Chapter 3 Linear Equations

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Chapter 3 Linear Equations as PDF for free.

More details

  • Words: 1,364
  • Pages: 10
Module PMR

CHAPTER 3 : LINEAR EQUATIONS 1.

Solve linear equation = Finding the value of the unknown which satisfies the equation.

2.

The solution of the equation is also known as the root of the equation.

3.

A linear equation in one unknown has only one root.

4.

To determine whether a given value is a solution of an equation, substitute the value into the equation. If the sum of the left hand side (LHS) = sum of right hand side (RHS), then the given value is a solution. There are 4 different forms of linear equation as follow: Equation x+a=b

Solution x=b-a

x-a=b

x=b+a

ax = b

x

x b a

b a

x=axb

Solving Linear Equations in One Unknown involving combined operations of +, -, x,  . Steps:

1. Work on the bracket first, if there is any. 2. Group the terms with the unknown on the left hand side of the equation while the numbers on the right side. 3. Solve the equation using combined operations. 4. Check your solution by substituting the value into the original equation.

Examples: 1. Given that 2y + 11 = -5, calculate the value of y. Solutions:

Linear Equations

32

Module PMR

2 y  11  5 2 y  5  11 2 y  16 16 y 2 y  8 2. If k  1 

k 5 ,find the value of k. 3

3. Find the value of q which satisfies the equation 3(q  4)  q  2

Solution:

Solution: k 5 3 3(k  1)  k  5 3k  3  k  5 3k  k  5  3 2k  8 8 k 2 k 4 k 1 

3(q  4)  q  2 3q  12  q  2 3q  q  2  12 2q  14 14 q 2 q7

4. If 7 - (x + 1) = -4x, then x = ? Solution: 7  ( x  1)  4 x 7  x  1  4 x  x  4 x  7  1 3 x  6 6 x 3 x  2 Common Errors No Errors m  2  7 1. m  7  2 m  5 x5  3 2. x  3  5 x8

Linear Equations

Correct Steps m  2  7 m  7  2 m  9 x5  3 x  35 x  2

33

Module PMR

3.

2y  8 8 y 2 y4

2y  8 y  8 2 y  16 1 p 8 4

4.

p  8

1 p 8 4 p  8 4 p  32

1 4

p2

5.

1.

2x  3  7 2x  7  3 2 x  10 10 x 2 x5 Exercise a) x  2  10

2x  3  7 2x  7  3 2x  4 x  4 2 x8 Example x  5  11 x  11  5 x6

b) x  4  2

c) 4  x  7

d) 10  x  3

e) 6  x  3

f) 3  7  x

Linear Equations

34

Module PMR

2.

x 3  5 x  53 x8

a)

x 8  6

b)

x  10  3

c) 7  x  2

d) 1  x  9

e) 3  x  7

f) 5  9  x

3.

5  6 x x  65 x 1

a) 6  7  x b) 5  4  x

c) 3   x  2

d) 1  x  10

e)  x  8  3

f) 5  x  7

Linear Equations

35

Module PMR

4.

2 x  10 10 x 2 x  5

a) 3 x  18 b) 5 x  25 c) 8  2x d) 16  4x e)  x  10 f) 3 x 

5.

x 2 5 x  25 x  10

a)

1 2

x  5 2

b) 

x 2 7

c)

x 1  2 3

d)

5x  10 3

2 1 e)  x  5 4

f) 

Linear Equations

36

x 3  6 2

Module PMR

6.

2x 1  5 2x  5 1 2x  6 6 x 2 x3

a) 3 x  4  5

b) 6  4 x  2

c)

1 x 3  4 2

d) 3 

2 x  7 5

e) 4 

x 1 2

f) 9  3 

7.

3x  1  2 x  4 3 x  2 x  4  1 x  5

3 x 2

a) 3 x  4 x  7

b) 4 x  9  3  2 x

c) 5  x  11  3x

d) Linear Equations

37

x 2 x4 3

Module PMR

e) 2 x =

5x − 3 =x 4

f)

8.

3( x − 2) = 2 x + 5 3x − 6 = 2 x + 5 3x − 2 x = 5 + 6 x = 11

4 + 9x 5

a)

4( x − 3) − 6 = x

b) x − 3( x + 1) = 9

c) x + 4 = 3 − 2( x − 5)

d)

1 (2 x − 3) = −5 + 2 x 3

e)

x −5 x = 3 6

f)

PMR past year questions 2004 1). Solve each of the following equations. Linear Equations

38

2 x − 5 3x + 4 = 3 2

Module PMR

a) k = −14 − k 3 b) f + (6 − 4 f ) = −31 2

[3 marks] 2005 2). Solve each of the following equations. a) 2n  3n  4 b) 2k 

3  7k 5

[3 marks] 2006 3). Solve each of the following equations. a)

12 3 n

b) 2(k  1)  k  3

[3 marks] 2007 4). Solve each of the following equations. a) x  10  4 Linear Equations

39

Module PMR

b)

5x  4 x 3

[3 marks] 2008 5). Solve each of the following equations. a) p  5  11 b) x  1 

x3 2

[3 marks]

CHAPTER 3 :LINEAR EQUATIONS ANSWERS 1.

a) x = -12 b) x = -2

Linear Equations

2. 40

a) x = 14 b) x = 7

Module PMR

c) x = 3 d) x = -13 e) x = -9 f) x = -10 a) x = 1 b) x = 9 c) x = -1 d) x = -9 e) x = 11 f) x = 2

3.

5.

4.

a) x = -10 b) x = -14 2 c) x = 3 d) x = 6 5 e) x =  8 f) x = 9 a) x = 7 b) x = -3 c) x = 8 d) x = -9 e) x = 4 f) x = 3

7.

c) x = 9 d) x = -8 e) x = 10 f) x = 4 a) x = 6 b) x = -5 c) x = 4 d) x = -4 e) x = 10 1 f) x = 6 a) x = -3 b) x = 2 c) x = 14 d) x = -25 e) x = 6 f) x = -4

6.

8.

a) b) c) d) e)

x=6 x = -6 x=3 x=3 x = 10 22 f)  5

PMR past year questions 2004.

2005.

1). a). k = -7

2). a). n = 4

b). f = 8

b). k =

3 17

2006.

2007.

3). a). n = 4

4). a). x = -6

b). k = 5 2008. 5). a). p = -16

Linear Equations

b). x = 2 b). x = 5

41

Related Documents

Linear Equations
July 2020 19
Linear Equations
June 2020 21
Linear Equations
June 2020 19
2.2 Linear Equations.
June 2020 8