Module PMR
CHAPTER 3 : LINEAR EQUATIONS 1.
Solve linear equation = Finding the value of the unknown which satisfies the equation.
2.
The solution of the equation is also known as the root of the equation.
3.
A linear equation in one unknown has only one root.
4.
To determine whether a given value is a solution of an equation, substitute the value into the equation. If the sum of the left hand side (LHS) = sum of right hand side (RHS), then the given value is a solution. There are 4 different forms of linear equation as follow: Equation x+a=b
Solution x=b-a
x-a=b
x=b+a
ax = b
x
x b a
b a
x=axb
Solving Linear Equations in One Unknown involving combined operations of +, -, x, . Steps:
1. Work on the bracket first, if there is any. 2. Group the terms with the unknown on the left hand side of the equation while the numbers on the right side. 3. Solve the equation using combined operations. 4. Check your solution by substituting the value into the original equation.
Examples: 1. Given that 2y + 11 = -5, calculate the value of y. Solutions:
Linear Equations
32
Module PMR
2 y 11 5 2 y 5 11 2 y 16 16 y 2 y 8 2. If k 1
k 5 ,find the value of k. 3
3. Find the value of q which satisfies the equation 3(q 4) q 2
Solution:
Solution: k 5 3 3(k 1) k 5 3k 3 k 5 3k k 5 3 2k 8 8 k 2 k 4 k 1
3(q 4) q 2 3q 12 q 2 3q q 2 12 2q 14 14 q 2 q7
4. If 7 - (x + 1) = -4x, then x = ? Solution: 7 ( x 1) 4 x 7 x 1 4 x x 4 x 7 1 3 x 6 6 x 3 x 2 Common Errors No Errors m 2 7 1. m 7 2 m 5 x5 3 2. x 3 5 x8
Linear Equations
Correct Steps m 2 7 m 7 2 m 9 x5 3 x 35 x 2
33
Module PMR
3.
2y 8 8 y 2 y4
2y 8 y 8 2 y 16 1 p 8 4
4.
p 8
1 p 8 4 p 8 4 p 32
1 4
p2
5.
1.
2x 3 7 2x 7 3 2 x 10 10 x 2 x5 Exercise a) x 2 10
2x 3 7 2x 7 3 2x 4 x 4 2 x8 Example x 5 11 x 11 5 x6
b) x 4 2
c) 4 x 7
d) 10 x 3
e) 6 x 3
f) 3 7 x
Linear Equations
34
Module PMR
2.
x 3 5 x 53 x8
a)
x 8 6
b)
x 10 3
c) 7 x 2
d) 1 x 9
e) 3 x 7
f) 5 9 x
3.
5 6 x x 65 x 1
a) 6 7 x b) 5 4 x
c) 3 x 2
d) 1 x 10
e) x 8 3
f) 5 x 7
Linear Equations
35
Module PMR
4.
2 x 10 10 x 2 x 5
a) 3 x 18 b) 5 x 25 c) 8 2x d) 16 4x e) x 10 f) 3 x
5.
x 2 5 x 25 x 10
a)
1 2
x 5 2
b)
x 2 7
c)
x 1 2 3
d)
5x 10 3
2 1 e) x 5 4
f)
Linear Equations
36
x 3 6 2
Module PMR
6.
2x 1 5 2x 5 1 2x 6 6 x 2 x3
a) 3 x 4 5
b) 6 4 x 2
c)
1 x 3 4 2
d) 3
2 x 7 5
e) 4
x 1 2
f) 9 3
7.
3x 1 2 x 4 3 x 2 x 4 1 x 5
3 x 2
a) 3 x 4 x 7
b) 4 x 9 3 2 x
c) 5 x 11 3x
d) Linear Equations
37
x 2 x4 3
Module PMR
e) 2 x =
5x − 3 =x 4
f)
8.
3( x − 2) = 2 x + 5 3x − 6 = 2 x + 5 3x − 2 x = 5 + 6 x = 11
4 + 9x 5
a)
4( x − 3) − 6 = x
b) x − 3( x + 1) = 9
c) x + 4 = 3 − 2( x − 5)
d)
1 (2 x − 3) = −5 + 2 x 3
e)
x −5 x = 3 6
f)
PMR past year questions 2004 1). Solve each of the following equations. Linear Equations
38
2 x − 5 3x + 4 = 3 2
Module PMR
a) k = −14 − k 3 b) f + (6 − 4 f ) = −31 2
[3 marks] 2005 2). Solve each of the following equations. a) 2n 3n 4 b) 2k
3 7k 5
[3 marks] 2006 3). Solve each of the following equations. a)
12 3 n
b) 2(k 1) k 3
[3 marks] 2007 4). Solve each of the following equations. a) x 10 4 Linear Equations
39
Module PMR
b)
5x 4 x 3
[3 marks] 2008 5). Solve each of the following equations. a) p 5 11 b) x 1
x3 2
[3 marks]
CHAPTER 3 :LINEAR EQUATIONS ANSWERS 1.
a) x = -12 b) x = -2
Linear Equations
2. 40
a) x = 14 b) x = 7
Module PMR
c) x = 3 d) x = -13 e) x = -9 f) x = -10 a) x = 1 b) x = 9 c) x = -1 d) x = -9 e) x = 11 f) x = 2
3.
5.
4.
a) x = -10 b) x = -14 2 c) x = 3 d) x = 6 5 e) x = 8 f) x = 9 a) x = 7 b) x = -3 c) x = 8 d) x = -9 e) x = 4 f) x = 3
7.
c) x = 9 d) x = -8 e) x = 10 f) x = 4 a) x = 6 b) x = -5 c) x = 4 d) x = -4 e) x = 10 1 f) x = 6 a) x = -3 b) x = 2 c) x = 14 d) x = -25 e) x = 6 f) x = -4
6.
8.
a) b) c) d) e)
x=6 x = -6 x=3 x=3 x = 10 22 f) 5
PMR past year questions 2004.
2005.
1). a). k = -7
2). a). n = 4
b). f = 8
b). k =
3 17
2006.
2007.
3). a). n = 4
4). a). x = -6
b). k = 5 2008. 5). a). p = -16
Linear Equations
b). x = 2 b). x = 5
41