18039 Mu(capacity) = 0.9 (28) (0.18039) (300) (402.5)2 (1 – 0.59 (0.18039)) Mu(capacity) = 197.42 kN – m Mu(capacity) > Mu(design) = 156.3688 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY!

4

300−100−3(25)

S= (OK!)

2

= 62.5 mm > 50 mm

3 A ȳ = 3 A (62.5) ȳ = 62.5 mm D = 400 + 62.5 = 462.5 mm “say” 465 mm dnew = 465 – 62.5 = 402.5 mm

Support Mu = -254.288 kN – m 𝝆max = 0.02168 ωmax = 0.32055

fy = 414 MPa f’c = 28 MPa

Solution: Mumax = ∅f′cωmaxbd2(1 − 0.59ωmax) Mumax = 0.9 (28) (0.32055) (300) (402.5)2 (1 – 0.59 (0.32055)) 121 | R e i n f o r c e d C o n c r e t e

Mumax = 318.35 kN – m > Mu(design)

As = ρbd 𝜋(25)2

DESIGN AS SINGLY REINFORCED Mu = ∅f′cωbd2(1 − 0.59ω) 254.288 x 106 = 0.9 (28) (ω) (300) (402.5)2 (1 – 0.59 (ω)) ω = 0.24224 ω=

ρfy f′c

0.24224 =

ω=

ρfy f′c

=

(0.02139)(414) 28

ω = 0.31627 Mu(capacity) = 0.9 (28) (0.31627) (300) (382.5)2 (1 – 0.59 (0.31627)) Mu(capacity) = 284.54 kN – m

ρ(414)

ρ = 0.01638

(5) = ρ (300) (382.5) ρ = 0.02139 (ρmin < ρ < ρmax) (OK!) 4

28

(ρmin < ρ < ρmax) (OK!)

As = ρbd = 0.01631 (300) (402.5) = 1969.43 mm2

Mu(capacity) > Mu(design) = 254.288 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY!

Using 25 mm ∅ main bars: N=

1969.43 π(25)2

= 4.01 “say” 5 bars

4

300−100−3(25)

S= (OK!)

2

= 62.5 mm > 50 mm

5 A ȳ = 3 A (62.5) + 2 A (112.5) ȳ = 82.5 mm dnew = 465 – 82.5 = 382.5 mm

Designing for Interior Beams:

Roof Deck Mumidspan = 54.6783 kN - m Musupport = -100.902 kN - m Midspan Mu = 54.6783 kN – m fy = 414 MPa 𝝆 = 0.01301 f’c = 28 MPa ω = 0.19236 Solution: Mu = ∅f′cωbd2(1 − 0.59ω) 54.6783×106 = 0.9 (28) (0.19236) bd2 (1 – 0.59 (0.19236)) bd2 = 12723811.64 mm

Investigate: Mu = ∅f′cωbd2(1 − 0.59ω) where:

Assume d = 1.75b b(1.75b)2 = 12723811.64 mm b = 160.76 mm “say” 250 mm d = 281.33 mm “say” 300 mm

122 | R e i n f o r c e d C o n c r e t e

As = ρbd = 0.01301 (160.76) (281.33) = 588.40 mm2 Using 25 mm ∅ main bars: N=

588.40 π(25)2

= 1.20 “say” 2 bars

4

S = 250 – 80 – 2(25) = 120 mm > 50 mm (OK!) 2 A ȳ = 2 A (52.5) ȳ = 52.5 mm D = 300 + 52.5 = 352.5 mm “say” 380 mm dnew = 380 – 52.5 = 327.5 mm

Mu(capacity) > Mu(design) = 54.6783 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY!

Support Mu = -100.902 kN – m 𝝆max = 0.02168 ωmax = 0.32055

fy = 414 MPa f’c = 28 MPa

Solution: Mumax = ∅f′cωmaxbd2(1 − 0.59ωmax) Mumax = 0.9 (28) (0.32055) (250) (327.5)2 (1 – 0.59 (0.32055)) Mumax = 175.64 kN – m > Mu(design) DESIGN AS SINGLY REINFORCED Mu = ∅f′cωbd2(1 − 0.59ω) 100.902 x 106 = 0.9 (28) (ω) (250) (327.5)2 (1 – 0.59 (ω)) ω = 0.16548 ω=

ρfy f′c

0.16548 =

ρ(414)

ρ = 0.01119

Investigate: Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd 𝜋(25)2

(2) = ρ (250) (327.5) 4 ρ = 0.01199 (ρmin < ρ < ρmax) (OK!)

28

(ρmin < ρ < ρmax) (OK!)

As = ρbd = 0.01119 (250) (327.5) = 916.18 mm2 Using 25 mm ∅ main bars: N=

916.18 π(25)2

= 1.87 “say” 2 bars

4

ω=

ρfy f′c

=

(0.01199)(414) 28

ω = 0.17728 Mu(capacity) = 0.9 (28) (0.17728) (250) (327.5)2 (1 – 0.59 (0.17728)) Mu(capacity) = 107.26 kN – m

S = 250 – 80 – 2(25) = 120 mm > 50 mm (OK!) 2 A ȳ = 2 A (52.5) ȳ = 52.5 mm dnew = 380 – 52.5 = 327.5 mm 123 | R e i n f o r c e d C o n c r e t e

Solution: Mu = ∅f′cωbd2(1 − 0.59ω) 93.9771×106 = 0.9 (28) (0.19236) bd2 (1 – 0.59 (0.19236)) bd2 = 21868765.46 mm Assume d = 1.75b b(1.75b)2 = 21868765.46 mm b = 192.57 mm “say” 270 mm d = 337 mm “say” 380 mm Investigate: As = ρbd = 0.01301 (192.57) (337) = 844.30 mm2

Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd

Using 25 mm ∅ main bars:

𝜋(25)2

(2) = ρ (250) (327.5) ρ = 0.01199 (ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

(0.01199)(414)

N=

844.30 π(25)2

= 1.72 “say” 2 bars

4

S = 270 – 80 – 2(25) = 140 mm > 50 mm (OK!)

28

ω = 0.17728 Mu(capacity) = 0.9 (28) (0.17728) (250) (327.5)2 (1 – 0.59 (0.17728)) Mu(capacity) = 107.26 kN – m

2 A ȳ = 2 A (52.5) ȳ = 52.5 mm D = 380 + 52.5 = 432.5 mm “say” 450 mm dnew = 450 – 52.5 = 397.5 mm

Mu(capacity) > Mu(design) = 100.902 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY! 4th Floor Mumidspan = 93.9771 kN - m Musupport = -200.572 kN - m Midspan Mu = 93.9771 kN – m 𝝆 = 0.01301 ω = 0.19236

fy = 414 MPa f’c = 28 MPa

Investigate: Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd 124 | R e i n f o r c e d C o n c r e t e

𝜋(25)2

(2) = ρ (270) (397.5) ρ = 0.00915 (ρmin < ρ < ρmax) (OK!)

Using 25 mm ∅ main bars:

4

ω=

ρfy f′c

=

N=

1549.77 π(25)2

= 3.16 “say” 4 bars

4

(0.00915)(414) 28

S = 270 − 80 − 2(25) = 140 mm > 50 mm (OK!)

ω = 0.13529 Mu(capacity) = 0.9 (28) (0.13529) (270) (397.5)2 (1 – 0.59 (0.13529)) Mu(capacity) = 133.84 kN – m

4 A ȳ = 2 A (52.5) + 2 A (102.5) ȳ = 77.5 mm dnew = 450 – 77.5 = 372.5 mm

Mu(capacity) > Mu(design) = 93.9771 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY!

Support Mu = -200.572 kN – m 𝝆max = 0.02168 ωmax = 0.32055

fy = 414 MPa f’c = 28 MPa

Solution: Investigate: Mumax = ∅f′cωmaxbd (1 − 0.59ωmax) Mumax = 0.9 (28) (0.32055) (270) (397.5)2 (1 – 0.59 (0.32055)) Mumax = 279.44 kN – m > Mu(design)

Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd

DESIGN AS SINGLY REINFORCED

(4) = ρ (270) (372.5) ρ = 0.01952 (ρmin < ρ < ρmax) (OK!)

2

Mu = ∅f′cωbd2(1 − 0.59ω) 200.572 x 106 = 0.9 (28) (ω) (270) (397.5)2 (1 – 0.59 (ω)) ω = 0.21345 ω=

ρfy f′c

0.21345 =

ρ(414)

ρ = 0.01444

28

(ρmin < ρ < ρmax) (OK!)

As = ρbd = 0.01444 (270) (397.5) = 1549.77 mm2

𝜋(25)2 4

ω=

ρfy f′c

=

(0.01952)(414) 28

ω = 0.28862 Mu(capacity) = 0.9 (28) (0.28862) (270) (372.5)2 (1 – 0.59 (0.28862)) Mu(capacity) = 226.09 kN – m Mu(capacity) > Mu(design) = 200.572 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY! 125 | R e i n f o r c e d C o n c r e t e

3rd Floor Mumidspan = 126.8842 kN - m Musupport = -242.67 kN - m Midspan Mu = 126.8842 kN – m 𝝆 = 0.01301 ω = 0.19236

fy = 414 MPa f’c = 28 MPa Investigate:

Solution: Mu = ∅f′cωbd (1 − 0.59ω) 126.8842×106 = 0.9 (28) (0.19236) bd2 (1 – 0.59 (0.19236)) bd2 = 29526350.68 mm 2

Assume d = 1.75b b(1.75b)2 = 29526350.68 mm b = 212.84 mm “say” 260 mm d = 372.47 mm “say” 375 mm As = ρbd = 0.01301 (212.84) (372.47) = 1031.39 mm2 Using 25 mm ∅ main bars: N=

1031.39 π(25)2

(3) = ρ (260) (372.5) ρ = 0.0152(ρmin < ρ < ρmax) (OK!) 4

ω=

ρfy f′c

=

(0.0152)(414) 28

ω = 0.2247 Mu(capacity) = 0.9 (28) (0.2247) (260) (372.5)2 (1 – 0.59 (0.2247)) Mu(capacity) = 177.20 kN – m

= 2.10 “say” 3 bars

260−80−3(25) 2

𝜋(25)2

Mu(capacity) > Mu(design) = 126.8842 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY!

4

S=

Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd

= 52.5 mm > 50 mm (OK!)

3 A ȳ = 3 A (52.5) ȳ = 52.5 mm D = 375 + 52.5 = 427.5 mm “say” 425 mm dnew = 425 – 52.5 = 372.5 mm

Support Mu = -242.67 kN – m 𝝆max = 0.02168 ωmax = 0.32055

fy = 414 MPa f’c = 28 MPa

Solution: Mumax = ∅f′cωmaxbd2(1 − 0.59ωmax) Mumax = 0.9 (28) (0.32055) (260) (372.5)2 (1 – 0.59 (0.32055)) Mumax = 236.31 kN – m < Mu(design)

126 | R e i n f o r c e d C o n c r e t e

DESIGN AS DOUBLY REINFORCED As1 = ρbd = 0.02168 (260) (372.5) = 2099.71 mm2 N1 =

2099.71 π(25)2

= 4.28 “say” 5 bars

4

Mu1 = Mumax = 236.31 kN – m Mu2 = Mu – Mu1 Mu2 = ∅As2fy(d-d’) 242.67x106 – 236.31x106 = 0.9 (As2) (414) (372.5 – 52.5) As2 = 53.34 mm2 N=

53.34 π(25)2

a = β1c 140.48 = 0.85c c = 165.27 mm f’s = 600

𝑐−𝑑′ 𝑐

= 600

165.27−52.5 165.27

f’s = 409.40 MPa < fy = 414 MPa compression steel does not yield 𝑓𝑦

A’s = As2 𝑓′𝑠

= 0.11 “say” 2 bars

414

A’s = 53.34 409.40 = 53.94 mm2

4

S=

0.85f’c ab = As1fy 0.85(28) a (260) = 2099.71 (414) a = 140.48 mm

260−80−3(25) 2

= 52.5 mm > 50 mm (OK!)

Investigate:

5 A ȳ = 3 A (52.5) + 2 A (102.5) ȳ = 72.5 mm

Assume compression steel yields (f’s = fy)

dnew = 425 – 72.5 = 352.5 mm

As =

𝜋 (25)2 4

(5) = 2454.37 mm2

As2 = A’s =

𝜋 (25)2 4

As1 = As – As2 = 1472.62 mm2

(2) = 981.75 mm2

𝜋 (25)2 4

(5) -

𝜋 (25)2 4

(2) =

Solve for a and c: C1 = T1 0.85f’c ab = As1fy 0.85(28) a (260) = 1472.62(414) a = 98.52 mm Check if compression steel yields: f’s = 600 where: C1 = T1

𝑐−𝑑′ 𝑐

a = β1c 98.52 = 0.85c c = 115.91 mm Solve for the stress in compression steel

127 | R e i n f o r c e d C o n c r e t e

f’s = 600

𝑐−𝑑′ 𝑐

= 600

115.91−52.5 115.91

f’s = 328.24 MPa < fy = 414 MPa compression steel does not yield Investigate: f’s = 600

𝑐−𝑑′ 𝑐

= 600

𝑐−52.5

Solution: Mu = ∅f′cωbd2(1 − 0.59ω) 141.9795×106 = 0.9 (28) (0.19236) bd2 (1 – 0.59 (0.19236)) bd2 = 33039074.26 mm

𝑐

C1 + C2 = T 0.85f’c ab + A’sf’s = Asfy 𝑐−52.5 0.85(28)(0.85c)(260) + 981.75(600 𝑐 ) = 2454.37(414) c = 127.36 mm a = β1c a = 0.85(127.36) a = 108.26 mm

Assume d = 1.75b b(1.75b)2 = 33039074.26 mm b = 220.96 mm “say” 300 mm d = 386.68 mm “say” 400 mm As = ρbd = 0.01301 (220.96) (386.68) = 1111.58 mm2 Using 25 mm ∅ main bars: N=

f’s = 600

𝑐−𝑑′ 𝑐

= 600

f’c = 28 MPa

𝝆 = 0.01301 ω = 0.19236

127.36−52.5

1111.58 π(25)2

= 2.26 “say” 3 bars

4

127.36

S=

f’s = 352.67 MPa Mu = Mu1 + Mu2 Mu = ∅f′c ab (d – a/2) + ∅A’sf’s (d-d’) Mu = 0.9(28) (108.26)(260)(372.5 – 108.26/2) + 0.9(981.75)(352.67)(352.5-52.5) Mu(capacity) = 319.31 kN - m

300−80−3(25) 2

= 72.5 mm > 50 mm (OK!)

3 A ȳ = 3 A (52.5) ȳ = 52.5 mm D = 400 + 52.5 = 452.5 mm “say” 460 mm dnew = 460 – 52.5 = 407.5 mm

Mu(capacity) > Mu(design) = 242.67 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY!

2nd Floor Mumidspan = 141.9795 kN - m Musupport = -260.629 kN - m Investigate:

Midspan Mu = 141.9795 kN – m

fy = 414 MPa

Mu = ∅f′cωbd2(1 − 0.59ω) where: 128 | R e i n f o r c e d C o n c r e t e

As = ρbd 𝜋(25)2

(3) = ρ (300) (407.5) ρ = 0.01205 (ρmin < ρ < ρmax) (OK!)

As = ρbd = 0.01638 (300) (407.5) = 2002.46 mm2

4

ω=

ρfy f′c

=

Using 25 mm ∅ main bars:

(0.01205)(414)

N=

28

2002.46 π(25)2

= 4.08 “say” 5 bars

4

ω = 0.17817 S=

300−80−3(25) 2

= 72.5 mm > 50 mm (OK!)

Mu(capacity) = 0.9 (28) (0.17817) (300) (407.5)2 (1 – 0.59 (0.17817)) Mu(capacity) = 200.16 kN – m

5 A ȳ = 3 A (52.5) + 2 A (102.5) ȳ = 72.5 mm

Mu(capacity) > Mu(design) = 141.9795 kN – m

dnew = 460 – 72.5 = 387.5 mm

THEREFORE, THE DESIGN IS SAFE AND OKAY!

Support Mu = -260.629 kN – m 𝝆max = 0.02168 ωmax = 0.32055

fy = 414 MPa f’c = 28 MPa

Solution:

Investigate:

Mumax = ∅f′cωmaxbd2(1 − 0.59ωmax) Mumax = 0.9 (28) (0.32055) (300) (407.5)2 (1 – 0.59 (0.32055)) Mumax = 326.31 kN – m > Mu(design)

Mu = ∅f′cωbd2(1 − 0.59ω) where: As = ρbd 𝜋(25)2

(5) = ρ (300) (387.5) ρ = 0.02111 (ρmin < ρ < ρmax) (OK!) 4

DESIGN AS SINGLY REINFORCED Mu = ∅f′cωbd2(1 − 0.59ω) 260.629 x 106 = 0.9 (28) (ω) (300) (407.5)2 (1 – 0.59 (ω)) ω = 0.24223 ω=

ρfy f′c

0.24223 =

ρ(414)

ρ = 0.01638

28

(ρmin < ρ < ρmax) (OK!)

ω=

ρfy f′c

=

(0.02111)(414) 28

ω = 0.31213 Mu(capacity) = 0.9 (28) (0.31213) (300) (387.5)2 (1 – 0.59 (0.31213)) Mu(capacity) = 289.07 kN – m Mu(capacity) > Mu(design) = 260.629 kN – m THEREFORE, THE DESIGN IS SAFE AND OKAY! 129 | R e i n f o r c e d C o n c r e t e

Related Documents

6 Design
June 2020 5
Chapter 6
November 2019 22
6 Chapter
November 2019 18

More Documents from ""

Bridge.docx
April 2020 6
Th.docx
December 2019 3
Chapter 7.docx
December 2019 6